Written Homework 8

Due Tuesday, August 5, 2014

1. Suppose f and g are twice differentiable functions whose second derivatives are never 0.

 (a) If f and g are positive, increasing, concave upward functions on an interval I, show that the product function fg is concave upward on I.

 (b) Suppose the same conditions as in part (a) except that f is increasing and g is decreasing. Show by giving three examples that fg may be concave upward, concave downward, or linear.

2. Sketch a graph of a function that satisfies all of the given conditions:

 - $f'(1) = f'(-1) = 0$
 - $f'(x) < 0$ if $|x| < 1$
 - $f'(x) > 0$ if $1 < |x| < 2$
 - $f'(x) = -1$ if $|x| > 2$
 - $f''(x) < 0$ if $-2 < x < 0$
 - $f''(x) < 0$ if $-2 < x < 0$
 - inflection point $(0, 1)$

3. Show that

 $$\lim_{x \to \infty} \frac{e^x}{x^n} = \infty$$

 for any positive integer n. This shows that the exponential function approaches infinity faster than any power of x.
