Calculus I
Midterm I

Read the directions for each problem, it will be helpful!
Good Luck!

<table>
<thead>
<tr>
<th>Question</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Points</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>12</td>
<td>20</td>
<td>15</td>
<td>10</td>
<td>8</td>
<td>10</td>
<td>75</td>
</tr>
</tbody>
</table>
1. (3 points each) Warm up!

(a) What does it mean for a function \(f(x) \) to be one-to-one?

(b) What is the definition of a function \(f(x) \) being continuous at a number \(a \)?

(c) State the Intermediate Value Theorem.

(d) What is the definition of a vertical asymptote?
2. (5 points each) Calculate the following limits.

(a) \(\lim_{x \to \frac{\pi}{6}} \frac{\cos(x + \frac{\pi}{3})}{3 \tan x} \)

(b) \(\lim_{x \to 1} \frac{1-x^3}{x-1} \)

(c) \(\lim_{x \to -\infty} \left(x + \sqrt{x^2 + 7x} \right) \)

(d) \(\lim_{x \to \pi^-} e^{\cot x} \)
3. (15 points) Define:

\[f(x) = \frac{e^x - e^2}{2e^x - 4} \]

For \(f(x) \) find:

(a) Vertical asymptotes

(b) Horizontal asymptotes

(c) \(x \)-intercepts

(d) \(y \)-intercepts

(e) Where the function is continuous.
4. (10 points) Find the values of a and b that make f continuous everywhere.

$$f(x) = \begin{cases}
0, & x < -3 \\
 a \cos \left(\frac{\pi}{2} x \right) + 3b, & -3 \leq x < -1 \\
 4ax^2 - 5bx + 2, & x \geq -1
\end{cases}$$
5. (8 points) The graph of $g(x)$ is given below.

Calculate:

(a) $\lim_{x \to -1} g(x)$

(b) $\lim_{x \to -2} g(x)$

(c) $\lim_{x \to 1} g(x)$

(d) $\lim_{x \to -3^-} g(x)$
6. (10 points) Calculate the slope of the tangent line to the graph of $f(x)$ at $x = 0$, where

$$f(x) = \begin{cases} x^3 \sin \left(\frac{1}{x} \right), & x \neq 0 \\ 0, & x = 0 \end{cases}$$