An Introduction to the Volume Conjecture, III
Generalizations

Hitoshi Murakami
Tokyo Institute of Technology

9th June, 2009
1. Complexification of the Volume Conjecture
2. Deformation of the parameter
3. Deformation of the hyperbolic structure
4. Proof of the generalization of VC for the figure-eight knot
5. Generalization of VC for hyperbolic knots
6. Appendix
Complexification

Conjecture (Volume Conjecture, R. Kashaev, J. Murakami + H.M.)

\[
2\pi \lim_{N \to \infty} \frac{\log |J_N(K; \exp(2\pi \sqrt{-1}/N))|}{N} = \text{Vol}(S^3 \setminus K).
\]

Conjecture (Complexification of VC, J. Murakami, M. Okamoto, T. Takata, Y. Yokota, + H.M.)

\[
2\pi \lim_{N \to \infty} \frac{\log J_N(K; \exp(2\pi \sqrt{-1}/N))}{N} = \text{Vol}(S^3 \setminus K) + \sqrt{-1} \text{CS}(S^3 \setminus K) \pmod{\pi^2 \sqrt{-1}\mathbb{Z}}.
\]

Here CS is the SL(2; \mathbb{C}) Chern–Simons invariant.

We may regard the left hand side as the definition of the Chern–Simons invariant for general knots.
Deform the parameter $2\pi \sqrt{-1}$

- In VC, the limit corresponds to the complete hyperbolic structure of $S^3 \setminus K$ (if it is hyperbolic).
- The complete structure can be deformed to incomplete ones.
- If we deform the parameter $2\pi \sqrt{-1}$, does the limit corresponds to an incomplete hyperbolic structure?
- Let us consider the limit

$$\lim_{N \to \infty} \frac{\log J_N(K; \exp((u + 2\pi \sqrt{-1})/N))}{N}$$

When $u = 0$, we have the (complexified) Volume Conjecture.
Deformation of the parameter

Generalization for

Theorem (Yokota+H.M.)

\[\exists \mathcal{O} \subset \mathbb{C}: \text{neighborhood of } 0. \text{ If } u \in \mathcal{O} \setminus \pi \sqrt{-1} \mathbb{Q}, \text{ the following limit exists} \]

\[
\lim_{N \to \infty} \frac{\log J_N(\mathcal{O}; \exp((u + 2\pi \sqrt{-1})/N))}{N}
\]

Put

\[H(u) := (u + 2\pi \sqrt{-1}) \times \text{(the limit above)}. \]

- \(H(u) \) is differentiable,
- \(\nu(u) := 2 \frac{d}{du} \frac{H(u)}{u} - 2\pi \sqrt{-1} \) satisfies the following.

\[
\text{Vol}(\mathcal{O} u) + \sqrt{-1} \text{CS}(\mathcal{O} u)
\]

\[\equiv -\sqrt{-1}H(u) - \pi u + u \nu(u)\sqrt{-1}/4 - \pi \kappa(\gamma_u)/2 \text{ (mod } \pi^2 \sqrt{-1} \mathbb{Z}). \]
Deformation of the hyperbolic structure

- \mathcal{H}_u is the closed hyperbolic three-manifold defined by u, that is, it is defined by the following representation of $\pi_1 \left(S^3 \setminus \mathcal{H} \right) \to SL(2; \mathbb{C})$:

\[
\begin{align*}
\text{meridian} & \mapsto \begin{pmatrix} \exp(u/2) & * \\ 0 & \exp(-u/2) \end{pmatrix}, \\
\text{longitude} & \mapsto \begin{pmatrix} \exp(v(u)/2) & * \\ 0 & \exp(-v(u)/2) \end{pmatrix}.
\end{align*}
\]

Here the meridian goes around \mathcal{H}, and the longitude goes along \mathcal{H}.

- When $u = 0$ this gives the holonomy representation, that is, each loop in $\pi_1 \left(S^3 \setminus \mathcal{H} \right)$ is identified with a deck transformation of the universal cover of $S^3 \setminus \mathcal{H}$, which is $\text{Isom}_+ (\mathbb{H}^3) \cong PSL(2; \mathbb{C}) = SL(2; \mathbb{C})/\pm$.

- For $u \neq 0$, the hyperbolic structure is incomplete.
Dehn surgery

- If \mathcal{U}_u is incomplete, we can complete it by attaching either a point or a circle.
- γ_u is the attaching circle.
- If $pu + qv(u) = 2\pi\sqrt{-1}$, this is the (p, q)-Dehn surgery.

$$\kappa(\gamma_u) := \text{length}(\gamma_u) + \sqrt{-1}\text{torsion}(\gamma_u),$$

where
- length is its length,
- torsion measures how the circle is twisted (mod 2π).
Precise expression of the limit

\[J_N \left(\bigotimes; q \right) = \sum_{j=0}^{N-1} q^{jN} \prod_{k=1}^{j} \left(1 - q^{-N-k} \right) \left(1 - q^{-N+k} \right). \]

Put

\[H(z, w) := \text{Li}_2(z^{-1}w^{-1}) - \text{Li}_2(zw^{-1}) + \log z \log w, \]

where

\[\text{Li}_2(x) := - \int_0^x \frac{\log(1-t)}{t} dt. \]

If \(\theta \) is near \(2\pi \sqrt{-1} \in \mathbb{C} \) and not a rational multiple of \(2\pi \sqrt{-1} \), then

\[\theta \lim_{N \to \infty} \frac{\log J_N \left(\bigotimes; \exp(\theta/N) \right)}{N} = H\left(y, \exp(\theta) \right), \]

where \(y \) satisfies

\[y + y^{-1} = \exp(\theta) + \exp(-\theta) - 1. \]
Approximation of the summand by dilogarithm

\[q := \exp(\theta / N) \]

\[\log \left(\prod_{k=1}^{j} \left(1 - q^{-N\pm k} \right) \right) \]

\[= \sum_{k=1}^{j} \log \left(1 - \exp(\pm k\theta / N - \theta) \right) \]

\[\sim N \int_{0}^{j/N} \log(1 - \exp(\pm \theta s - \theta)) \, ds \]

\[= \frac{N}{\pm \theta} \int_{\exp(-\theta)}^{\exp(\pm j\theta / N - \theta)} \frac{\log(1 - t)}{t} \, dt \]

\[= \frac{N}{\pm \theta} \left(\text{Li}_2(\exp(-\theta)) - \text{Li}_2(\exp(\pm j\theta / N - \theta)) \right). \]
Approximation of J_N by an integral

$$J_N \left(\bigcirc; \exp(\theta/N) \right)$$

\[
N \to \infty \sum_{j=0}^{N-1} \exp(j\theta) \exp \left[\frac{N}{\theta} \left(\text{Li}_2(\exp(-j\theta/N - \theta)) - \text{Li}_2(\exp(j\theta/N - \theta)) \right) \right]
\]

\[
= \sum_{j=0}^{N-1} \exp \left[\frac{N}{\theta} H(\exp(j\theta/N), \exp(\theta)) \right]
\]

\[
\approx \int_C \exp \left[\frac{N}{\theta} H(x, \exp(\theta)) \right] \, dx
\]

for a suitable contour C.

To find the ‘maximum’ of $\{H(x, \exp(\theta))\}$, we will find a solution y to the equation $\frac{dH}{dx}(x, \exp(\theta)) = 0$, which is

$$\frac{\log [\exp(\theta) + \exp(-\theta) - x - x^{-1}]}{x} = 0.$$
Saddle point method

- Choose y so that

\[y + y^{-1} = \exp(\theta) + \exp(-\theta) - 1, \]

then

\[J_N \left(\bigotimes; \exp(\theta / N) \right) \sim \exp \left(\frac{N}{\theta} H(y, \exp(\theta)) \right) \]

\[\Rightarrow \]

\[\theta \lim_{N \to \infty} J_N \left(\bigotimes; \exp(\theta / N) \right) = H(y, \exp(\theta)). \]

Putting $u := \theta - 2\pi \sqrt{-1}$, we have

\[(u + 2\pi \sqrt{-1}) \lim_{N \to \infty} \frac{J_N \left(\bigotimes; \exp((u + 2\pi \sqrt{-1}) / N) \right)}{N} = H(u) \]

with $H(u) := H(y, \exp(\theta))$.

Note that this can be done rigorously.
Calculation of the volume using dilogarithm

- $\Delta(z)$, $\Delta(w)$: ideal hyperbolic tetrahedra parametrized by complex numbers z and w, respectively.

- $S^3 \setminus \mathcal{K} = \Delta(z) \cup \Delta(w)$ if $z(z - 1)w(w - 1) = 1$. (This is just the glueing condition. The hyperbolic structure may not be complete. The completion condition is $w(1 - z) = 1$.)

- Introduce parameters u and y so that

 \[
 \exp u = w(1 - z), \quad (\text{meridian})
 \]

 \[
 y + y^{-1} = \exp(u) + \exp(-u) - 1.
 \]

 Note that z, w and y are defined by u.

- Use the formula:

 \[
 \text{Vol}(\Delta(z)) = \text{Im} \, \text{Li}_2(z) + \log |z| \, \arg(1 - z).
 \]
Calculation of the volume by H function

$$\text{Vol}(S^3 \setminus \bigcirc) = \text{Im} H(u) - \pi \text{Re} u - \text{Re} u \text{Im} \log(z(1 - z))$$

Since \(\frac{d H(u)}{d u} = \log(z(z - 1)) \),

$$\text{Vol}(S^3 \setminus \bigcirc) = \text{Im} H(u) - \pi \text{Re} u - \frac{1}{2} \text{Re} u \text{Im} v(u)$$

putting \(v(u) := 2 \frac{d H(u)}{d u} - 2\pi \sqrt{-1} \).

Indeed, \(\exp(v(u)) \) corresponds to the longitude \(z^2(1 - z)^2 \).

We will show:

$$\text{length } \gamma_u = -\frac{1}{2\pi} \text{Im} \left(\frac{uv(u)}{u} \right).$$
Length of the geodesic γ_u (W. Neumann and D. Zagier)

On $\partial \mathbb{H}^3 = S^2_\infty = \mathbb{C} \cup \{\infty\}$:

- $\mu := \text{meridian} \mapsto [z \mapsto \exp(u)z + c \exp(u/2)]$
- $\lambda := \text{longitude} \mapsto [z \mapsto \exp(v)z + d \exp(v/2)]$.

- When $u = 0$, we have the complete structure.
 - \Rightarrow the corresponding representation is a parallel transport.
- When $u \neq 0$, we have an incomplete structure.
 - \Rightarrow Since the meridian and the longitude commute, their images have the same two fixed points; \[
 \frac{c \exp(u/2)}{1 - \exp(u)} = \frac{d \exp(v/2)}{1 - \exp(v)} \quad \text{and} \quad \infty.
 \]
 Changing the coordinate, the fixed points are assumed to be O and ∞.
 - \Rightarrow
 - $\mu \mapsto [z \mapsto \exp(u)z]$
 - $\lambda \mapsto [z \mapsto \exp(v)z]$.
Calculation of the complex length

- Choose \((p, q)\) so that \(pu + qv = 2\pi \sqrt{-1}\) \((p, q \in \mathbb{R})\).
- Assume \(p\) and \(q\) are coprime integers.
- \(u\) defines an incomplete structure whose completion is the \((p, q)\)-Dehn surgery.
- \(\gamma_u = r\mu + s\lambda \in H_1(\partial(S^3 \setminus \bigcirc))\).
 \((\because\) the meridian of the attached solid torus is identified with \(p\mu + q\lambda\), and the meridian and \(\gamma_u\) make a basis of \(H_1(\partial(S^3 \setminus \bigcirc))\).\)
Calculation of length and torsion

- γ_u corresponds to the multiplication by $\exp(ru + sv)$, and so
 \[\exp(\text{length} + \sqrt{-1} \text{torsion}) = \exp(\pm (ru + sv)). \]
- In H^3, this defines $\text{Im}(\pm (ru + sv))$-rotation, and an upward shift by $\exp(\Re(\pm (ru + sv)))$ in coordinate, which has length $\Re(\pm (ru + sv))$.
-
 \[
 \begin{cases}
 pu + qv = 2\pi \sqrt{-1}, \\
 ru + sv = \pm (\text{length} + \sqrt{-1} \text{torsion}).
 \end{cases}
 \]
- $\text{length } \gamma_u = -\frac{1}{2\pi} \text{Im} (u\overline{v})$.

 (Here we choose the negative sign since $v = u \times \frac{|v|^2}{u\overline{v}}$ and the orientation of (u, v) should be positive on \mathbb{C}.)
Conclusion

\[
\text{length } \gamma_u = -\frac{1}{2\pi} \text{Im} \left(u\overline{v} \right) = -\frac{1}{2\pi} \text{Im} u \text{Re} v + \frac{1}{2\pi} \text{Re} u \text{Im} v.
\]

\[
\Rightarrow
\]

\[
\text{Vol}(S^3 \setminus \natural 1) = \text{Im} H(u) - \pi \text{Re} u - \frac{1}{2} \text{Re} u \text{Im} \nu(u) \\
= \text{Re} \left(-\sqrt{-1} H(u) - \pi u + uv(u)\sqrt{-1}/4 - \pi \kappa(\gamma_u)/2 \right),
\]

The Chern–Simons invariant is obtained by T. Yoshida’s formula.
Conjecture

For any hyperbolic knot K, the following limit exists

$$\lim_{N \to \infty} \log J_N(K; \exp((u + 2\pi \sqrt{-1})/N)) \cdot \frac{1}{N}$$

for small u. Put

$$H(K; u) := (u + 2\pi \sqrt{-1}) \times \text{(the limit above)}.$$

- $H(K; u)$ is differentiable,
- $v(K; u) := 2 \frac{d}{du} H(K; u) - 2\pi \sqrt{-1}$ satisfies the following.

$$\Vol(K_u) = \text{Im } H(K; u) - \pi \text{ Re } u - \text{ Re } u \text{ Im } v(K; u)/2.$$
Small parameter

The previous conjecture should be compared with:

Theorem (S. Garoufalidis and T. Lê)

For any K, $\exists \varepsilon$ s.t. if $|a| < \varepsilon$

$$\lim_{N \to \infty} J_N(K; \exp(a/N)) = \frac{1}{\Delta(K; \exp a)},$$

where $\Delta(K; t)$ *is the Alexander polynomial.*

What happens between $2\pi\sqrt{-1}$ and 0?
FAQs

Q1. Is Jun Murakami your relative?
A1. No!

Q2. How about Haruki Murakami?
A2. Never!