
Wave fronts on random surfaces



Planar wave fronts

Let every point of an ellipse emit a wave at t = 0

Points reached by that wave at some later time t > 0 form a circle.



The envelope of all these circles is called the wave front at time t.

One can say that

Curve + Circle = Wave front



It is easy to see that the wave front of an ellipse is an algebraic

curve which has degree 8 and genus 1, hence many (complex)

singularities.



As the wave front evolves, some of these singularities become real.

Here we have 4 cusps corresponding to 4 points of the ellipse with

curvature = t−1.
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Geometry of wave fronts is, of course, much studied.

What if we replace the circle by some other algebraic curve, i.e.

a curve P + another curve Q = ?



For example, let’s add

y = x3

to an ellipse. We get



In other words,

+ =



It is easy to see that the envelope P + Q is obtained by adding

points p ∈ P and q ∈ Q with the same slope of the tangent, i.e. the

same value of the Gauss map

p

qp + q

Moreover,

GaussP+Q(p + q) = GaussP (p) = GaussQ(q) .

Thus “+” is a commutative associative operation of plane curves.



It is not a group law, instead

P + Q − Q = (deg GaussQ) · P + . . .

where dots stand for other irreducible components and the

multiplicity of P is the degree of

GaussQ : Q → P1 .

Note that from the previous slide that

deg GaussP+Q = deg GaussP · deg GaussQ .
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construction to another.

In the multiplicative case, one uses the logarithmic Gauss map.
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For example

Line
/

Q = dual curveQ∨ ,

i.e. the curve formed by all tangents ax + by = 1 to Q(x, y) = 0 in

the (a, b)-plane

Note that the classical formula

Q∨∨ = Q

follows from deg LogGaussLine = 1 .
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Classical Plücker formulas connect the geometry of Q∨ and Q, i.e.

they relate the degrees, the numbers of cusps and nodes etc. of the

two curves.

It is possible to generalize Plücker formulas to all curves of the

form P
/

Q, known as

Log-fronts

see math.AG/0608018 (joint work with G. Mikhalkin).

Why is one interested in geometry of log-fronts ?
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Why is one interested in geometry of log-fronts ?

Because they appear as

Frozen boundaries

in an interesting class of random surface models.



We are surrounded by random surfaces, in fact . . .

Every shape is random on the atomic scale.

A standard challenge is to describe

macroscopic equilibrium shapes from

microscopic interactions, e.g.

to determine the slopes and locations of

crystalline facets.
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Stepped surfaces are glued out of

the sides of the unit cube without

overhangs.

Note that for fixed boundary con-

ditions they all have the same area.

This is the 3D Ising interface at

T = 0 and a 2D analog of a ran-

dom walk.
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For starters, we take all stepped

surfaces spanning given bound-

ary as equally probable.

Later, we will add periodic

weights to better model the peri-

odic nature of crystals.



The macroscopic shape forms through the

Law of large numbers

namely, as the mesh size → 0, one finds that the random surface

has a nonrandom limit.

A variational characterization of this limit shape was proven by

Cohn, Kenyon, and Propp (2000).

How do these limit shape look ?



Take, for example, the boundary

frame shown in blue:



Here is a simulation. Facets that

form along the boundary are sep-

arated from the disordered re-

gion by the frozen boundary.

In fact, the frozen

boundary is the yel-

low inscribed cardioid



A larger simulation.



How general is such behavior ?

Every boundary contour can be approximated by polygons treated

in the following



Theorem (R. Kenyon, A. O.)

Let the boundary Ω be formed

by 3d segments in coordinate di-

rections, then . . .

the frozen boundary is the unique genus 0 curve Q∨ inscribed in Ω

such that deg Q = d.

It determines the limit shape as follows . . .
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Theorem, continued

There is a unique (up to conju-

gation) complex tangent

ax + by + c = 0

to Q∨ through (x, y).

•

(x, y)

Q∨

C R
2

ax

by

c

α2

α3

α1

The angles

(α1, α2, α3)

give the normal to the

limit shape at the point

(x, y).



Theorem, continued

There is a unique (up to conju-

gation) complex tangent

ax + by + c = 0

to Q∨ through (x, y).

•

(x, y)

Q∨

C R
2

ax

by

c

α2

α3

α1

The angles

(α1, α2, α3)

give the normal to the

limit shape at the point

(x, y).



The map

(x, y) 7→ complex tangent ∈ Q

gives the disordered region a natural complex structure, which

plays a very important role.



We now add

Periodic weights

that is, we weight each box

r = (i, j, k)

by a periodic function of i − j and j − k with period M .

How does this modify the limit shape ?



The effect of the periodic weights is to replace Q∨ as the frozen

boundary by P
/

Q, where

• P a certain spectral curve associated to the periodic weights,

while

• Q still needs to be found from the boundary conditions.



The spectral curve P is a high genus curve. Its handles and

compact ovals correspond to resonant slopes.

All possible slopes form a trian-

gle. The M -division points in it

(•), where M is the period (here

M = 4), are resonant — they

give rise to new facets.

The same points label monomials

in the equation of P .



In the case of

Almost constant weights

that is, when periodic weights have the form 1 + o(. . . ), the curve

P has one large oval which approximates the curve

(z, w) = (tM , (1 − t)M )

together with a tiny oval for each resonant slope.

As a result, the log-front P/Q has the form Q∨

0 , where Q0 is the

constant weight curve plus a tiny wavefront for each limit shape

point s of resonant slope.

The shape of this small wavefront depends on the curvature of the

limit shape at s.
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If the curvature at s is nonzero, the ovals of Q are small ellipses

and the wavefronts bounding the facets look like this:



This is exactly the same picture

as before.

The oriented areas of Q-ovals

have to be multiples of the ar-

eas of P -ovals for the facets to be

stable. Therefore, concave facets

are smaller than the convex ones.



A point of zero curvature may be obtained as a coalescence of a

saddle with a peak. For the Q-curve, this means formations of a

node.

Q-curve Facet

Note that facets merge along a portion of the P curve.



Several facets may be merging or splitting at the same time.

Ovals of Q with oriented zero area, such as a figure-eight oval

may disappear completely.

It remains a challenge to sort out all possible changes in the

geometry of facets for general periodic weights.



Physically, these wave patterns may be traced

to the dispersion of periodic microscopic struc-

tures in the random surface (reflected by the

oscillations of the correlation functions etc.)

More mathematically, one can talk about dispersion of Gibbs

measures.

There are many parallels and formal connections to other kinds of

dispersive phenomena such as water waves.



For example, the crests of ship waves

are dilates of the dual curve

of the relevant dispersion relation for the two wave numbers

Kelvin’s angle of arcsin(1/3) is determined by the slope of the

dispersion curve at its inflection point.
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