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We investigate the structure of the characteristic polynomial det(xI −T ) of a transition
matrix T that is associated to a train track representative of a pseudo-Anosov map [F ]
acting on a surface. As a result we obtain three new polynomial invariants of [F ], one
of them being the product of the other two, and all three being divisors of det(xI − T ).
The degrees of the new polynomials are invariants of [F ] and we give simple formulas for
computing them by a counting argument from an invariant train-track. We give examples
of genus 2 pseudo-Anosov maps having the same dilatation, and use our invariants to
distinguish them.
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1. Introduction

Let S be an orientable 2-manifold of genus g, closed or with finitely many punctures,
where the genus and the number of punctures are chosen so that S admits a hyper-
bolic structure. The modular group Mod(S) is the group π0(Diff(S)), where admis-
sible homeomorphisms preserve orientation. If a mapping class [F ] ∈ Mod(S) is
pseudo-Anosov or pA, then there exists a representative F : S → S, a pair of invari-
ant transverse measured foliations (Fu, µu), (Fs, µs), and a real number λ, the
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dilatation of [F ], such that F multiplies the transverse measure µu (respectively, µs)
by λ (respectively, 1

λ ). The real number λ(F ) is an invariant of the conjugacy class
of [F ] in Mod(S).

In this paper we introduce a new approach to the study of invariants of [F ],
when [F ] is pA. Our work was in part motivated by recent efforts (see [7] and a
host of papers that were inspired by it) to understand precisely which real numbers
λ occur in this setting. It is known that if one fixes S, then as F is varied its
dilatation λ(F ) takes on a minimum value λS,min, where by this we mean that any
pA map on S has dilatation ≥ λS,min, also λmin,S is realized by some pA map F .
The number λS,min is of great interest. Many attempts have been made to use the
approach in [7] to find λS,min for closed surfaces of arbitrary genus g, however it
appeared to us (after attending a workshop in April 2010 addressed to the study of
λS,min), that a new approach was needed. The main result in this paper is, for an
arbitrary pA map F , the determination of two integer polynomials, both containing
λ(F ) as their largest real root, and the proof that both are invariants of the given
pA mapping class. Both will be seen to have a known topological meaning. The
study of these two polynomials, rather than of λ itself, is the new approach that
we have in mind.

Measured train tracks are a partially combinatorial device that Thurston intro-
duced to encode the essential properties of (Fu, µu), (Fs, µs). A train track τ

is a branched 1-manifold that is embedded in the surface S. It is made up of
vertices (called switches) and smooth edges (called branches), disjointly embedded
in S. See [8, Sec. 1.3]. Given a pA map [F ], there exists a train track τ ⊂ S that
fills the surface, i.e. the complement of τ consists of (possibly punctured) disks,
and τ is left invariant by [F ]. Moreover, τ is equipped with a transverse measure
(respectively, tangential measure) that is related to the transverse measure µu on
Fu (respectively, µs on Fs).

In [1] Bestvina and Handel gave an algorithmic proof of Thurston’s classification
theorem for mapping classes. Their proof shows that, if [F ] is a pA map of S, then
one may construct, algorithmically, a graph G, homotopic to S when S is punctured,
and an induced map f : G → G, that we call a train track map. For every r ≥ 1
the restriction of f r to the interior of every edge is an immersion. It takes a vertex
of G to a vertex, and takes an edge to an edge-path which has no backtracking.
Let e1, . . . , en be the unoriented edges of G. Knowing G and f : G → G, they
construct a somewhat special measured train track τ , and we will always assume
that our τ comes from their construction. The transition matrix T is an n × n

matrix whose entry Ti,j is the number of times the edge path f(ej) passes over ei

in either direction, so that all entries of T are non-negative integers. If [F ] is pA,
then T is irreducible and it has a dominant real eigenvalue λ, the Perron–Frobenius
eigenvalue [6]. The eigenvalue λ is the dilatation of [F ]. The left (respectively,
right) eigenvectors of T determine tangential (respectively, transversal) measures
on τ , and eventually determine µs (respectively, µu).
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In this paper we study the structure of the characteristic polynomial det(xI−T )
of the transition matrix T . Our work depends crucially on the Bestvina–Handel
algorithm, however we look for the structure needed to find a measured train track
in T , and not in the matrix T ′ =

[N A
0 T

]
that appears in [1, Secs. 3.3 and 3.4].

Bestvina and Handel use T ′ to build the invariant foliations associated to f . As is
well-known, all of the information needed for that construction is already present in
T , and we shall build on that fact. With that in mind, let V (G) be the vector space
of real weights on the edges of the Bestvina–Handel graph G. Let f∗ : V (G) → V (G)
be the map induced from the train track map f : G → G. Let χ(f∗) = det(xI − T ).
It is well-known that χ(f∗) depends on the choice of f : G → G within its conjugacy
class [F ].

The first new result in this paper is the discovery that, after dividing χ(f∗) by
a polynomial that is determined by the way that a train-track map acts on certain
vertices of G, one obtains a quotient polynomial which is a topological invariant
of [F ]. This polynomial arises via an f∗-invariant direct sum decomposition of the
R-vector space of transverse measures on τ . It is the characteristic polynomial of
the action of f∗ on one of the summands. We call it the homology polynomial of [F ]
for reasons that will become clear in a moment. We will construct examples of pA
maps on a surface of genus 2 which have the same dilatation, but are distinguished
by their homology polynomials.

Like χ(f∗), our homology polynomial is the characteristic polynomial of an
integer matrix, although (unlike T ) that matrix is not in general non-negative.
We now describe how we found it. We define and study an f∗-invariant subspace
W (G, f) ⊂ V (G). The subspace W (G, f) is chosen so that weights on edges deter-
mine a transverse measure on the train track τ associated to G and f : G → G. We
study f∗|W (G,f). See [11, p. 427], where the mathematics that underlies f∗|W (G,f)

is described by Thurston. Our first contribution in this paper is to make the struc-
ture that Thurston described there concrete and computable, via an enhanced form
of the Bestvina–Handel algorithm. This allows us to prove that the characteristic
polynomial χ(f∗|W (G,f)) is an invariant of the mapping class [F ] in Mod(S). This
polynomial χ(f∗|W (G,f)) is our homology polynomial and we denote it by h(x).
It contains the dilatation of [F ] as its largest real root, and so is divisible by the
minimum polynomial of λ. Its degree depends upon a careful analysis of the action
of f∗ on the vertices of G.

Investigating the action of f∗ on W (G, f), we show that W (G, f) supports a
skew-symmetric form that is f∗-invariant. The existence of the symplectic structure
was known to Thurston and also was studied by Penner–Harer in [8], however it
is unclear to us whether it was known to earlier workers that it could have degen-
eracies. See Remark 3.1. We discovered via examples that degeneracies do occur.
In Sec. 3 we investigate the radical Z of the skew-symmetric form, i.e. the totally
degenerate subspace of the skew-symmetric form, and arrive at an f∗-invariant
decomposition of W (G, f) as Z ⊕ (W (G, f)/Z). This decomposition leads to a
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product decomposition of the homology polynomial as a product of two additional
new polynomials, with both factors being invariants of [F ]. We call the first of these
new polynomials, p(x) = χ(f∗|Z), the puncture polynomial because it is a cyclo-
tomic polynomial that relates to the way in which the pA map F permutes certain
punctures in S. As for s(x) = χ(f∗|W (G,f)/Z), our symplectic polynomial, we know
that it arises from the action of f∗ on the symplectic space W (G, f)/Z, but we
do not fully understand it at this writing. Sometimes the symplectic polynomial
is irreducible, in which case it is the minimum polynomial of λ. However we will
give examples to show that it can be reducible, and even an example where it is
symplectically reducible. Thus its relationship to the minimum polynomial of λ is
not completely clear at this writing.

Summarizing, we will prove the following theorem.

Theorem 1.1. Let [F ] be a pA mapping class in Mod(S), with Bestvina–Handel
train track map f :G → G and transition matrix T .

(1) The characteristic polynomial χ(f∗)of T has a divisor, the homology polynomial
h(x) which is an invariant of [F ]. It contains λ as its largest real root, and is
associated to an induced action of F∗ on H1(X, R), where X is the surface S

when τ is orientable and its orientation cover S̃ when τ is non-orientable.
(2) The homology polynomial h(x) decomposes as a product p(x) · s(x) of two

polynomials, each a topological invariant of [F ].

(a) The first factor, the puncture polynomial p(x), records the action of f∗
on the radical of a skew-symmetric form on W (G, f). It has topological
meaning related to the way in which F permutes certain punctures in the
surface S. It is a palindromic or anti-palindromic polynomial, and all of its
roots are on the unit circle.

(b) The second factor, the symplectic polynomial s(x), records the action of
f∗ on the nondegenerate symplectic space W (G, f)/Z. It contains λ as its
largest real root. It is palindromic. If irreducible, it is the minimum poly-
nomial of λ, but it is not always irreducible.

(3) The homology polynomial h(x), being a product of the puncture and symplectic
polynomials, is palindromic or anti-palindromic.

The proof of Theorem 1.1 can be found in Secs. 2 and 3 below. In Sec. 4 we
give several applications, and prove that our three invariants behave nicely when
the defining map F is replaced by a power F k. The paper ends, in Sec. 5 with a
set of examples which give concrete meaning to our ideas. The first such example,
Example 5.1, defines three distinct maps F1, F2, F3 on a surface of genus 2, chosen
so that all three have the same dilatation. Two of the three pairs are distinguished
by any one of our three invariants. The third map was chosen so that it probably
is not conjugate to the other two, however our invariants could not prove that.
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2. Proof of Part (1) of Theorem 1.1

We begin our work in Sec. 2.1 by recalling some well-known facts from [1] that
relate to the construction of the train track τ by adding infinitesimal edges to the
graph G. After that, in Sec. 2.2, we introduce the space W (G, f) of transverse
measures, which plays a fundamental role throughout this paper. Rather easily, we
will be able to prove our first decomposition and factorization theorem. Thus at
the end of Sec. 2.2 we have our homology polynomial in hand, but we do not know
its meaning, have not proved it is an invariant, and do not know how to compute
it. In Sec. 2.3 we prepare for the work ahead by constructing a basis for W (G, f).
We also learn how to find the matrix for the action of f∗ on the basis. With that
in hand, in Sec. 2.4 we identify the vector space W (G, f) with a homology space.
We will be able to prove Corollary 2.2, which asserts that the homology polynomial
h(x) is a topological invariant of the conjugacy class of our pA map [F ] in Mod(S).
(Later in Sec. 5, we will use it to distinguish examples of pA maps acting on the
same surface and having the same dilatation.)

2.1. Preliminaries

It will be assumed that the reader is familiar with the basic ideas of the algorithm of
Bestvina–Handel [1]. The mapping class [F ] will always be pA. Further, assume that
we are given the graph G ⊂ S, homotopic to S, and a train track map f :G → G.
We note that if S is closed, the action of [F ] always has periodic points with finite
order, and the removal of a periodic orbit will not affect our results, therefore
without loss of generality we may assume that S is finitely punctured.

Following ideas in [1] we construct a train track τ from f : G → G by equipping
the vertices of G with additional structure: Let e1, e2 ⊂ G be two (non-oriented)
edges originating at the same vertex v. Edges e1 and e2 belong to the same gate
at v if for some r > 0, the edge-paths f r(e1) and f r(e2) have a nontrivial common
initial segment. If e1 and e2 belong to different gates at v and there exists some
exponent r > 0 and an edge e so that f r(e) contains e2e1 or e1e2 as a subpath, then
we connect the gates associated to e1, e2 with an infinitesimal edge. In this way,
a vertex v ∈ G with k gates becomes an infinitesimal k-gon in the train track τ .
While this k-gon may be missing one-side, the infinitesimal edges must connect all
the gates at each vertex, (see [1, Sec. 3.3]). In addition to the infinitesimal edges,
τ also has real edges corresponding to the edges of G. Hence, a branch of τ , in the
sense of Penner–Harer [8], is either an infinitesimal edge or a real edge.

It is natural to single out the following properties of the vertices of G.

Definition 2.1. (Vertex types) See Fig. 1. A vertex of G is odd (respectively, even)
if its corresponding infinitesimal complete polygon in τ has an odd (respectively,
even) number of sides, and it is partial if its infinitesimal edges form a polygon in
τ with one side missing. Partial vertices include the special case where v has only
two gates connected by one infinitesimal edge; we call such vertices evanescent.
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Fig. 1. Shaded disks enclose infinitesimal (partial) polygons in τ that correspond to the
vertices of G.

The symbol wi (respectively, xi) will denote the weight of ith gate (respectively,
infinitesimal edge).

Remark 2.1. In Sec. 5 the reader can find several examples illustrating the
graph G with infinitesimal polygons associated to particular pA mapping classes.
In those illustrations the vertices of the graphs have been expanded to shaded disks
which show the structure at the vertices. In the sketch of a train track that XTrain
generates, the branches at each gate do not appear to be tangent to each other.
This was done for ease in drawing the required figures. The reader should keep in
mind that all the branches at each gate are tangent to each other.

We recall properties of non-evanescent vertices that are preserved under a train
track map.

Lemma 2.1. ([1, Proposition 3.3.3]) For k ≥ 3, let Ok be the set of odd vertices
with k gates, Ek be the set of even vertices with k gates, and Pk be the set of partial
vertices with k gates. Then the restriction of f : G → G to each of these sets is a
permutation of the set.

Moreover, for each (non evanescent) vertex v with at least three gates, f induces
a bijection between the gates at v and the gates at f(v) that preserves the cyclic
order.

Remark 2.2. The number of evanescent vertices of a train track representative
is not an invariant of the underlying mapping class. Examples exist where a train
track map has a representative with evanescent vertices, and another without.

Definition 2.2. (Orientable and non-orientable train tracks) Choose an orienta-
tion on each branch of a train track τ . A train track is orientable if we can orient
all the branches so that, at every switch, the angle between each incoming branch
and each outgoing branch is π. For example, see the train tracks τ1 and τ2 that are
given in Fig. 7 of Sec. 5. After adding the infinitesimal edges, one sees that τ1 is
orientable, but τ2 is not.

Here is an easy observation.

Lemma 2.2. If G has an odd vertex, then the corresponding train track τ is non-
orientable. This condition is sufficient, but not necessary.
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Proof. If v is an odd vertex, then there exists no consistent orientation for the
corresponding infinitesimal polygon in τ . The example in Fig. 7 shows that the
condition is not necessary.

Remark 2.3. We do not know any immediate visual criterion beyond the one in
Lemma 2.2 for detecting non-orientability. The two train tracks τ1, τ2 in Fig. 7
of this paper both have 2 vertices, one even and one partial, and τ1 is orientable
whereas τ2 is non-orientable. If all the vertices are partial, then the train track may
be either orientable (see [2, Example 4.2]) or non-orientable (see Example 5.3); also,
a non-orientable train track may have odd, even, and partial vertices at the same
time (see Example 5.4).

2.2. The space W (G, f) and the first decomposition

Given a graph G of n edges, one always has an R-vector space V (G) � Rn of
weights on G. Our goal in this section is to define a subspace W (G, f) ⊂ V (G) of
“transverse measures on G”. This space is the natural projection of the measured
train track τ to a space of measures on G. It will play a fundamental role in our
work.

In our setting, all train tracks are bi-recurrent, that is, recurrent and transversely
recurrent, cf. [8, p. 20]. To define our space W (G, f), we apply Penner–Harer’s work
described in [8, Sec. 3.2], where bi-recurrence is assumed.

Let V (τ) ∼= Rn+n′
, where n (respectively, n′) is the number of the real (respec-

tively, infinitesimal) edges of train track τ . Penner–Harer defined a subspace
W (τ) ⊂ V (τ) of assignments of (possibly negative) real numbers, one to each
branch of τ , which satisfy the switch conditions. That is, if η ∈ W (τ) then at each
switch of τ , the sum of the weights on the incoming branches equals to the sum on
the outgoing branches. For example, in Fig. 2(a), η(a) = η(b1) + η(b2).

Definition 2.3. There is a natural surjection π : τ → G which is defined by col-
lapsing all the infinitesimal (partial) polygons to their associated vertices in G and
taking each real edge in τ to the corresponding edge in G. Let W (G, f) = π∗(W (τ)).
That is, W (G, f) ⊂ V (G) is the subspace whose elements admit an extension to a
(possibly negative) transverse measure on τ . The name W (G, f) has been chosen

(a) (b)

Fig. 2. (a) A switch of valence 3. (b) A switch of valence 5.
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to reflect the fact that our subspace depends not only on G, but also on the action
f :G → G.

Here is a useful criterion for an element of V (G) to be in W (G, f):

Lemma 2.3. An element η ∈ V (G) belongs to W (G, f) if and only if for each
non-odd vertex the alternating sum of the weights at the incident gates is zero.

Proof. Assume that η ∈ V (G) belongs to W (G, f). Let v ∈ G be a vertex with
k gates, i.e. v corresponds to an infinitesimal k-gon, possibly partial, in the train
track τ . Let w0, . . . , wk−1 ∈ R be the weights of η at the incident gates of v, and
let x0, . . . , xk−1 ∈ R (or x0, . . . , xk−2 if v is a partial vertex) be the weights of the
infinitesimal edges. See Fig. 1. The weights on the infinitesimal edges may turn out
to be negative real numbers. We determine when an assignment of weights to the
real edges admits an extension to the infinitesimal edges that satisfies the switch
conditions.

If v is odd or even with k gates, then the switch condition imposes:

xk−1 + x0 = w0,

x0 + x1 = w1,

x1 + x2 = w2,

...

xk−2 + xk−1 = wk−1.

If k is odd, this system of equations has a unique solution, regardless of the weights
wi. If k is even, the system is consistent if and only if

∑k−1
i=0 (−1)iwi = 0.

If v is partial with k gates, then the switch condition imposes:

x0 = w0,

x0 + x1 = w1,

x1 + x2 = w2,

...

xk−3 + xk−2 = wk−2,

xk−2 = wk−1.

This system has a unique solution if and only if
∑k−1

i=0 (−1)iwi = 0.

Lemma 2.4. W (G, f) is an invariant subspace of V (G) under f∗, i.e. f∗(W (G,

f)) ⊆ W (G, f).

Proof. Suppose v is a non-odd vertex and mapped to a non-odd vertex f(v). Let
η ∈ W (G, f). By Lemma 2.3, the alternating weight sum of η at the incident gates
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of v is 0. Lemma 2.1 implies that all the weights of η at the infinitesimal edges for
v is inherited to the weights of f∗η at the infinitesimal edges for f(v).

In addition, we account for an edge e ⊂ G whose image f(e) = e0e1 · · · ek passes
through the vertex f(v). Assume that η has weight w = η(e) at the edge e. If a
sub-edge-path eiei+1 passes through f(v) then edges ei and ei+1 belong to adjacent
gates at f(v) and the contribution of eiei+1 to the alternating sum of weights of
the gates at f(v) is w − w = 0.

Therefore, the alternating weight sum for f∗η at the incident gates for f(v) is 0.
By Lemma 2.3, f∗η ∈ W (G, f).

The dimension of the vector space W (G, f) can be computed combinatorially
by inspecting a train track associated to the pair (G, f).

Lemma 2.5. (1) If τ is orientable, then

dim W (G, f) = #(edges of G) − #(vertices of G) + 1,

W (G, f) ∼= Z1(G; R) ∼= H1(G; R) ∼= H1(S; R).

In particular, the switch conditions are precisely the cycle conditions.
(2) If τ is non-orientable, then

dim W (G, f) = #(edges of G) − #(non-odd vertices of G).

Proof. Assume that τ is orientable. By Lemma 2.2, G has no odd vertices. For
η ∈ W (G, f) and a non-odd vertex v, let

wv
i := wv

i (η) = the weight of η at the ith gate of the vertex v.

By Lemma 2.3,
∑

i(−1)iwv
i = 0. We number the gates at v so that the orientation of

the real edges at 2ith (respectively, (2i+1)th) gate is inward (respectively, outward).
If G has m vertices, v1, . . . , vm, then we have a system of m equations:

wv1
0 + wv1

2 + wv1
4 + · · · = wv1

1 + wv1
3 + wv1

5 + · · · ,
wv2

0 + wv2
2 + wv2

4 + · · · = wv2
1 + wv2

3 + wv2
5 + · · · ,

...

wvm
0 + wvm

2 + wvm
4 + · · · = wvm

1 + wvm
3 + wvm

5 + · · · .

The sum of the left-hand sides is equal to the sum of the right-hand sides. Since τ

is oriented, the last equation follows from the other m− 1 equations, i.e. the switch
conditions are not independent. Therefore,

dimW (G, f) = dim V (G) − (m − 1)

= #(edges of G) − #(vertices of G) + 1.
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With respect to the orientations of the edges of G, let ∂ : C1(G; R) → C0(G; R)
be the boundary map of the chain complex. There is a natural isomorphism
V (G) ∼= C1(G; R). If γ ∈ Z1(G; R) is a cycle, then the cycle condition ∂γ = 0
is equivalent to the alternating sum condition

∑
i(−1)iwv

i (γ) = 0 at each vertex
v ∈ G. By Lemma 2.3 we obtain W (G, f) ∼= Z1(G; R). In fact, the Euler charac-
teristic of s-punctured genus g surface S is; χ(S) = 2− 2g− s = #(vertices of G)−
#(edges of G). Thus dimW (G, f) = 2g + s − 1 = dimH1(S; R).

In the non-orientable case, the switch conditions are satisfied if and only if
the alternating sum of the weights of gates around each even or partial vertex is
zero (Lemma 2.3). Moreover, all these conditions are independent of each other
(see [8, Lemma 2.1.1]), so that the number of independent constraints is the num-
ber of non-odd vertices. Since dimV (G) is the number of edges, statement (2)
follows.

Now we know that V (G) can be identified with the 1-chains C1(G) in the ori-
entable case, we can extend the boundary map ∂ :C1(G) → C0(G) to the following
map δ on V (G).

Definition 2.4. (The map δ) Assume that the graph G has m non-odd vertices,
v1, . . . , vm. Define a linear map δ : V (G) → Rm, η 	→ δ(η) such that

(kth entry of the vector δ(η)) =
∑

i

(−1)iwvk

i (η),

the alternating sum of the weights of η at the gates incident to the vertex vk. These
weights satisfy the following conditions:

• If τ is oriented, then we determine the sign of each gate to be compatible with
the orientation of the real edges of τ . The alternating sum is defined without
ambiguity. For an example, in Fig. 7, left sketch, a plus (respectively, minus) sign
may be assigned at each gate, according as the real edges are oriented toward
(respectively, away from) the gate.

• If τ is non-orientable, we assign alternating signs to the incident gates for each
non-odd vertex. Since τ is non-orientable, the assignments will be local and not
global. Clearly, the alternating sum depends on the choice of the sign assignment.

Lemma 2.6. In both the orientable and non-orientable cases W (G, f) ∼= ker δ.
Moreover, if m is the number of non-odd vertices of G, then

dim(im δ) =

{
m − 1 if τ is orientable,

m if τ is non-orientable.

Proof. Lemma 2.3, immediately implies that W (G, f) ∼= ker δ. The dimension
count follows from Lemma 2.5.
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Finally we prove the following theorem.

Theorem 2.1. (First Decomposition) Let h(x) = χ(f∗|W (G,f)), then

V (G) ∼= W (G, f) ⊕ im δ. (2.1)

χ(f∗) = h(x)χ(f∗|im δ). (2.2)

The degree of h(x) (respectively, χ(f∗|im δ)) is the dimension of W (G, f)
(respectively, im δ), as given in Lemma 2.5 (respectively, Lemma 2.6).

Proof. From Lemma 2.6, identifying im δ with the quotient V (G)/W (G, f) we
obtain (2.1). By the same argument as in the proof of Lemma 2.4, we obtain
f∗(im δ) ⊂ im δ. This along with f∗(W (G, f)) ⊂ W (G, f) yields (2.2).

2.3. A basis for W (G, f) and the matrix for

the action of f∗ on W (G, f)

The goal of this section is to find a basis for W (G, f) ⊂ V (G) and learn how
to determine the action of f∗ on the basis. With regard to the basis, it will be
convenient to consider three cases separately: the cases when τ is orientable, when
τ is non-orientable and has odd vertices, and when τ is non-orientable but has no
odd vertices. That is accomplished in Secs. 2.3.1–2.3.3. Having the basis in hand,
in Sec. 2.3.4 we learn how to compute the action of f∗ on the basis elements.

2.3.1. Basis for W (G, f), orientable case

If the train track τ associated to G is orientable, we choose an orientation for τ ,
thereby inducing an orientation on the edges of G, and choose a maximal spanning
tree Y ⊂ G. Every vertex of G will be in Y . We consider all edges e of G that are
not in Y , and construct a set of vectors {ηe ∈ V (G)} and prove that the constructed
set is a basis for W (G, f) ⊂ V (G).

For each e ∈ G\Y , find the unique shortest path in Y joining the endpoints of e.
The union of this path and e forms an oriented loop Le in which the edge e appears
exactly once, the orientation being determined by that on e. If the orientation of
edge e′ ⊂ G agrees (respectively, disagrees) with the orientation of e′ ⊂ Le, then we
assign a weight of 1 (respectively, −1) to e′. In particular, e ⊂ Le has weight 1. The
edges not in Le are assigned weight of 0. In this way we obtain a vector ηe ∈ V (G)
whose entries are the assigned weights. By construction, ηe satisfies the criterion
for a transverse measure, described in Lemma 2.3, therefore ηe is an element of
W (G, f).

We now show that {ηe1 , . . . , ηel
} is a basis for W (G, f) where e1, . . . , el are the

edges of G\Y and l = #(edges of G) − #(vertices of G) + 1. Note that if ei, ej ∈
(G \ Y ) with i 
= j, then ej /∈ Lei . Therefore ηei (ej) = 1 if and only if i = j,
because all the edges not in Lei have weight 0, i.e. the vectors ηe1 , . . . , ηel

are
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linearly independent. Consulting Lemma 2.5 we see that we have the right number
of linearly independent elements, so we have found a basis for W (G, f).

Example 2.1. Go to Sec. 5 below and see Example 5.1 and its accompanying
Fig. 7(1). The train track for this example is orientable. The space V (G) has dimen-
sion 5. Order the edges of G as a, b, c, d, e. The edge a and the vertices v0, v1 form
a maximal tree Y ⊂ G, with edges b, c, d, e /∈ Y , so that W (G, f) has dimension 4.
We have the loops Lb = ab; Lc = ac; Ld = ad; Le = ae, so that W (G, f) has basis
ηb = (1, 1, 0, 0, 0)′; ηc = (−1, 0, 1, 0, 0)′; ηd = (−1, 0, 0, 1, 0)′; ηe = (1, 0, 0, 0, 1)′,
where “prime” means transpose.

2.3.2. Basis for W (G, f), non-orientable case with odd vertices

If G has an odd vertex v0 then choose a maximal spanning tree Y ⊂ G. Let V be
the set of vertices of G. Define a height function h : V → N ∪ {0} by

h(v) = (the distance between v and v0 in Y ).

We obtain a forest Y ′ ⊂ Y by removing from Y all the edges each of which connects
an odd vertex and the adjacent vertex of smaller height. See Fig. 3. The forest
Y ′ contains all the vertices of G with exactly one odd vertex in each connected
component.

Now, let e be an edge that is not in Y ′. We can find two (possibly empty)
shortest paths in Y ′ each of which connects an endpoint of e to an odd vertex. The
union of e and the two paths forms an arc, which we denote by Le. (If both of the
endpoints of e belong to the same tree component of Y ′, then Le becomes a loop
containing one odd vertex.) Assign a weight of 1 to e and weight of 0 to the edges
that are not in Le. To the other edges in Le, we assign weights of ±1 so that at
each non-odd vertex the criterion of transverse measure (Lemma 2.3) is satisfied.
This defines an element ηe of W (G, f).

Fig. 3. A tree Y (left) and a forest Y ′ (right). Hollow dots v0, . . . , v4, are odd vertices. Black dots
are non-odd vertices.
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Let e1, . . . , el be the edges of G\Y ′. By the construction, we have ηei (ej) = 1
if and only if i = j, so the vectors ηe1 , . . . , ηel

are linearly independent. Since
l = #(edges of G) − #(non-odd vertices of G), Lemma 2.5 tells us that l =
dimW (G, f), hence {ηe1 , . . . , ηel

} is a basis of W (G, f).

Example 2.2. See Example 5.4. The graph G has two odd vertices v0 and v4.
We choose a maximal tree Y whose edges are a, c, d, j. This gives us a forest Y ′

with two components. One consists of the single vertex v4, and the other consists
of vertices v0, v1, v2, v3, and edges a, c, j. The edge h is not in Y ′, and its endpoints
are v1 and v4. The associated arc Lh = ch. Since c and h share the same gate at v1,
ηh satisfies ηh(c) = −1, ηh(h) = 1, and 0 for rest of the edges. The graph G has 10
edges a, b, . . . , j, with a, c, j in Y ′. The vector space W (G, f) has dimension 7. The
edge h is not in Y ′, and its endpoints are v1 and v4. Then Lh = ch. Since c and h

share the same gate at v1, ηh satisfies ηh(c) = −1, ηh(h) = 1, and 0 for rest of the
edges. The edge b is also not in Y ′, and its endpoints are v2 and v3, so Lb = cjbac

is an arc whose endpoints coincide at v0 and ηb satisfies ηb(a) = ηb(b) = ηb(j) = 1,
and 0 for rest of the edges. The other five basis elements are constructed in a
similar way.

2.3.3. Basis for W (G, f), non-orientable case with no odd vertices

In this case, we can find a simple loop L0 ⊂ G that does not admit an orientation
consistent with the train track τ . If L0 misses any vertices of G, then we define
L1 by adding an edge with exactly one vertex in L0. If L1 misses any vertices,
we define L2 by adding an edge with exactly one vertex in L1, etc. Ultimately we
obtain a connected subgraph L that is homotopy equivalent to a circle and contains
all vertices of G.

If e is an edge outside L, we can find paths in L from each endpoint of e to the
loop L0, resulting in a path L• that contains e and with endpoints in L0. Now we
can find paths L1, L2 in L0 so that L1∪L2 = L0 and the endpoints of L1, L2, called
va and vb, agree with those of L•. It is possible that va and vb are the same vertex,
in which case we set L2 = ∅. (This happens in Example 2.3, where our construction
is applied to Example 5.3.)

Let η0 ∈ V (G) be a vector which assigns 1 to edge e, ±1 to the other edges in
L•, and 0 to the edges not in L•, so that the alternating weight sum is 0 at all the
vertices but va, vb.

Next, let η1 ∈ V (G) (respectively, η2 ∈ V (G)) be a vector which assigns
±1 to the edges of L1 (respectively, L2) and 0 to the other edges not in
L1 (respectively, L2) so that η0 + η1 (respectively, η0 + η2) has the alternat-
ing sum of weights equal to 0 at all the vertices of G but va. In particu-
lar, at vertex vb, for i = 1, 2, (the alternating sum of weights of η0 + ηi) = 0,

hence

(the alternating sum of weights of η1 − η2 at vb) = 0.
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While, at vertex va

(the alternating sum of weights of η1 − η2 at va) = ±2.

For, if it were 0 then the loop L0 can admit an orientation consistent with τ , which
is a contradiction. Therefore, at va,

(the signed weight of η1) = −(the signed weight of η2).

This means, at va, we have (the alternating sum of weights of η0 + η1) = 0 if and
only if (the alternating sum of weights of η0 + η2) 
= 0.

If (the alternating sum of weights of η0 + η1) = 0 then define ηe := η0 + η1 and
Le := L• ∪L1. Otherwise define ηe := η0 + η2 and Le := L• ∪L2. By construction,
ηe satisfies the alternating sum condition of Lemma 2.3, hence ηe ∈ W (G, f).

Note that the number of edges in L is equal to the number of vertices of G, so
by Lemma 2.5 the number l of edges outside L is equal to dim W (G, f). Suppose
e1, . . . , el are the edges of G\L, then ηei(ej) = 1 if and only if i = j, i.e. vectors
ηe1 , . . . , ηel

are linearly independent. This proves that {ηe1 , . . . , ηel
} is a basis of

W (G, f).

Example 2.3. See Example 5.3. The partial vertex v0 has ten gates. We assign
signs alternatively to the gates, which imposes orientations on the edges b, c, e.
However, the gates of each edge a, d or f have the same sign, hence a, d, f do not
admit consistent orientations. We may choose the loop L = L0 to be the union of
v0 and the edge f . For the edge b, the loop Lb consists of a single edge b and v0.
The element ηb has

ηb(b) = 1, and ηb(a) = ηb(c) = ηb(d) = ηb(e) = ηb(f) = 0.

For the edge a, the loop La = a ∪ f and ηa has

ηa(a) = ηa(f) = 1, and ηa(b) = ηa(c) = ηa(d) = ηa(e) = 0.

The alternating sum of the weights of the ten gates is zero for both ηa and ηb.
Lemma 2.3 guarantees that ηa, ηb ∈ W (G, f).

2.3.4. The matrix for the action of f∗ on W (G, f)

With respect to the basis of W (G, f) described in Secs. 2.3.1–2.3.3, let A denote the
matrix representing the map f∗|W (G,f), With this A we can compute the homology
polynomial h(x).

We compute A explicitly as follows: Let e1, . . . , en be the edges of G. Let
ζ1, . . . , ζn be the standard basis of V (G) ∼= Rn, where ζi(ej) = δi,j the Kronecker
delta. Let l = dimW (G, f). Suppose that {η1, . . . , ηl} is a basis constructed as
in Secs. 2.3.1–2.3.3. Reordering the labels, if necessary, we may assume ηj = ηej

for j = 1, . . . , l. Now let Q be an n × l matrix whose entries qi,j ∈ Z satisfy
ηj =

∑n
i=1 qi,jζi. Let T be the transition matrix for the train track map f : G → G,
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and let P : Rn → Rl be the projection onto the first l coordinates. Then A is an l× l

integer matrix with A = PTQ. See Example 5.1 for the calculation of the matrix A.
We note that Corollary 2.1, in the next section, implies that A ∈ GL(l, Z).

Remark 2.4. A related question is the computation of the “vertex polynomial”
f∗|im δ, even though that polynomial is not a topological invariant and so is only of
passing interest. We mention it because in special cases it may be easiest to compute
the homology polynomial from the characteristic polynomial of T by diving by the
vertex polynomial. See Examples 5.2 and 5.4 below, where the computation of the
vertex polynomial is carried out in two cases, using data that is supplied by XTrain.

2.4. The orientation cover and the homology polynomial

While we have the first decomposition theorem in hand, and have learned how
to compute the homology polynomial, that is the characteristic polynomial of the
action of f∗ on W (G, f), we have not proved that it is an invariant of [F ] and
we do not understand its topological meaning. All that will be remedied in this
section. Our work begins by recalling the definition of the orientation cover S̃ of S,
introduced by Thurston ([11, p. 427]), see also [8, p. 184]. After that we will establish
several of its properties. See Proposition 2.1. In Theorem 2.2 and Corollary 2.1 we
study the homology space H1(S̃; R) and its relationship to our vector space W (G, f)
in the case when τ is non-orientable. At the end of the section, in Corollary 2.2,
we establish the important and fundamental result that the homology polynomial
is an invariant of the mapping class [F ] in Mod(S).

Definition 2.5. (Angle between two branches at a switch) For a switch in τ , fix
a very small neighborhood that only contains the switch and the branches meeting
at the switch. Within this neighborhood, we orient the branches in the direction
outward from the switch. This allows us to define the angle between two branches
that meet at the switch. Since they always meet tangentially, this angle is either 0
or π. If the angle is 0, then we say that the branches form a corner. For example, the
angle between the branches a and b1 in Fig. 2(b) is π, whereas the angle between
the branches b1 and b2 is 0 and b1, b2 form a corner.

Definition 2.6. (The orientation cover) Let F : S → S be a pA homeomorphism
with non-orientable train track τ . Add a puncture to S for each 2-cell of S\τ
corresponding to an odd or even vertex of G. The resulting surface S′ deformation
retracts to τ , i.e. π1(S′) = π1(τ). Each (not necessarily smooth) loop γ ⊂ τ consists
of branches of τ . We define a homomorphism θ : π1(τ) → Z/2Z which maps a loop
in τ to 0 if and only if it has an even number of corners (see Definition 2.5). The
orientation cover p : S̃ → S associated to τ is obtained from the double cover S̃′ of
S corresponding to ker θ by filling in the punctures in S̃′ that do not belong to the
original punctures of S.
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Fig. 4. Unrolling an odd vertex.

At the same time, the non-orientable train track τ lifts to an orientable train
track τ̃ ⊂ S̃. Collapsing the infinitesimal (partial) polygons in τ̃ to vertices, we
obtain a graph G̃, that is a double branched cover of G.

Note that the branch points of p : S̃ → S are precisely the odd vertices of
G. Intuitively, the effect of passing to the orientation cover is a partial unrolling of
loops in τ that do not admit a consistent orientation. For example, Fig. 4 illustrates
what happens near the branch point for a vertex of valence three.

Proposition 2.1. Assume that τ is non-orientable.

(1) The orientation cover τ̃ is an orientable train track. The natural involution
ι : S̃ → S̃, or the deck transformation, reverses the orientation of τ̃ .

(2) A puncture of S corresponds to two punctures of S̃ if and only if a loop around
the puncture is homotopic to a loop in τ with an even number of corners.
Otherwise, the puncture lifts to one puncture in S̃.

Proof. (1) By Definition 2.6 we have p∗(π1(τ̃)) = ker θ, hence every loop in τ̃ has
an even number of corners, and so τ̃ can be consistently oriented. If the involution
ι did not reverse the orientation of τ̃ , then the orientation of τ̃ would induce a
consistent orientation of τ , but τ is not orientable.
(2) A loop in τ lifts to two loops in τ̃ if and only if it has an even number of
corners. If it has an odd number of corners, then its concatenation with itself has
a unique lift.

Proposition 2.2. A train track map f : G → G has two lifts f̃op : G̃ → G̃,

orientation preserving, and f̃or : G̃ → G̃, orientation reversing. They are related
to each other by f̃or = ι · f̃op, where ι : G̃ → G̃ is the deck translation. Let n be
the number of edges in G. Then there exist n × n non-negative matrices A, B such
that A + B = T, the transition matrix of f, and f̃op and f̃or are represented as:
f̃op =

[A B
B A

]
and f̃or =

[B A
A B

]
. Their characteristic polynomials are χ((f̃op)∗) =

χ(f∗) det(A − B) and χ((f̃or)∗) = χ(f∗) det(B − A).
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The above proposition confirms that pA maps, F : S → S; F̃op : S̃ → S̃; and
F̃or : S̃ → S̃, all have the same dilatation.

Proof of Proposition 2.2. Even though the train track τ is non-orientable, we
assign an orientation to each edge of G. Let e1, . . . , en be the oriented edges of G.
We denote the lifts of ek ⊂ G by ẽk, ẽ′k ⊂ G̃. Since τ̃ is orientable, we choose an
orientation, which induces orientations of ẽk, ẽ′k. Denote the orientation cover by
p : G̃ → G. Proposition 2.1(1) implies that there are two choices: p(ẽk) = ek or
p(ẽk) = ek, where ek is the edge ek ⊂ G with reversed orientation. We choose to
assume that p(ẽk) = ek, which implies that p(ẽ′k) = ek.

We define an orientation preserving lift f̃op : G̃ → G̃ in the following way. For
an edge e ⊂ G, let f(e)head (respectively, f(e)tail) denote the first (respectively,
last) letter of the word f(e). For each twin edges ẽ, ẽ′ ⊂ G̃, we choose

f̃op(ẽ)head := ˜f(e)head, f̃op(ẽ′)head := f̃(e)tail
′
. (2.3)

Next, we define the word f̃op(ẽ) to be the word f(e) with each letter ei in f(e)
replaced by ẽi or ẽ′i so that the resulting word corresponds to a connected edge-path
in G̃. Due to the choice (2.3), the choice between ẽi and ẽ′i is uniquely determined.
The word f̃op(ẽ′) is given by the word f̃op(ẽ) read from the right to left, then replace
ẽi by ẽ′i and ẽ′i by ẽi.

We define an orientation reversing train track map by f̃or := ι · f̃op.
Let {ζ1, . . . , ζn, ζ′1, . . . , ζ

′
n} be the standard basis of V (G̃) � R2n, where ζk, ζ′k

correspond to ẽk, ẽ′k ⊂ G̃ respectively. From the constructions of f̃op and f̃or, with
respect to this basis, their transition matrices are of the form

[A B
B A

]
and

[B A
A B

]
respectively, for some non-negative n × n matrices A and B satisfying A + B =
T . The formulae on characteristic polynomials follow from basic row and column
reductions.

In Example 5.3 there is a sketch of the orientation cover of a non-orientable
train track which has no odd vertices. Also one can see explicit computations of
f̃op and f̃or and matrices A, B.

We are finally in a position to understand the topological meaning of W (G, f):

Theorem 2.2. Assume that τ is non-orientable, Let ι : S̃ → S̃ be the involution
of the orientation cover. Let E+ and E− be the eigenspaces of ι∗ : H1(S̃; R) →
H1(S̃; R) corresponding to the eigenvalues 1 and −1, so that H1(S̃; R) ∼= E+ ⊕E−.

Then E+ ∼= H1(S; R) and E− ∼= W (G, f).

Proof. Fix an orientation of τ̃ once and for all. This determines an orientation
of G̃. Since ι is an involution, the only possible eigenvalues are ±1, and ι∗ is
diagonalizable.

For a homology class ξ ∈ H1(S; R), let ξ̃ ∈ H1(S̃, R) denote its lift to the
orientation cover. Since p · ι = p, we have ι∗ξ̃ = ξ̃. Thus H1(S, R) ⊆ E+.
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Each edge e ⊂ G has two lifts ẽ and ẽ′ ⊂ G̃. Let ζe be the basis element of
V (G) corresponding to the (unoriented) edge e, and let ζẽ be the basis element
of C1(G̃; R) ∼= C1(S̃; R) corresponding to the (oriented) edge ẽ. Define a homo-
morphism: φ : V (G) → C1(S̃; R) by ζe 	→ ζẽ + ζẽ′ . Recall that a basis element ηe

of W (G, f), introduced in Secs. 2.3.2 and 2.3.3, has a corresponding arc or loop
Le ⊂ G where ηe assigns weight of ±1 satisfying the alternating sum condition.
Different edges e1, e2 correspond to distinct Le1 and Le2 . Moreover, when Le is
an arc, its end points are odd vertices which are branch points of the orientation
cover, so the lift of Le is a closed curve in S̃. Hence, the restriction of φ to W (G, f)
is injective. Assume ηe =

∑
i ηe(ei)ζei . By Proposition 2.1(1), the involution takes

ι : ẽ 	→ −ẽ′. We have:

ι∗φ(ηe) = ι∗

(∑
i

ηe(ei)(ζẽi + ζẽi
′)

)
=
∑

i

ηe(ei)(−ζẽi
′ − ζẽi) = −φ(ηe),

i.e. φ(W (G, f)) ⊆ E−.

Comparison of Euler characteristics along with Lemma 2.5 shows that

dimH1(S̃; R) = dim H1(S; R) + dim W (G, f),

which implies H1(S; R) ∼= E+ and φ(W (G, f)) ∼= E−.

In Lemma 2.4 we proved that f∗(W (G, f)) ⊆ W (G, f). In fact, a stronger
statement holds.

Corollary 2.1. The restriction map f∗|W (G,f) : W (G, f) → W (G, f) is an iso-
morphism.

Proof. Regardless of the orientability of τ , the fact that F : S → S is a homeomor-
phism implies that the induced map F∗ : H1(S; R) → H1(S; R) is an isomorphism.

Suppose that τ is orientable. The isomorphism W (G, f) ∼= H1(S; R) in
Lemma 2.5 allows us to identify f∗|W (G,f) with F∗, which is an isomorphism.

Suppose that τ is non-orientable. Let {ηe}e∈E be a basis of W (G, f) constructed
as in Secs. 2.3.2 and 2.3.3. Since the map φ : W (G, f) → E− in the proof of
Theorem 2.2 is an isomorphism, the set {φ(ηe)}e∈E is a basis of E−. Let F̃ : S̃ → S̃

be a lift of F : S → S. It induces an isomorphism F̃∗ : H1(S̃; R) → H1(S̃; R) and
a train track map f̃ : G̃ → G̃. Since S̃ deformation retracts to G̃, we can identify
F̃∗ with f̃∗ : H1(G̃; R) → H1(G̃; R). Using the same notation as in the proof of
Theorem 2.2, we have

ι∗f̃∗(φ(ηe)) = ι∗f̃∗

(∑
i

ηe(ei)(ζẽi + ζẽi
′)

)

= ι∗
∑

i

ηe(ei)(ζf̃∗(ẽi)
+ ζf̃∗(ẽi

′))

=
∑

i

ηe(ei)(−ζf̃∗(ẽi
′) − ζf̃∗(ẽi)

) = −f̃∗(φ(ηe)).
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Hence F̃∗(E−) = f̃∗(E−) ⊂ E−. Since H1(S̃; R) is finite-dimensional and F̃∗ is an
isomorphism, we obtain that F̃∗|E− = f∗|W (G,f) is an isomorphism.

The topological invariance of χ(f∗|W (G,f)) was stated as a conjecture in an
earlier draft. Reading that draft, Jeffrey Carlson pointed the authors to a connection
they had missed, making our conjecture an immediate consequence of Theorem 2.2.
We are grateful for his help.

Corollary 2.2. Let h(x) be the characteristic polynomial for f∗|W (G,f). It is the
homology polynomial. Then h(x) is an invariant of the pA mapping class [F ].

Proof. Let F̃ : S̃ → S̃ be a lift of the pA map F : S → S. By Theorem 2.2 we
have h(x) = χ(f∗|W (G,f)) = χ(F̃∗|E−). Since the eigenspace E− is an invariant of
[F ], so is the polynomial h(x).

This concludes the proof of Part (1) of Theorem 1.1.

3. Proof of Parts (2) and (3) of Theorem 1.1

Having established the meaning of W (G, f) and the invariance of the homology
polynomial, our next goal is to understand whether it is irreducible, and if not to
understand its factors. At the same time, we will investigate its symmetries.

With those goals in mind, we show that there is a well-defined and f∗-invariant
skew-symmetric form on the space W (G, f). See Proposition 3.1. We define the sub-
space Z ⊂ W (G, f) to be the space of degeneracies of this skew-symmetric form.
We are able to interpret the action of f∗ on Z geometrically, as being a permutation
of certain punctures on S. In Theorem 3.1 we will prove that the space W (G, f)
has a decomposition into summands that are invariant under the action of f∗, and
that as a consequence the homology polynomial decomposes as a product of two
polynomials, p(x) and s(x). We call them the puncture and symplectic polynomi-
als. Like the homology polynomial, both are invariants of [F ] in Mod(S). We also
establish their symmetries in Theorem 3.1, and understand the precise meaning
of the puncture polynomial. The symplectic polynomial contains λ as its largest
real root. When irreducible, it coincides with the minimum polynomial of λ, but in
general it is not irreducible. At this writing we do not understand when it is or is
not reducible.

3.1. Lifting the basis elements for W (G, f) to W (τ)

Our work begins with a brief diversion, to establish a technical result that will be
needed in the sections that follow. We have shown how to construct basis elements
ηe1 , . . . , ηel

for W (G, f). We now build on this construction to give an explicit way
to lift each ηe ∈ W (G, f) to an element η′

e ∈ W (τ) in such a way that π∗(η′
e) = ηe,

where π∗ : W (τ) → W (G, f) is the natural surjection. Although there are infinitely
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many lifts of any given basis element ηe, our construction of a specific η′
e will be

useful later. The issues to be faced in lifting ηe to ηe′ are the assignment of weights
to the infinitesimal edges.

Definition 3.1. Suppose that v ∈ G is a vertex with k gates numbered 0, . . . , k−1,

counterclockwise. For i = 0, . . . , k − 1, we define a transitional element σi ∈ V (τ)
that assigns 1 to the ith infinitesimal edge for the vertex v, and 0 to the remaining
branches of τ . In other words, in Fig. 1, xi = 1 and xj = 0 for j 
= i.

Suppose that v ∈ G is an odd vertex with k gates. For i = 0, . . . , k−1, we define
a terminal element ωi ∈ V (τ) which assigns ± 1

2 to the incident infinitesimal edges
for v so that the ith gate has weight wi = 1 and jth (j 
= i) gate has weight wj = 0,
cf. Fig. 5; and assigns 0 for rest of the branches of τ .

For both the orientable and the non-orientable case, our basis element ηe ∈
W (G, f) is a vector whose entries are ±1 or 0. Recall that the edges whose weights
are ±1 form a loop or an arc, denoted by Le in Secs. 2.3.1–2.3.3.

At an even or a partial vertex of Le, suppose Le goes through the ith and jth
gates (i ≤ j). To ηe we add consecutive transitional elements σi, σi+1, . . . , σj−1 with
alternating signs so that the switch condition is satisfied (cf. the upper middle circle
in Fig. 5). Repeat this procedure for all the non-odd vertices of Le. If Le is a loop,
it yields an element η′

e of W (τ).
When Le is an arc (i.e. τ is non-orientable with odd vertices), the two endpoints

of Le are odd. Suppose Le enters the ith gate of an odd vertex. After adding
transitional elements as above, we further add terminal element ωi or −ωi so that
the switch condition is satisfied at all the incident gates of the odd vertex. Proceed
in this way for the other odd vertex as well, and we obtain an element η′

e of W (τ).

3.2. A skew-symmetric form on W (G, f)

In this section we define a skew-symmetric form 〈·, ·〉 on W (G, f). To get started,
we slightly modify the skew-symmetric form on W (τ) introduced by Penner–Harer

Fig. 5. Transitional and terminal elements.
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([8, p. 182]): For a branch b ⊂ τ and η ∈ W (τ), let η(b) denote the weight that η

assigns to b. At a switch of valence k (k ≥ 3), label the branches a, b1, . . . , bk−1 as
in Fig. 2. The cyclic order of a, b1, . . . , bk−1 is determined by the orientation of the
surface and the embedding of τ in S. We define a skew-symmetric form:

〈η, ζ〉W (τ) :=
1
2

∑
switches

in τ

∑
i<j

∣∣∣∣∣η(bi) η(bj)

ζ(bi) ζ(bj)

∣∣∣∣∣ , for η, ζ ∈ W (τ).

Recall the surjective map π : τ → G collapsing the infinitesimal (partial) polygons
to vertices.

Definition 3.2. For η, ζ ∈ W (G, f) there exist η′, ζ′ ∈ W (τ) so that π∗(η′) = η

and π∗(ζ′) = ζ. We define a skew-symmetric form on W (G, f) by:

〈η, ζ〉W (G,f) := 〈η′, ζ′〉W (τ)

Proposition 3.1. The skew-symmetric form 〈·, ·〉W (G,f) has the following
properties:

(1) It is well-defined.
(2) When τ is orientable, 〈η, ζ〉W (G,f) is the homology intersection number of 1-

cycles associated to η and ζ.
(3) When τ is non-orientable, recall that E± are the eigenspaces of the deck trans-

formation ι : S̃ → S̃ for the orientation cover studied in Theorem 2.2. Since
p : S̃ → S is a double branched cover, we have the following results, to be
compared with [8, p. 187]:

(a) The restriction of the intersection form on H1(S̃; R) to E+ is twice the
intersection form on H1(S; R).

(b) The restriction of the intersection form on H1(S̃; R) to E− is twice the
skew-symmetric form 〈·, ·〉W (G,f).

(4) For all η, ζ ∈ W (G, f), we have 〈f∗η, f∗ζ〉W (G,f) = 〈η, ζ〉W (G,f).

Proof. (1) It suffices to show that for any η′ ∈ kerπ∗ ⊂ W (τ) and ζ′ ∈ W (τ), the
product 〈η′, ζ′〉W (τ) = 0. Since π∗(η′) = �0, η′ assigns 0 to any real edge b ⊂ τ , it
follows that the weight of η′ at any gate is 0. If a vertex v ∈ G is odd or partial,
η′ assigns 0 to any infinitesimal edges associated to the vertex v. Therefore, v does
not contribute to 〈η′, ζ′〉W (τ). If a vertex v ∈ G is even with k gates, the weights
x0, . . . , xk−1 that η′ assigns to the infinitesimal edges for v form an alternating
sequence: xi = (−1)ix0. The contribution of the even vertex v to 〈η′, ζ′〉W (τ) is:

1
2

k−1∑
i=0

∣∣∣∣∣∣
xi xi−1

yi yi−1

∣∣∣∣∣∣ =
x0

2

k−1∑
i=0

∣∣∣∣∣∣
(−1)i (−1)i−1

yi yi−1

∣∣∣∣∣∣ =
x0

2

k−1∑
i=0

(−1)i(yi + yi−1) = 0,

where yi are the weights assigned by ζ′ and indices are modulo k.
(2) Assertion (2) is established in [8, Lemma 3.2.2].
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(3) Assertion (3) follows directly from Theorem 2.2.
(4) If τ is orientable, then we identify W (G, f) ∼= H1(S; R). Since F : S → S

is homeomorphism, the homology intersection number is preserved under f∗ :
H1(S; R) → H1(S; R) and the assertion follows.

If τ is non-orientable, then, passing to the orientation cover, F̃∗ : H1(S̃; R) →
H1(S̃; R) preserves the homology intersection number. The assertion then follows
from (i) F̃∗|E− = f∗|W (G,f) and (ii) assertion (3) of this proposition.

Knowing that 〈·, ·〉W (G,f) is well-defined, we can compute 〈η1, η2〉W (G,f) =
〈η′

1, η
′
2〉W (τ) by using the basis elements η1, η2 ∈ W (G, f) discussed in Secs. 2.3.1–

2.3.3, and their particular extensions η′
1, η

′
2 ∈ W (τ) introduced in Sec. 3.1. For

this, it is convenient to study how transitional and terminal elements contribute to
the skew-symmetric form. Straight forward calculation of determinants at incident
gates yields the following proposition.

Proposition 3.2. Let v be a vertex with k incident gates, numbered 0, . . . , k − 1,

conterclockwise. We have 〈σi, σj〉 = 〈σ0, σj−i〉, 〈ωi, σj〉 = 〈ω0, σj−i〉 and 〈ωi, ωj〉 =
〈ω0, ωj−i〉 for 0 ≤ i ≤ j ≤ k − 1. Moreover,

〈σ0, σi〉 =




−1
2

if i = 1,

1
2

if i = k − 1,

0 otherwise,

〈ω0, σi〉 =




−1
2

if i = 0,

1
2

if i = k − 1,

0 otherwise,

and 〈ω0, ωi〉 =




(−1)i

2
if i 
= 0,

0 if i = 0.

3.3. Degeneracies of the skew-symmetric form

and the second decomposition

In this section, we investigate the totally degenerate subspace of W (G, f),

Z := {η ∈ W (G, f) | 〈ζ, η〉 = 0 for all ζ ∈ W (G, f)},

the radical of the skew-symmetric form. It will lead us, almost immediately, to the
second decomposition theorem and another new invariant of pA maps. We begin
by showing how Z has already appeared in our work, in a natural way.

Proposition 3.3. Let s be the number of punctures of S.

(1) If τ is orientable, dimZ = s − 1.
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(2) If τ is non-orientable, then

dimZ = #(punctures of S that correspond to two punctures in S̃)

= #(punctures of S represented by loops in τ

with even numbers of corners).

Proof. In the orientable case, recall Lemma 2.5 which states W (G, f) ∼= H1(S; R),
and [8, Lemma 3.2.2] which shows that our skew-symmetric form agrees with the
homology intersection form. Hence the space Z is generated by the homology classes
of s loops around the punctures. Because their sum is null-homologous, they are
linearly dependent and dim Z = s − 1.

In the non-orientable case, let S̃ be the orientation cover of S (Definition 2.6).
Recall the eigen spaces E± for the deck transformation ι : S̃ → S̃, cf. Theorem 2.2.
Let s (respectively, r) be the number of punctures of S that lift to two (respectively,
single) punctures in S̃, and let α1, β1, . . . , αs, βs, γ1, . . . , γr be the homology classes
of loops around the punctures of S̃, chosen so that ι∗αi = βi for all i = 1, . . . , s and
ι∗γj = γj for all j = 1, . . . , r and oriented so that their sum is zero. The radical of
the homology intersection form on H1(S̃; R) is spanned by

span{α1, β1, . . . , αs, βs, γ1, . . . , γr}
= span{α1 − β1, . . . , αs − βs, α1 + β1, . . . , αs + βs, γ1, . . . , γr}.

Note that αi − βi ∈ E− and αi + βi, γj ∈ E+ for all i = 1, . . . , s and j =
1, . . . , r. By Theorem 2.2 and assertion (3) of Proposition 3.1, we obtain that
Z = span{α1−β1, . . . , αs−βs}. Clearly, α1−β1, . . . , αs−βs are linearly independent,
i.e. dim Z = s.

Corollary 3.1. Assume that S is once punctured and that τ is non-orientable.
Then dim Z = 1 if and only if dimW (G, f) is odd.

Proof. The induced skew-symmetric form on W (G, f)/Z is nondegenerate, and so
the dimension of W (G, f)/Z is even. Thus, dimZ is odd if and only if dim W (G, f)
is odd. Since S has exactly one puncture, Proposition 3.3 yields that dimZ ≤ 1,
and the corollary follows.

Remark 3.1. Straightforward modifications of our arguments show that if τ is
a non-orientable train track (not necessarily induced by a train track map), then
the dimension of radW (τ) is the number of complementary regions of τ with even
numbers of corners. In particular, if τ is complete, then the complement of τ consists
of triangles and monogons ([8, Theorem 1.3.6]), and so the skew-symmetric form
on W (τ) is nondegenerate in this case. Although not explicitly stated, this is the
case covered by [8, Theorem 3.2.4].
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Theorem 3.1. (Second Decomposition) Let p(x) (respectively, s(x)) be the char-
acteristic polynomial of f∗|Z (respectively, f∗|W (G,f)/Z). The map f∗ preserves the
direct sum decomposition W (G, f) ∼= Z ⊕ (W (G, f)/Z) so that h(x) = p(x)s(x).
Moreover, we have:

(1) The polynomial p(x) is an invariant of the pA mapping class [F ] ∈ Mod(S).
The restriction f∗|Z encodes how F permutes the punctures whose projections
to τ have even numbers of corners. In particular, f∗|Z is a periodic map, so that
all the roots of p(x) are roots of unity and the polynomial p(x) is palindromic
or anti-palindromic.

(2) The polynomial s(x) is an invariant of [F ]. The skew-symmetric form
〈·, ·〉W (G,f) naturally induces a symplectic form on W (G, f)/Z. The map f∗
induces a symplectomorphism of W (G, f)/Z. Hence s(x) is palindromic.

(3) The homology polynomial h(x) is either palindromic or anti-palindromic.

Proof. Suppose η ∈ Z. By assertion (4) of Proposition 3.1, we have 0 = 〈η, ζ〉 =
〈f∗(η), f∗(ζ)〉 for all ζ ∈ W (G, f). By Corollary 2.1, f∗|W (G,f) is surjective, and so
f∗(η) ∈ Z. Thus f∗ preserves the decomposition (W (G, f)/Z) ⊕ Z.

(1) The restriction f∗|Z is periodic because of Proposition 3.3 and the fact that
[F ] permutes the punctures of S. Hence all the roots of p(x) are roots of unity.
Moreover, if µ is a root of p(x), then 1

µ = µ̄ is also a root of p(x) because
p(x) ∈ R[x]. This implies that p(x) is palindromic or anti-palindromic.

(2) By the definition of Z, the skew-symmetric form induces a nondegenerate form
on W (G, f)/Z. This together with Proposition 3.2(4) implies that the polyno-
mial s(x) is palindromic. It is an invariant of [F ] because it is the quotient of
two polynomials, both of which have been proved to be invariants.

(3) The homology polynomial h(x) is either palindromic or anti-palindromic
because it is a product of two polynomials, one of which is palindromic and
the other of which is either palindromic or anti-palindromic.

This concludes the proof of parts (2) and (3) of Theorem 1.1. Since the proof
of part (1) was completed in Sec. 2, it follows that Theorem 1.1 has been proved.

4. Applications

In this section we give several applications of Theorem 1.1 and Corollary 4.1 summa-
rizes the numerical class invariants of [F ] that, as a consequence of Theorem 1.1, can
be computed from the train track τ by simple counting arguments. Corollary 4.2 is
an application to fibered hyperbolic knots in 3-manifolds. Corollary 4.3 shows that
our three polynomials behave very nicely under the passage [F ] → [F k].

Corollary 4.1. Under the same notation as in Theorem 1.1, let n, v, vo be the num-
ber of edges, vertices, odd vertices respectively in the graph G. Let s (respectively,
r) be the number of punctures of S which are represented by loops in τ with even
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(respectively, odd ) numbers of corners. Let g (respectively, g̃) be the genus of S

(respectively, its orientation cover S̃).

(1) The orientability (or non-orientability) of τ is a class invariant of [F ].
(2) The degree of the homology polynomial is a class invariant. It is:

deg h(x) =

{
n − v + 1 if τ is orientable,

n − v + vo if τ is not orientable.

(3) The degree of the puncture polynomial is a class invariant. It is:

deg p(x) =

{
s − 1 if τ is orientable,

s if τ is not orientable.

(4) The degree of the symplectic polynomial is a class invariant. It is:

deg s(x) =

{
2g if τ is orientable,

2(g̃ − g) if τ is not orientable.

Remark 4.1. Assertion (4) implies that the dilatation of [F ] is the largest real
root of a polynomial of degree 2d, where 2d ≤ 2g (respectively, 2(g̃ − g)). However,
this bound is not sharp because, as will be seen in Example 5.2, the symplectic
polynomial is not necessarily irreducible.

Proof. Assertion (1) is clear. See Lemma 2.5 for (2). In the orientable case each
puncture is represented by a loop in τ with an even number of corners. This,
together with Proposition 3.3, implies (3).

To prove (4), let ve, vp be the number of even vertices, partial vertices in G,
respectively. If τ is orientable, the assertion is clear. If τ is non-orientable, the
Euler characteristics of S and S̃ are

χ(S) = vo + ve + vp − n = 2 − 2g − (r + s),

χ(S̃) = vo + 2ve + 2vp − 2n = 2 − 2g̃ − (r + 2s).

From Lemma 2.5 and Proposition 3.3, we have:

dim(W (G, f)/Z) = (n − ve − vp) − s = 2(g̃ − g).

Note that the sum of the degrees of the symplectic and puncture polynomials is the
degree of the homology polynomial.

Corollary 4.2. (1) The symplectic polynomial s(x) is an invariant of fibered hyper-
bolic links in 3-manifolds.
(2) Assume that M is a homology 3-sphere and K ⊂ M is a fibered hyperbolic
knot whose monodromy admits an orientable train track. Let ∆K(x) denote the
Alexander polynomial of K. Then

s(x) =

{
∆K(x) if f is orientation preserving,

∆K(−x) if f is orientation reversing.
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Proof. (1) Let L ⊂ M be a link. Thurston proved that a 3-manifold M\L is fibered
over S1 with a pA monodromy [F ] ∈ Mod(S) if and only if M \ L is hyperbolic.
Combining his result with assertion (2) of Theorem 3.1, we obtain the first claim.
(2) Let F∗ : H1(S; R) → H1(S; R) be the induced map. By assertion (1) of
Proposition 3.3, the space Z is trivial. Lemma 2.5 tells us that W (G, f)/Z ∼=
W (G, f) ∼= H1(S; R). Since (±)-gate is mapped to a (∓)-gate if and only if
f : G → G is orientation reversing, we have

f∗|W (G,f)/Z =

{
F∗ if f is orientation preserving,

−F∗ if f is orientation reversing.

The fact that ∆K(±x) = χ(±F∗) yields the statement.

Remark 4.2. Corollary 4.2(2) can be seen as a refinement of Rykken’s Theorem 3.3
in [10].

Our final application is to prove that our three polynomials, h(x), p(x) and s(x)
behave in a very nice way under the passage [F ] → [Fn].

Corollary 4.3. Let n > 0. If f : G → G represents a pA mapping class [F ], then
fn represents [Fn]. Suppose s([F ], x) =

∏
i(x − zi) and p([F ], x) =

∏
j(x − wj)

where zi, wj ∈ C, then

s([Fn], x) =
∏

i

(x − zn
i ),

p([Fn], x) =
∏
j

(x − wn
j ),

h([Fn], x) =
∏

i

(x − zn
i )
∏
j

(x − wn
j ).

Proof. Note that the pA maps [F ] and [Fn] act on the same surface and share
the same graph G and the associated train track τ . The direct sum decomposition
in Theorem 3.1 tells us that fn

∗ |W (G,fn)/Z = (f∗|W (G,f)/Z)n and fn
∗ |Z = (f∗|Z)n.

Since zi and wj are eigenvalues of f∗|W (G,f)/Z and f∗|Z respectively, the desired
equations follow. The product decomposition for the homology polynomial follows
from the fact that it is a product of the other two polynomials.

5. Examples

All of our examples were analyzed with the software package XTrain [2], with
some help from Octave [3]. This package is an adaptation of the Bestvina–Handel
algorithm to once-punctured surfaces. Our illustrations show a train track τ (in
the sense of [1]) embedded in a once-punctured surface. Regardless of whether τ

admits an orientation, we equip individual edges of the graph G with a direction
for the purpose of specifying the map f : G → G, although they coincide when τ is
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orientable. We remark that the limitations of the available software, at this time,
to once-punctured surfaces means that the puncture polynomial in our examples is
always either 1 or x − 1.

A surface is shown as a fundamental domain in the Poincaré model for H2,
with the identification pattern on the boundary given by the labels on edges. For
example, a side crossed by an edge labeled a will be identified with the side crossed
by the edge labeled ā. These labels also indicate the direction of an edge; a is
the first half, ā the second one. The shaded regions in the pictures contain all the
infinitesimal edges associated with a vertex, as in Fig. 1. To recover the graph G,
collapse each shaded region to a point. In each example, we give the associated
train track map on edges of G. That map determines the maps on the vertices.

Example 5.1. We illustrate Corollary 2.2 with a triplet of examples. Sketches (1),
(2) and (3) of Fig. 6 show three copies of a once-punctured genus 2 surface S = S2,1,
each containing two simple closed curves ui and vi. In all three cases ui ∪ vi fills
S, that is the complement of the union of the two curves is a family of disks. In all
three cases the geometric intersection i(ui ∩ vi) = 6. We use our curves to define
three diffeomorphisms of S by the formula Fi = T−1

vi
Tui where Tc denotes a Dehn

twist about a simple closed curve c. By a theorem of Thurston ([4, Theorem 14.1])
there is a representation of the free subgroup of Mod(S) generated by Tui and Tvi

in PSL(2, R) which sends the product Fi to the matrix
( 1 0
−6 1

)−1(1 6
0 1

)
=
(1 6
6 37

)
.

By the Thurston’s theorem, Fi is pA and its dilation is the largest real root of the
characteristic polynomial x2 −38x+1 of this matrix, that is 37.9737 . . . in all three
cases. We ask two questions: Are F1, F2, F3 conjugate in Mod(S), and if they are
not conjugate can our invariants distinguish them?

See [2] for a choice of standard curves a0, d0, c0, d1, c1 on S. To obtain the needed
input data for the computer software XTrain [2] we must express our maps as
products of Dehn twists about these curves. For simplicity, we denote the Dehn
twist Ta0 by the same symbol a0. Using Ai, Ci, Di for the inverse Dehn twists of

Fig. 6. Curves on a surface of genus 2.
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ai, ci, di, we find, after a small calculation, that:

F1 = c0d0d1A0C1c1d1c0d0A0D0C0D1C1c1a0D1D0C0

× c1b0(C1D1)6c1d1c0d0a0D0C0D1C1(d1c1)6B0C1,

F2 = c1(d1c1)6a0c1d1c0d0A0D0C0D1C1A0(C1D1)6C1c1d1c0d0a0D0C0D1C1,

F3 = A0D0c0d0a0B1D1c0d1b1A0D0B1D1C0d1b1

× d0a0B1D1C0d1b1A0D0C0d0a0(d1c1)6.

Focussing on F1 and F2 first, XTrain tells us that the associated transition
matrices are:

T1 =




15 7 14 23 16
10 6 10 16 11
4 2 5 7 5
2 1 2 3 1
10 5 10 16 12


 and T2 =




6 10 5 6 10
5 11 5 7 10
5 10 6 6 10
6 12 6 7 12
5 10 5 5 11


 .

In both cases χ(f∗) = det(xI − Ti) = x5 − 41x4 + 118x3 − 118x2 + 41x − 1, with
largest real root 37.9737, . . . , as expected.

XTrain tells that the train tracks τ1, τ2 for our two examples are the ones that
are illustrated in Fig. 7. With the train tracks τ1, τ2 in hand we can see, immediately,

Fig. 7. Train tracks for the maps F1, F2 of Example 5.1.
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that F1 and F2 are inequivalent, because τ1 is orientable and τ2 is not. Also, by
Lemma 2.5 the dimension of W (Gi, fi), which is the degree of the homology poly-
nomial, is 4 (respectively, 3) when i = 1 (respectively, 2).

We compute the homology and symplectic polynomials of F1 and F2 explicitly.
For F1, a basis of W (G1, f1), {ηb, ηc, ηd, ηe}, were computed in Example 2.1. Set
e1 = b, e2 = c, e3 = d, e4 = e, e5 = a and follow the instructions in Sec. 2.3.4 for
finding the matrix A1 representing (f1)∗|W (G1,f1). We obtain:

A1 =




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0







6 10 16 11 10
2 5 7 5 4
1 2 3 1 2
5 10 16 12 10
7 14 23 16 15







1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 −1 −1 1




=




16 0 6 21
6 1 3 9
3 0 1 3
15 0 6 22




Its characteristic polynomial is 1 − 40x + 78x2 − 40x3 + x4 = (−1 + x)2(1 −
38x + x2), which is the homology polynomial. Corollary 4.1(4) tells that the sym-
plectic polynomial has degree 4, hence it coincides with the homology polynomial.

For F2, we apply Sec. 2.3.3 and set the non-orientable loop L0 = a ∪ v0 and
subgraph L = L1 = a ∪ b ∪ v0 ∪ v1. Edges c, d, e are not in L. We reorder the
edges and call e1 = c, e2 = d, e3 = e, e4 = a, e5 = b. With this order, basis vectors
of W (G2, f2) are ηa = (1, 0, 0, 1, 2)′; ηc = (0, 1, 0, 0, 0)′; ηe = (0, 0, 1, 0,−1)′; where
“prime” means the transpose. Following the instructions in Sec. 2.3.4, we obtain
the matrix A2 representing (f2)∗|W (G2,f2).

A2 =


1 0 0 0 0

0 1 0 0 0
0 0 1 0 0







6 6 10 5 10
6 7 12 6 12
5 5 11 5 10
5 6 10 6 10
5 7 10 5 11







1 0 0
0 1 0
0 0 1
1 0 0
2 0 −1


 =


31 6 0

36 7 0
30 5 1


.

The homology polynomial is det(xI − A2) = −1 + 39x − 39x2 + x3 = (−1 + x)
(1 − 38x + x2), which means dim W (G2, f2) = 3. By Corollary 3.1, the symplectic
polynomial has degree 2, so it is 1 − 38x + x2.

We turn to F3. From XTrain, we learn that the homology polynomials for F2

and F3 are the same. However, observe that the curves u1, v1, u2, v2, v3 are all non-
separating on S, but u3 is separating. From this it follows that there cannot be an
element F ′ ∈ Mod(S) that maps u3 to either ui or vi, i = 1, 2. Thus [F3] is very
likely not conjugate to either [F1] or [F2] in Mod(S).
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Fig. 8. Example 5.2: The knot 89. Orientable train track.

Example 5.2. (Fig. 8) This example shows that the symplectic polynomial need
not be irreducible over the rationals. The monodromy of the hyperbolic knot 89 [9]
is represented by the following train track map:

a : (v3, v2) 	→ e, b : (v2, v0) 	→ g, c : (v1, v3) 	→ b,

d : (v1, v2) 	→ bi, e : (v0, v1) 	→ hed, f : (v2, v1) 	→ d,

g : (v1, v3) 	→ fgh, h : (v3, v0) 	→ ic, i : (v0, v1) 	→ a.

We have that χ(f∗) = x9 − 2x8 + x7 − 4x5 + 4x4 − x2 + 2x − 1. Fix a basis of
im δ, {v0 − v1, v2 − v0, v3 − v0}. With respect to this basis, f |imδ is represented as:


0 −1 0

−1 0 0

1 −1 −1




whose characteristic polynomial is x3 + x2 − x − 1. Therefore h(x) is:

(x9 − 2x8 + x7 − 4x5 + 4x4 − x2 + 2x − 1)/(x3 + x2 − x − 1)

= x6 − 3x5 + 5x4 − 7x3 + 5x2 − 3x + 1.

Proposition 3.3(1) tells us that p(x) = 1, so that s(x) = x6−3x5+5x4−7x3+5x2−
3x + 1. Since f : G → G is orientation preserving, by Corollary 4.2(2), we have
∆89 = x6 − 3x5 + 5x4 − 7x3 + 5x2 − 3x + 1. It further factors as (x3 − 2x2 + x− 1)
(x3 − x2 + 2x − 1). It is interesting that these factors are no longer palindromic,
and one contains the dilatation λ as a root and the other 1/λ.
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A similar analysis based on the hyperbolic knot 810 shows that s(x) need not
even be symplectically irreducible. It has a non-orientable train track and

s(x) = (x + 1)2(x10 − 3x9 + 3x8 − 4x7 + 5x6 − 5x5 + 5x4 − 4x3 + 3x2 − 3x + 1).

The train tracks in the remaining examples are all non-orientable.

Example 5.3. (Fig. 9) This example was suggested to us by Robert Penner.
Fig. 9(a) shows five curves c1, . . . , c5 on the genus 3 surface. The example is the
product of positive Dehn twists about c1, c2, c3 and inverse twists about c4, c5. The
map f acts as follows:

a 	→ ada, b 	→ dac̄d̄āb,

c 	→ cēb̄adc, d 	→ dac̄d̄ābefcēb̄ad,

e 	→ efcēb̄adadac̄d̄ābe, f 	→ efcēb̄adadac̄d̄ābef.

There is exactly one vertex (which is partial) and the train track is non-
orientable. The only vertex is fixed by the map and χ(f∗|im δ) = x − 1. We have
dimW (G, f) = 5, hence the skew-symmetric product is degenerate and dim Z = 1,
which means p(x) = x − 1. The characteristic polynomial factors as χ(f∗) =
(x4 − 11x3 + 22x2 − 11x + 1)(x − 1)(x − 1). The symplectic polynomial s(x) =
x4 − 11x3 + 22x2 − 11x + 1 is irreducible, hence in this example it is necessar-
ily the minimum polynomial of its dilatation. (Note that this was not the case in
Example 5.2 above.)

If one orients the real and infinitesimal edges of the train track τ in Fig. 9(b)
locally so that all orientations are consistent around the single partial vertex v0,
one sees that the loops a, d and f do not have globally consistent orientations,
whereas the loops b, c and e do. Since G has no odd vertices, the orientation

(a) Positive (inverse) Dehn twists about
c1, c2, c3, (c4, c5).

(b) Train track τ

Fig. 9. Example 5.3: Penner’s pA map, non-orientable train track.
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Fig. 10. The orientation cover τ̃ of τ in Fig. 9.

cover is just an ordinary double cover as illustrated in Fig. 10. Each edge, say
a ⊂ G, lifts to two copies a, a′ ⊂ G̃ and the vertex v0 ∈ G lifts to v0, v1 ∈ G̃. We
choose an orientation for τ̃ . As claimed in Proposition 2.1, twin edges have opposite
orientations. Proposition 2.2 implies that there are two covering maps; orientation
preserving and orientation reversing. The following is the orientation preserving
train track map f̃op : G̃ → G̃:

a : (v1, v0) 	→ ada, a′ : (v1, v0) 	→ a′d′a′,

b : (v0, v0) 	→ dac′d′a′b, b′ : (v1, v1) 	→ b′adca′d′,

c : (v1, v1) 	→ ce′b′adc, c′ : (v0, v0) 	→ c′d′a′bec′,

d : (v0, v1) 	→ dac′d′a′befce′b′ad, d′ : (v0, v1) 	→ d′a′bec′f ′e′b′adca′d′,

e : (v0, v0) 	→ efce′b′adadac′d′a′be, e′ : (v1, v1) 	→ e′b′adca′d′a′d′a′bec′f ′e′,

f : (v0, v1) 	→ efce′b′adadac′d′a′bef, f ′ : (v0, v1) 	→ f ′e′b′adca′d′a′d′a′bec′f ′e′.

We order the edges a, b, . . . , f, a′, b′, . . . , f ′. Then the transition matrix of f̃op has
the form

[A B
B A

]
where

A =




2 1 1 2 3 3
0 1 0 1 1 1
0 0 2 1 1 1
1 1 1 2 2 2
0 0 0 1 2 2
0 0 0 1 1 2




and B =




0 1 0 1 1 1
0 0 1 1 1 1
0 1 0 1 1 1
0 1 0 1 1 1
0 0 1 1 1 1
0 0 0 0 0 0




.

Note that A + B is the transition matrix for f : G → G. Its characteristic polyno-
mial is

(−1 + x)4(1 − 4x + x2)(1 − 3x + x2)(1 − 11x + 22x2 − 11x3 + x4),
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and the symplectic polynomial is

χ(f̃op∗|W (G̃,f̃)/Z̃) = (−1 + x)2(1 − 4x + x2)(1 − 3x + x2)

× (1 − 11x + 22x2 − 11x3 + x4).

The following is the orientation reversing train track map f̃or : G̃ → G̃.

a : (v1, v0) 	→ a′d
′
a′, a′ : (v1, v0) 	→ a d a,

b : (v0, v0) 	→ d
′
a′cd a b

′
, b′ : (v1, v1) 	→ ba′d

′
c′ad,

c : (v1, v1) 	→ c′ eba′d
′
c′, c′ : (v0, v0) 	→ c d ab

′
e′c,

d : (v0, v1) 	→ d
′
a′c d ab

′
e′f

′
c′eba′d

′
, d′ : (v0, v1) 	→ d a b

′
e′cfeba′d

′
c′ad,

e : (v0, v0) 	→ e′f
′
c′eba′d

′
a′d

′
a′cd a b

′
e′, e′ : (v1, v1) 	→ eba′d

′
c′ad a d a b

′
e′cfe,

f : (v0, v1) 	→ e′f
′
c′eba′d

′
a′d

′
a′cd a b

′
e′f

′
, f ′ : (v0, v1) 	→ feba′d

′
c′ad a d a b

′
e′cfe.

We observe that the transition matrix for f̃or is
[B A

A B

]
. Its characteristic polyno-

mial is

(−1 + x)2(1 + x)2(1 + 3x + x2)(1 + 4x + x2)(1 − 11x + 22x2 − 11x3 + x4),

and the symplectic polynomial is

χ(f̃or∗|W (G̃,f̃)/Z̃) = (1 + x)2(1 + 3x + x2)(1 + 4x + x2)

× (1 − 11x + 22x2 − 11x3 + x4).

The dilatation cannot distinguish the pA maps F : S → S, F̃op : S̃ → S̃ and
F̃or : S̃ → S̃, but our symplectic polynomial can distinguish the three.

It seems to be an open question to describe all the ways to construct all pA
maps having a fixed dilatation.

Example 5.4. (Fig. 11) The following map shows that even, odd, and partial
vertices can coexist in the same (non-orientable) train track:

a 	→ aḡ, b 	→ ja, c 	→ fc,

d 	→ caḡibjaḡe, e 	→ ḡehaḡibjaḡef, f 	→ d̄,

g 	→ ī, h 	→ c, i 	→ b,

j 	→ ḡehaḡibj.

The characteristic polynomial factors as

s(x)p(x)χ(f∗|im δ) = (x6 − 3x5 + x4 − 5x3 + x2 − 3x + 1)

× (x − 1)(x3 − x2 − x + 1).
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Fig. 11. Example 5.4: A train track with even, odd, and partial vertices.

The factor χ(f∗|im δ) = (x3 − x2 − x + 1) is the characteristic polynomial of the
matrix 

1 0 0
0 0 1
0 1 0


,

which describes how non-odd vertices v1, v2, v3 are permuted by [F ].
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