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The purpose of this erratum is to fill a gap in the proof of the ‘Composite
Braid Theorem’ in the manuscript Studying Links Via Closed Braids IV:
Composite Links and Split Links, Invent. Math. 102, Fasc. 1, 115–139
(1990). The statement of the theorem is unchanged. The gap occurs on
p. 135, lines 13− to 11−, where we fail to consider the case:

V2 = 4, V4 > 0, Vj = 0 if j �= 2, 4, and all 4 vertices of valence 2
are bad.

At the end of this Erratum we make some brief remarks on the literature,
as it evolved during the 14 years between the publication of [3] and the
submission of this Erratum.

See Fig. 1 below for an example which illustrates that the missing
case can occur. Ivan Dynnikov discovered it when he was working on his
manuscript [7], where he established two theorems about arc presentations
of links which are similar to the two theorems that we had proved for closed
braid presentations in [3]. His proof was a modification of our proof to new
geometry, and in the course of his work he realized there was a gap. We
thank him for pointing it out to us.

To handle the missing case, we need to change the definition of a good
vertex, on p. 135, lines 23–24. A vertex v in the foliation of our 2-sphere is
good if every non-singular leaf adjacent to v has empty intersection with K.
(As stated, we are always assuming that K intersects the foliation of Y away
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Fig. 1. A tiling of the 2-sphere Y with V2 = V4 = 4, Vj = 0 if j �= 2, 4, and all vertices of
valence 2 are bad

from singular leaves.) With this change, the definition of a good tile is no
longer needed or used.

We now discuss how to handle the missing case, by showing that there
is a new choice of disc fibers for the fibration which, in effect, ‘moves one
of the punctures out of a bad region’, thereby making it good. After that we
will be able to reduce the complexity. The proof adapts an argument used
at a later point in [3] to the situation that we overlooked.

A disc region R ⊂ Y is a sub-disc of Y whose boundary is contained in
the union of two singular leaves and whose interior is foliated by a family
of b-arcs. See Fig. 2 below and Fig. 6 of [3].

Lemma 1. Let R be a disc region in the tiling of Y, with R ∩ K a single
point, also ∂R ⊂ l+ ∪ l−, where l± is a singular leaf whose associated
singularity has sign ±. Then there exists a new choice of disc fibers which
leaves the the tiling of Y unchanged, but after the change R ∩ K = ∅.
Moreover, if Y is oriented, and if R ∩ K is a positive (resp. negative)
puncture then the change of fibration corresponds to an isotopy of K
across l+ (resp. l−). As illustrated in Fig. 2, there are two possible iso-
topies.

Fig. 2. We illustrate the two ways that one of the puncture points can be moved past the
singular leaf. Both ways are realizable



Studying links via closed braids IV: composite links and split links 449

Proof. To simplify notation we consider a special case, assuming that:

• The negative singularity of R, the b-arcs in R, and the positive singularity
of R occur in that order in the fibration.

• The puncture point R ∪ K is positive.

We will establish that the order of the positive puncture and the positive
singularity in the fibration can be interchanged by re-choosing the disc
fibers. The special case is in fact the general case because the other order
and parity possibilities can be realized by reversing the orientation of Y
and/or reversing the orientation of the fibration.

Referring to sketch (a) in Fig. 3, we depict the Hθ-sequence from the
instant just before the positive puncture point to the instant right after
the positive singularity. Observe that the b-arcs split Hθ into two subdisc
∆1

θ ∪ ∆2
θ = Hθ where ∆1

θ is on the negative side of the b-arcs and ∆2
θ is on

the positive of the b-arcs. Thus the events – singularities and braiding – in
the fibration that occur in ∆1

θ are independent of the events that occur in ∆2
θ .

This allows us to alter the Hθ-sequence. In particular, prior to the instant
when K punctures Y we can “push” forward the fibration on the ∆1

θ side until
precisely after the occurrence of the positive singularity. We then allow K to
puncture Y. The “dot” in ∆1

θ ∩ K ⊂ Hθ that is used in (a) of Fig. 3 to create
the puncture can be placed close to the b-arcs of R away from the other
events as we do this “push”. We have a choice of which side of the positive
singularity we want the “dot”; thus, when the dot finally passes through Y, it
can be on either side of the singularity. The sketches in (b) of Fig. 3 illustrates
the resulting change of fibration. Figure 4(a) illustrates the (two possible)
3-dimensional geometric realization of the Hθ-sequence of Fig. 3. (For
completeness we also have Fig. 4(b) which illustrates a possible obstruction
to a change of fibration when the parity of the puncture and singularity
disagree.) All of the other events are combinatorially unaltered by this new
choice of disc fibers, therefore the foliation of the Y is unchanged. ||

Fig. 3. The two Hθ sequences in the proof of Lemma 1
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Fig. 4. a The geometric realization of the change in fibration in Fig. 2. b We illustrate
a possible obstruction to a change of fibration when the parity of the puncture and singularity
disagree

Lemma 2. See Fig. 13 of [1]. Let link(p) = R1 ∪ R2 be the link neigh-
borhood of a valence two vertex p in the tiling of the 2-sphere Y which
realizes the connected sum where R1 & R2 are disc regions. Assume that
|Ri ∩K| < 2, i = 1, 2. Then after the change of fibration of Lemma 1 we can
perform an exchange move on K and an isotopy of Y which eliminates p.

Proof. Suppose that R1 is a disc region in the link of vertex p of valence two.
Referring to Fig. 13 of [1], we have two disc regions containing b-arcs, with
{t2, t3, t4} corresponding to R1 and {t6, t7, t8} respectively corresponding
to R2. Since link(p) has both a positive and a negative singularity, the disc
region R1 also has both positive and negative singular points in its boundary.
By assumption R1 has at most one puncture point. We apply Lemma 1 to
move the puncture point out of R1 (but not into R2). This is possible since
as illustrated in Fig. 2 there are two possible change of fibration isotopies
and we can choose which side of a singular point the puncture passes by.
Similarly, for R2. After our application of the lemma making link(p) a good
disc we know we can apply an exchange move to eliminate the valence two
vertex. ||

Lemmas 1 and 2 handle the missing case in the proof of the Composite
Braid Theorem of [1]. ||
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In closing, we use this opportunity to correct an error in the signs of
certain crossings in Fig. 22 of [3]. Each of the two crossings of the strand
that is labeled “k” (resp. the strand that is labeled “m”) with the axis A
should be reversed.

Remarks on the literature: For the benefit of the reader, we note that during
the 14 years between the publication of [3] and the submission of this Erra-
tum, there have been many papers published which use the braid foliation
techniques introduced in [3], for example [4], [5], [6], [7], [8] and [9]. For
that reason, 8 years after the manuscript [3] appeared, the first author and
E. Finkelstein wrote a review article on braid foliations [2]. It contains, in
particular, careful proofs of the validity of the change in fibration and the
exchange move, both of which first appeared in [3]. The interested reader
may find it helpful to consult [2] if he/she is interested in learning the basic
techniques in braid foliation theory.

In a different direction, readers have pointed out to us the similarity
between many of our techniques and those of D. Bennequin in [1]. As one
example, the technique that we use in the proof of Lemma 3 of [3] to reduce
the valence of the two middle vertices in the sketches labled (c) in Fig. 18
of [3] is similar to the argument that is given in the proof of Theorem 6
of [1], in the (unnumbered) Lemma that appears in the course of the proof
of Theorem 6 of [1]. Those similarities puzzled us greatly for many years,
because Bennequin was studying the so-called characteristic foliation of
a surface in 3-space supplied with a contact struture, and not the braid
foliation of the same surface in 3-space supplied with a braid structure.
When we first learned of such similarities we convinced ourselves that the
characteristic foliation and the braid foliation were genuinely different, and
that most of the extensive literature resulting from Bennequin’s foundational
work [1] simply did not apply to braid foliations. After recent conversations
with Ivan Dynnikov, we finally understood the explanation: the essential
hypotheses needed to prove particular overlapping technical lemmas are
equally valid in the setting of braid foliations and characteristic foliations.
Bennequin did not prove any of the theorems in [3] or our subsequent
papers based upon braid foliation techniques. Moreover, it seems to us that
any application of results worked out in either setting to the other setting
would require a great deal of careful checking, because the underlying
setting, terminology, basic definitions and references are all distinct.
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