ALGEBRAIC NUMBER THEORY W4043

Homework, week 11, due December 10

- I. Hindry's book, Exercises 6.1 and 6.3, p. 158, and 6.6, p. 159.
- II. Let K be a number field, Cl(K) the ideal class group, $\chi : Cl(K) \to \mathbb{C}^{\times}$ a homomorphism. If $\mathfrak{a} \subset \mathcal{O}_K$ is any ideal, let $[\mathfrak{a}]$ denote its ideal class in Cl(K), and define $\chi(\mathfrak{a}) = \chi([\mathfrak{a}])$.
 - 1. Show that $|\chi(\mathfrak{a})| = 1$ for any ideal \mathfrak{a} .
 - 2. Let

$$L(s,\chi) = \sum_{\mathfrak{a} \subset \mathcal{O}_K} \frac{\chi(\mathfrak{a})}{N\mathfrak{a}^s}.$$

Show that $L(s,\chi)$ is absolutely convergent for Re(s) > 1. What would you need to know in order to prove that $L(s,\chi)$ converges for Re(s) > 0?

3. Let K be a number field, S a finite set of prime ideals of \mathcal{O}_K . Let I^S denote the set of ideals of \mathcal{O}_K not divisible by any prime ideal of S. Let χ be as above. Define

$$L^S(s,\chi)) = \sum_{\mathfrak{a} \in I^S} \frac{\chi(\mathfrak{a}}{N\mathfrak{a}^s}.$$

Express $L^S(s,\chi)$ in terms of $L(s,\chi)$ and the set S. Does the function $L^S(s,\chi)$ have any obvious zeroes or poles?