Representation theory and homological stability

Benson Farb
Joint work with Tom Church
University of Chicago

Walterfest
June 7, 2011
Introduction

Representation stability is a philosophy, definition, vocabulary.
Representation stability is a philosophy, definition, vocabulary.

Homological stability: for certain sequences X_n,

$$H_i(X_n) \xrightarrow{\sim} H_i(X_{n+1}) \quad \text{once } n \gg i.$$

(Examples: $\text{SL}_n \mathbb{Z}$, S_n, \mathcal{M}_n)
Introduction

Representation stability is a philosophy, definition, vocabulary.

Homological stability: for certain sequences X_n,

$$H_i(X_n) \xrightarrow{\sim} H_i(X_{n+1}) \quad \text{once } n \gg i.$$

(Examples: $\text{SL}_n \mathbb{Z}$, S_n, \mathcal{M}_n)

Problem: If X_n has symmetries G_n, and if G_n grows, homological stability is almost impossible.
Representation stability is a philosophy, definition, vocabulary.

Homological stability: for certain sequences X_n,

$$H_i(X_n) \xrightarrow{\sim} H_i(X_{n+1}) \quad \text{once } n \gg i.$$

(Examples: $\text{SL}_n \mathbb{Z}$, S_n, \mathcal{M}_n)

Problem: If X_n has symmetries G_n, and if G_n grows, homological stability is almost impossible.

Representation stability (slogan form):

“The description of $H_i(X_n)$ in terms of the action of G_n stabilizes.”
Pure braid groups

$\text{PConf}_n(\mathbb{C}) := \{(z_1, \ldots, z_n) | z_i \in \mathbb{C}, z_i \neq z_j\}$
Pure braid groups

\[\text{PConf}_n(\mathbb{C}) := \{(z_1, \ldots, z_n) | z_i \in \mathbb{C}, z_i \neq z_j\} \]

= configuration space of *n ordered* points in the plane
Pure braid groups

\[\text{PConf}_n(\mathbb{C}) := \{(z_1, \ldots, z_n) | z_i \in \mathbb{C}, z_i \neq z_j \} \]

= configuration space of \textit{n ordered} points in the plane

\[P_n := \pi_1(\text{PConf}_n(\mathbb{C})) = \text{pure braid group.} \]
Pure braid groups

\[P_{\text{Conf}_n}(\mathbb{C}) := \{(z_1, \ldots, z_n) | z_i \in \mathbb{C}, z_i \neq z_j\} \]

= configuration space of \emph{n ordered} points in the plane

\[P_n := \pi_1(\text{PConf}_n(\mathbb{C})) = \text{pure braid group.} \]

Symmetric group \(S_n \) acts on \(\mathbb{C}^n \) and acts on \(P_{\text{Conf}_n}(\mathbb{C}) \) freely.
Pure braid groups

\[\text{PConf}_n(\mathbb{C}) := \{(z_1, \ldots, z_n) | z_i \in \mathbb{C}, z_i \neq z_j\} \]

= configuration space of \textit{n ordered} points in the plane

\[P_n := \pi_1(\text{PConf}_n(\mathbb{C})) = \text{pure braid group.} \]

Symmetric group \(S_n \) acts on \(\mathbb{C}^n \) and acts on \(\text{PConf}_n(\mathbb{C}) \) freely.

\[\text{Conf}_n(\mathbb{C}) := \text{PConf}_n(\mathbb{C})/S_n \]

= configuration space of \textit{n unordered} points in the plane

\[B_n := \pi_1(\text{Conf}_n(\mathbb{C})) = \text{braid group} \]
Pure braid groups

\[
P_{\text{Conf}}(\mathbb{C}) := \{(z_1, \ldots, z_n) | z_i \in \mathbb{C}, z_i \neq z_j\}
\]

= configuration space of \(n\) ordered points in the plane

\[P_n := \pi_1(P_{\text{Conf}}(\mathbb{C})) = \text{pure braid group.}\]

Symmetric group \(S_n\) acts on \(\mathbb{C}^n\) and acts on \(P_{\text{Conf}}(\mathbb{C})\) freely.

\[
\text{Conf}(\mathbb{C}) := P_{\text{Conf}}(\mathbb{C})/S_n
\]

= configuration space of \(n\) unordered points in the plane

\[B_n := \pi_1(\text{Conf}(\mathbb{C})) = \text{braid group}\]

Remarks
Pure braid groups

\[\text{PConf}_n(\mathbb{C}) := \{(z_1, \ldots, z_n) | z_i \in \mathbb{C}, z_i \neq z_j\} \]

= configuration space of \textit{n ordered} points in the plane

\[P_n := \pi_1(\text{PConf}_n(\mathbb{C})) = \text{pure braid group}. \]

Symmetric group \(S_n \) acts on \(\mathbb{C}^n \) and acts on \(\text{PConf}_n(\mathbb{C}) \) freely.

\[\text{Conf}_n(\mathbb{C}) := \text{PConf}_n(\mathbb{C}) / S_n \]

= configuration space of \textit{n unordered} points in the plane

\[B_n := \pi_1(\text{Conf}_n(\mathbb{C})) = \text{braid group} \]

Remarks

- These spaces are all aspherical, so \(H^*(\text{PConf}_n(\mathbb{C})) = H^*(P_n) \).
Pure braid groups

\[\text{PConf}_n(\mathbb{C}) := \{(z_1, \ldots, z_n) | z_i \in \mathbb{C}, z_i \neq z_j\} \]

= configuration space of \(n \) ordered points in the plane

\[P_n := \pi_1(\text{PConf}_n(\mathbb{C})) = \text{pure braid group}. \]

Symmetric group \(S_n \) acts on \(\mathbb{C}^n \) and acts on \(\text{PConf}_n(\mathbb{C}) \) freely.

\[\text{Conf}_n(\mathbb{C}) := \text{PConf}_n(\mathbb{C})/S_n \]

= configuration space of \(n \) unordered points in the plane

\[B_n := \pi_1(\text{Conf}_n(\mathbb{C})) = \text{braid group} \]

Remarks

- These spaces are all aspherical, so \(H^*(\text{PConf}_n(\mathbb{C})) = H^*(P_n) \).
- Distinction between homology and cohomology not relevant.
Homological stability for braid groups

Theorem (Arnol’d 1968, F. Cohen 1972)

The braid groups B_n satisfy **homological stability**:

$$\text{for } n \gg i, \quad H_i(B_n; \mathbb{Z}) \xrightarrow{\sim} H_i(B_{n+1}; \mathbb{Z}).$$
Theorem (Arnol’d 1968, F. Cohen 1972)

The braid groups B_n satisfy **homological stability**:

$$\text{for } n \gg i, \quad H_i(B_n; \mathbb{Z}) \xrightarrow{\simeq} H_i(B_{n+1}; \mathbb{Z}).$$

Over \mathbb{Q}:

$$H_0(B_n; \mathbb{Q}) = H_1(B_n; \mathbb{Q}) = \mathbb{Q}, \quad \text{while } H_i(B_n; \mathbb{Q}) = 0 \text{ for } i \geq 2.$$
Homological stability for braid groups

Theorem (Arnol’d 1968, F. Cohen 1972)

The braid groups B_n satisfy **homological stability**:

$$\text{for } n \gg i, \quad H_i(B_n; \mathbb{Z}) \to H_i(B_{n+1}; \mathbb{Z}).$$

Over \mathbb{Q}:

$$H_0(B_n; \mathbb{Q}) = H_1(B_n; \mathbb{Q}) = \mathbb{Q}, \quad \text{while } H_i(B_n; \mathbb{Q}) = 0 \text{ for } i \geq 2.$$

False for the pure braid groups P_n, even over \mathbb{Q}:

- $H_1(P_2; \mathbb{Q}) = \mathbb{Q}$
- $H_1(P_3; \mathbb{Q}) = \mathbb{Q}^3$
- $H_1(P_4; \mathbb{Q}) = \mathbb{Q}^6$
- $H_1(P_5; \mathbb{Q}) = \mathbb{Q}^{10}$
- \vdots
Homological stability for braid groups

Theorem (Arnol’d 1968, F. Cohen 1972)

The braid groups B_n satisfy **homological stability**:

\[
\text{for } n \gg i, \quad H_i(B_n; \mathbb{Z}) \xrightarrow{\sim} H_i(B_{n+1}; \mathbb{Z}).
\]

Over \mathbb{Q}:

\[
H_0(B_n; \mathbb{Q}) = H_1(B_n; \mathbb{Q}) = \mathbb{Q}, \quad \text{while } H_i(B_n; \mathbb{Q}) = 0 \text{ for } i \geq 2.
\]

False for the pure braid groups P_n, even over \mathbb{Q}:

\[
\begin{align*}
H_1(P_2; \mathbb{Q}) &= \mathbb{Q} \\
H_1(P_3; \mathbb{Q}) &= \mathbb{Q}^3 \\
H_1(P_4; \mathbb{Q}) &= \mathbb{Q}^6 \\
H_1(P_5; \mathbb{Q}) &= \mathbb{Q}^{10} \\
\vdots
\end{align*}
\]

in fact for each $i \geq 1$,

\[
\dim H_i(P_n; \mathbb{Q}) \to \infty \quad \text{as } n \to \infty
\]
The action of the symmetric group on $H^*(P_n)$

S_n action on $\text{PConf}_n(\mathbb{C})$
The action of the symmetric group on $H^*(P_n)$

S_n action on $\text{PConf}_n(\mathbb{C}) \rightsquigarrow S_n$ action on $H^*(\text{PConf}_n(\mathbb{C})) = H^*(P_n)$.
The action of the symmetric group on $H^*(P_n)$

S_n action on $\text{PConf}_n(\mathbb{C}) \rightsquigarrow S_n$ action on $H^*(\text{PConf}_n(\mathbb{C})) = H^*(P_n)$.

$H^*(B_n; \mathbb{Q}) \approx \text{the } S_n\text{-invariants } H^*(P_n; \mathbb{Q})^{S_n}$
The action of the symmetric group on $H^*(P_n)$

S_n action on $\text{PConf}_n(\mathbb{C}) \rightsquigarrow S_n$ action on $H^*(\text{PConf}_n(\mathbb{C})) = H^*(P_n)$.

$H^*(B_n; \mathbb{Q}) \approx \text{the } S_n\text{-invariants } H^*(P_n; \mathbb{Q})^{S_n}$

Thus:

$H^i(B_n; \mathbb{Q}) = 0$ for $i \geq 2$ (Arnold)

\iff

S_n action on $H^i(P_n; \mathbb{Q})$ has no fixed vectors for $i \geq 2$.

Benson Farb (University of Chicago)

June 7, 2011 5 / 25
The action of the symmetric group on $H^*(P_n)$

S_n action on $\text{PConf}_n(\mathbb{C}) \leadsto S_n$ action on $H^*(\text{PConf}_n(\mathbb{C})) = H^*(P_n)$.

$$H^*(B_n; \mathbb{Q}) \approx \text{the } S_n\text{–invariants } H^*(P_n; \mathbb{Q})^{S_n}$$

Thus:

$$H^i(B_n; \mathbb{Q}) = 0 \text{ for } i \geq 2 \text{ (Arnold)}$$

\iff

S_n action on $H^i(P_n; \mathbb{Q})$ has no fixed vectors for $i \geq 2$.

Main question [Brieskorn, Stanley, Orlick, Lehrer-Solomon, ...]

What is $H^i(P_n; \mathbb{Q})$ as an S_n–representation?
The action of the symmetric group on $H^*(P_n)$

S_n action on $\text{PConf}_n(\mathbb{C}) \leadsto S_n$ action on $H^*(\text{PConf}_n(\mathbb{C})) = H^*(P_n)$.

$H^*(B_n; \mathbb{Q}) \approx$ the S_n–invariants $H^*(P_n; \mathbb{Q})^{S_n}$

Thus:

$H^i(B_n; \mathbb{Q}) = 0$ for $i \geq 2$ (Arnold)

\iff

S_n action on $H^i(P_n; \mathbb{Q})$ has no fixed vectors for $i \geq 2$.

Main question [Brieskorn, Stanley, Orlick, Lehrer-Solomon, …]

What is $H^i(P_n; \mathbb{Q})$ as an S_n–representation?

Example

$H^1(P_n; \mathbb{Q}) \approx \text{Sym}^2 \mathbb{Q}^n / \mathbb{Q}^n.$
representation: \mathbb{Q}–vector space with linear action of a group
representation: \(\mathbb{Q} \)-vector space with linear action of a group

irreducible: has no (nontrivial) invariant subspaces
representation: \(\mathbb{Q} \)-vector space with linear action of a group

irreducible: has no (nontrivial) invariant subspaces

Maschke’s Theorem: Every rep. of a finite group decomposes as direct sum of irreducibles.
Representation theory basics

representation: \(\mathbb{Q}\)-vector space with linear action of a group

irreducible: has no (nontrivial) invariant subspaces

Maschke’s Theorem: Every rep. of a finite group decomposes as direct sum of irreducibles.

Goals of representation theory:
representation: \mathbb{Q}-vector space with linear action of a group
irreducible: has no (nontrivial) invariant subspaces

Maschke’s Theorem: Every rep. of a finite group decomposes as direct sum of irreducibles.

Goals of representation theory:
1. Classify all irreducible representations of a given group.
representation: \(\mathbb{Q} \)-vector space with linear action of a group

irreducible: has no (nontrivial) invariant subspaces

Maschke’s Theorem: Every rep. of a finite group decomposes as direct sum of irreducibles.

Goals of representation theory:
1. Classify all irreducible representations of a given group.
2. Understand how to decompose a given representation into irreducibles.
Beautiful fact

There is a natural bijection:

\{ \text{irreducible representations of } S_n \} \leftrightarrow \{ \text{partitions of } n \}
Beautiful fact

There is a natural bijection:

$$\{\text{irreducible representations of } S_n\} \longleftrightarrow \{\text{partitions of } n\}$$

Example

- trivial representation \mathbb{Q} \longleftrightarrow n
Beautiful fact

There is a natural bijection:

\[\{ \text{irreducible representations of } S_n \} \leftrightarrow \{ \text{partitions of } n \} \]

Example

- trivial representation \(\mathbb{Q} \) \(\leftrightarrow \) \(n \)
- standard representation \(\mathbb{Q}^n/\mathbb{Q} \) \(\leftrightarrow \) \((n - 1) + 1 \)
Beautiful fact

There is a natural bijection:

\[\{ \text{irreducible representations of } S_n \} \leftrightarrow \{ \text{partitions of } n \} \]

Example

- trivial representation \(\mathbb{Q} \) \(\leftrightarrow \) \(n \)
- standard representation \(\mathbb{Q}^n/\mathbb{Q} \) \(\leftrightarrow \) \((n - 1) + 1 \)
- \(\Lambda^3 \) (standard representation) \(\leftrightarrow \) \((n - 3) + 1 + 1 + 1 \)
Beautiful fact

There is a natural bijection:

\{\text{irreducible representations of } S_n\} \leftrightarrow \{\text{partitions of } n\}

Example

- trivial representation $\mathbb{Q} \leftrightarrow n = V(0)$
- standard representation $\mathbb{Q}^n/\mathbb{Q} \leftrightarrow (n - 1) + 1 = V(1)$
- $\wedge^3(\text{standard representation}) \leftrightarrow (n - 3) + 1 + 1 + 1 = V(1, 1, 1)$

Notational convention:

$V(a_1, \ldots, a_k)_n$

$= \text{irreducible corresponding to partition } (n - \sum a_i) + a_1 + \cdots + a_k.$
$H^*(P_n)$ of the pure braid group, revisited

Back to the S_n-representation $H^*(P_n; \mathbb{Q})$.
H*(P_n) of the pure braid group, revisited

Back to the S_n-representation H*(P_n; Q).

Main question, restated

Which irreducible representations (i.e. which partitions) appear in H^i(P_n; Q)? What are their multiplicities?
Back to the S_n-representation $H^*(P_n; \mathbb{Q})$.

Main question, restated

Which irreducible representations (i.e. which partitions) appear in $H^i(P_n; \mathbb{Q})$? What are their multiplicities?

Example

$H^1(P_n; \mathbb{Q}) = V(0) \oplus V(1) \oplus V(2)$ for $n \geq 4$
Back to the S_n-representation $H^*(P_n; \mathbb{Q})$.

Main question, restated

Which irreducible representations (i.e. which partitions) appear in $H^i(P_n; \mathbb{Q})$? What are their multiplicities?

Example

$H^1(P_n; \mathbb{Q}) = V(0) \oplus V(1) \oplus V(2)$ for $n \geq 4$

What about $H^2(P_n; \mathbb{Q})$?
\[H^2 \] of the pure braid group \(P_n \)
H^2 of the pure braid group P_n

$$H^2(P_3; \mathbb{Q}) = V(1)$$
H^2 of the pure braid group P_n

$H^2(P_3; \mathbb{Q}) = V(1)$

$H^2(P_4; \mathbb{Q}) = V(1)^\oplus 2 \oplus V(1, 1) \oplus V(2)$
H^2 of the pure braid group P_n

\[
H^2(P_3; \mathbb{Q}) = V(1)
\]

\[
H^2(P_4; \mathbb{Q}) = V(1)^2 \oplus V(1, 1) \oplus V(2)
\]

\[
H^2(P_5; \mathbb{Q}) = V(1)^2 \oplus V(1, 1)^2 \oplus V(2)^2 \oplus V(2, 1)^2
\]
\(H^2 \) of the pure braid group \(P_n \)

\[
H^2(P_3; \mathbb{Q}) = V(1)
\]

\[
H^2(P_4; \mathbb{Q}) = V(1)^\oplus 2 \oplus V(1, 1) \oplus V(2)
\]

\[
H^2(P_5; \mathbb{Q}) = V(1)^\oplus 2 \oplus V(1, 1)^\oplus 2 \oplus V(2)^\oplus 2 \oplus V(2, 1)^\oplus 2
\]

\[
H^2(P_6; \mathbb{Q}) = V(1)^\oplus 2 \oplus V(1, 1)^\oplus 2 \oplus V(2)^\oplus 2 \oplus V(2, 1)^\oplus 2 \oplus V(3)
\]
H^2 of the pure braid group P_n

\[
H^2(P_3; \mathbb{Q}) = V(1)
\]

\[
H^2(P_4; \mathbb{Q}) = V(1)^2 \oplus V(1, 1) \oplus V(2)
\]

\[
H^2(P_5; \mathbb{Q}) = V(1)^2 \oplus V(1, 1)^2 \oplus V(2)^2 \oplus V(2, 1)^2
\]

\[
H^2(P_6; \mathbb{Q}) = V(1)^2 \oplus V(1, 1)^2 \oplus V(2)^2 \oplus V(2, 1)^2 \oplus V(3)
\]

\[
H^2(P_7; \mathbb{Q}) = V(1)^2 \oplus V(1, 1)^2 \oplus V(2)^2 \oplus V(2, 1)^2 \oplus V(3) \oplus V(3, 1)
\]
H^2 of the pure braid group P_n

$H^2(P_3; \mathbb{Q}) = V(1)$

$H^2(P_4; \mathbb{Q}) = V(1)^{\oplus 2} \oplus V(1, 1) \oplus V(2)$

$H^2(P_5; \mathbb{Q}) = V(1)^{\oplus 2} \oplus V(1, 1)^{\oplus 2} \oplus V(2)^{\oplus 2} \oplus V(2, 1)^{\oplus 2}$

$H^2(P_6; \mathbb{Q}) = V(1)^{\oplus 2} \oplus V(1, 1)^{\oplus 2} \oplus V(2)^{\oplus 2} \oplus V(2, 1)^{\oplus 2} \oplus V(3)$

$H^2(P_7; \mathbb{Q}) = V(1)^{\oplus 2} \oplus V(1, 1)^{\oplus 2} \oplus V(2)^{\oplus 2} \oplus V(2, 1)^{\oplus 2} \oplus V(3) \oplus V(3, 1)$

$H^2(P_8; \mathbb{Q}) = \text{more complicated}$
H^2 of the pure braid group P_n

$H^2(P_3; \mathbb{Q}) = V(1)$

$H^2(P_4; \mathbb{Q}) = V(1)^{\oplus 2} \oplus V(1, 1) \oplus V(2)$

$H^2(P_5; \mathbb{Q}) = V(1)^{\oplus 2} \oplus V(1, 1)^{\oplus 2} \oplus V(2)^{\oplus 2} \oplus V(2, 1)^{\oplus 2}$

$H^2(P_6; \mathbb{Q}) = V(1)^{\oplus 2} \oplus V(1, 1)^{\oplus 2} \oplus V(2)^{\oplus 2} \oplus V(2, 1)^{\oplus 2} \oplus V(3)$

$H^2(P_7; \mathbb{Q}) = V(1)^{\oplus 2} \oplus V(1, 1)^{\oplus 2} \oplus V(2)^{\oplus 2} \oplus V(2, 1)^{\oplus 2} \oplus V(3) \oplus V(3, 1)$

$H^2(P_8; \mathbb{Q}) = \text{more complicated}$

$H^2(P_9; \mathbb{Q}) = \text{even more complicated}$
H^2 of the pure braid group P_n

\[
H^2(P_3; \mathbb{Q}) = V(1)
\]

\[
H^2(P_4; \mathbb{Q}) = V(1)^{\oplus 2} \oplus V(1, 1) \oplus V(2)
\]

\[
H^2(P_5; \mathbb{Q}) = V(1)^{\oplus 2} \oplus V(1, 1)^{\oplus 2} \oplus V(2)^{\oplus 2} \oplus V(2, 1)^{\oplus 2}
\]

\[
H^2(P_6; \mathbb{Q}) = V(1)^{\oplus 2} \oplus V(1, 1)^{\oplus 2} \oplus V(2)^{\oplus 2} \oplus V(2, 1)^{\oplus 2} \oplus V(3)
\]

\[
H^2(P_7; \mathbb{Q}) = V(1)^{\oplus 2} \oplus V(1, 1)^{\oplus 2} \oplus V(2)^{\oplus 2} \oplus V(2, 1)^{\oplus 2} \oplus V(3) \oplus V(3, 1)
\]

\[
H^2(P_8; \mathbb{Q}) = \text{more complicated}
\]

\[
H^2(P_9; \mathbb{Q}) = \text{even more complicated}
\]

\[\text{No stability (?!)}\]
H^2 of the pure braid group P_n

$H^2(P_3; \mathbb{Q}) = V(1)$

$H^2(P_4; \mathbb{Q}) = V(1)^{\oplus 2} \oplus V(1, 1) \oplus V(2)$

$H^2(P_5; \mathbb{Q}) = V(1)^{\oplus 2} \oplus V(1, 1)^{\oplus 2} \oplus V(2)^{\oplus 2} \oplus V(2, 1)^{\oplus 2}$

$H^2(P_6; \mathbb{Q}) = V(1)^{\oplus 2} \oplus V(1, 1)^{\oplus 2} \oplus V(2)^{\oplus 2} \oplus V(2, 1)^{\oplus 2} \oplus V(3)$

$H^2(P_7; \mathbb{Q}) = V(1)^{\oplus 2} \oplus V(1, 1)^{\oplus 2} \oplus V(2)^{\oplus 2} \oplus V(2, 1)^{\oplus 2} \oplus V(3) \oplus V(3, 1)$

Correct answer

$H^2(P_n; \mathbb{Q}) = V(1)^{\oplus 2} \oplus V(1, 1)^{\oplus 2} \oplus V(2)^{\oplus 2} \oplus V(2, 1)^{\oplus 2} \oplus V(3) \oplus V(3, 1)$

for $n = 8, 9, \ldots$
Definition of representation stability
Definition of representation stability

Input: Sequence \(\{W_n\} \) of \(S_n \)-representations with maps \(\phi_n: W_n \to W_{n+1} \) respecting action of \(S_n \).
Definition of representation stability

Input: Sequence \(\{W_n\} \) of \(S_n \)-representations with maps \(\phi_n: W_n \to W_{n+1} \) respecting action of \(S_n \).

Definition (Representation stability)

The sequence \(\{W_n\} \) is called *representation stable* if:

I. Injectivity:

II. Surjectivity:

III. Multiplicities:
Definition of representation stability

Input: Sequence $\{W_n\}$ of S_n–representations with maps $
\phi_n : W_n \to W_{n+1}$ respecting action of S_n.

Definition (Representation stability)

The sequence $\{W_n\}$ is called *representation stable* if:

I. Injectivity: ϕ_n is injective.

II. Surjectivity:

III. Multiplicities:
Definition of representation stability

Input: Sequence \(\{W_n\} \) of \(S_n \)–representations with maps \(\phi_n: W_n \rightarrow W_{n+1} \) respecting action of \(S_n \).

Definition (Representation stability)

The sequence \(\{W_n\} \) is called *representation stable* if:

I. Injectivity: \(\phi_n \) is injective.

II. Surjectivity: the image \(\phi_n(W_n) \) is all of \(W_{n+1} \).

III. Multiplicities:
Definition of representation stability

Input: Sequence \(\{ W_n \} \) of \(S_n \)-representations with maps \(\phi_n : W_n \to W_{n+1} \) respecting action of \(S_n \).

Definition (Representation stability)

The sequence \(\{ W_n \} \) is called *representation stable* if:

I. **Injectivity:** \(\phi_n \) is injective.

II. **Surjectivity:** the \(S_{n+1} \)-span of the image \(\phi_n(W_n) \) is all of \(W_{n+1} \).

III. **Multiplicities:**
Definition of representation stability

Input: Sequence \(\{W_n\} \) of \(S_n \)-representations with maps \(\phi_n : W_n \to W_{n+1} \) respecting action of \(S_n \).

Definition (Representation stability)

The sequence \(\{W_n\} \) is called *representation stable* if:

I. Injectivity: \(\phi_n \) is injective.

II. Surjectivity: the \(S_{n+1} \)-span of the image \(\phi_n(W_n) \) is all of \(W_{n+1} \).

III. Multiplicities: decompose

\[
W_n = \bigoplus c_{\lambda,n} V(\lambda)_n
\]

into irreducibles. For each partition \(\lambda \), the multiplicities \(c_{\lambda,n} \) are eventually constant as \(n \to \infty \).
Representation stability for pure braid groups
Theorem (Church–Farb)

For each $i \geq 0$, the sequence of S_n–representations $\{H^i(P_n; \mathbb{Q})\}$ is representation stable, and in fact stabilizes once $n \geq 4i$.
Theorem (Church–Farb)

For each $i \geq 0$, the sequence of S_n–representations $\{H^i(P_n; \mathbb{Q})\}$ is representation stable, and in fact stabilizes once $n \geq 4i$.

Remark: Other approaches by Putman, Wiltshire-Gordon, Church-Ellenberg-Farb.
Theorem (Church–Farb)

For each $i \geq 0$, the sequence of S_n–representations $\{H^i(P_n; \mathbb{Q})\}$ is representation stable, and in fact stabilizes once $n \geq 4i$.

Remark: Other approaches by Putman, Wiltshire-Gordon, Church-Ellenberg-Farb.

Remark: Easiest mechanism for stability fails.
H^2 of the pure braid group P_n

\[
H^2(P_3; \mathbb{Q}) = V(1)
\]

\[
H^2(P_4; \mathbb{Q}) = \begin{bmatrix} V(1) \end{bmatrix} \oplus V(1, 1) \oplus V(2)
\]

\[
H^2(P_5; \mathbb{Q}) = \begin{bmatrix} V(1) \end{bmatrix} \oplus V(1, 1) \oplus V(2) \oplus V(2, 1)
\]

\[
H^2(P_6; \mathbb{Q}) = V(1) \oplus V(1, 1) \oplus V(2) \oplus V(2, 1) \oplus V(3)
\]

\[
H^2(P_7; \mathbb{Q}) = V(1) \oplus V(1, 1) \oplus V(2) \oplus V(2, 1) \oplus V(3) \oplus V(3, 1)
\]
H^2 of the pure braid group P_n

$$H^2(P_3; \mathbb{Q}) = V(1)$$

$$H^2(P_4; \mathbb{Q}) = V(1)^\oplus 2 \oplus V(1, 1) \oplus V(2)$$

$$H^2(P_5; \mathbb{Q}) = V(1)^\oplus 2 \oplus V(1, 1)^\oplus 2 \oplus V(2)^\oplus 2 \oplus V(2, 1)^\oplus 2$$

$$H^2(P_6; \mathbb{Q}) = V(1)^\oplus 2 \oplus V(1, 1)^\oplus 2 \oplus V(2)^\oplus 2 \oplus V(2, 1)^\oplus 2 \oplus V(3)$$

$$H^2(P_7; \mathbb{Q}) = V(1)^\oplus 2 \oplus V(1, 1)^\oplus 2 \oplus V(2)^\oplus 2 \oplus V(2, 1)^\oplus 2 \oplus V(3) \oplus V(3, 1)$$

The truth is more complicated.
\(H^2 \) of the pure braid group \(P_n \)

\[
H^2(P_3; \mathbb{Q}) = V(1)
\]

\[
H^2(P_4; \mathbb{Q}) = V(1)^{\oplus 2} \oplus V(1, 1) \oplus V(2)
\]

\[
H^2(P_5; \mathbb{Q}) = \begin{bmatrix} V(1) \end{bmatrix}^{\oplus 2} \oplus V(1, 1)^{\oplus 2} \oplus V(2)^{\oplus 2} \oplus V(2, 1)^{\oplus 2}
\]

\[
H^2(P_6; \mathbb{Q}) = \begin{bmatrix} V(1) \end{bmatrix}^{\oplus 2} \oplus \begin{bmatrix} V(1, 1) \end{bmatrix}^{\oplus 2} \oplus \begin{bmatrix} V(2) \end{bmatrix}^{\oplus 2} \oplus V(2, 1)^{\oplus 2} \oplus V(3)
\]

\[
H^2(P_7; \mathbb{Q}) = V(1)^{\oplus 2} \oplus V(1, 1)^{\oplus 2} \oplus V(2)^{\oplus 2} \oplus V(2, 1)^{\oplus 2} \oplus V(3) \oplus V(3, 1)
\]

The truth is more complicated.
H^2 of the pure braid group P_n

\[
H^2(P_3; \mathbb{Q}) = V(1)
\]

\[
H^2(P_4; \mathbb{Q}) = V(1)^{\oplus 2} \oplus V(1, 1) \oplus V(2)
\]

\[
H^2(P_5; \mathbb{Q}) = V(1)^{\oplus 2} \oplus V(1, 1)^{\oplus 2} \oplus V(2)^{\oplus 2} \oplus V(2, 1)^{\oplus 2}
\]

\[
H^2(P_6; \mathbb{Q}) = \begin{array}{c}
V(1) \\
\downarrow \\
V(1) \\
\downarrow \\
V(1, 1) \\
\downarrow \\
V(2) \\
\downarrow \\
V(2, 1)
\end{array}^{\oplus 2} \oplus V(1, 1)^{\oplus 2} \oplus V(2)^{\oplus 2} \oplus V(2, 1)^{\oplus 2} \oplus V(3)
\]

\[
H^2(P_7; \mathbb{Q}) = \begin{array}{c}
V(1) \\
\downarrow \\
V(1, 1) \\
\downarrow \\
V(2)
\end{array}^{\oplus 2} \oplus V(1, 1)^{\oplus 2} \oplus V(2)^{\oplus 2} \oplus V(2, 1)^{\oplus 2} \oplus V(3) \oplus V(3, 1)
\]

The truth is more complicated.
H^4 of the pure braid group P_n
H^4 of the pure braid group P_n

$$H^4(P_n) = V(1)^{\oplus 2} \oplus V(2)^{\oplus 6} \oplus V(1, 1)^{\oplus 6} \oplus V(3)^{\oplus 8} \oplus V(1, 1, 1)^{\oplus 9} \oplus V(2, 1)^{\oplus 16} \oplus V(4)^{\oplus 6}$$
$$\oplus V(1, 1, 1, 1)^{\oplus 5} \oplus V(5)^{\oplus 2} \oplus V(2, 2)^{\oplus 12} \oplus V(3, 1)^{\oplus 19} \oplus V(2, 1, 1)^{\oplus 17} \oplus V(4, 1)^{\oplus 12} \oplus V(2, 1, 1, 1)^{\oplus 7} \oplus V(3, 2)^{\oplus 14} \oplus V(2, 2, 1)^{\oplus 10} \oplus V(5, 1)^{\oplus 3} \oplus V(3, 3)^{\oplus 4} \oplus V(3, 1, 1)^{\oplus 16} \oplus V(2, 2, 2)^{\oplus 2} \oplus V(4, 2)^{\oplus 7} \oplus V(4, 1, 1)^{\oplus 8} \oplus V(5, 2) \oplus V(2, 2, 1, 1)^{\oplus 2} \oplus V(3, 1, 1, 1)^{\oplus 5} \oplus V(5, 1, 1)^{\oplus 2} \oplus V(4, 3)^{\oplus 2} \oplus V(3, 2, 1)^{\oplus 9} \oplus V(4, 1, 1, 1)^{\oplus 2} \oplus V(3, 3, 1)^{\oplus 2} \oplus V(3, 2, 2) \oplus V(4, 2, 1)^{\oplus 3} \oplus V(3, 2, 1, 1) \oplus V(5, 1, 1, 1) \oplus V(4, 3, 1)$
(In)stability in group homology

The pure braid group P_n is just the simplest case of a broader framework.
The pure braid group P_n is just the simplest case of a broader framework.

<table>
<thead>
<tr>
<th>Group</th>
<th>Subgroup K</th>
<th>Quotient</th>
<th>$H_1(K)$ for big n</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_n</td>
<td>P_n</td>
<td>S_n</td>
<td>Sym$^2 V/V$</td>
</tr>
</tbody>
</table>
(In)stability in group homology

The pure braid group \(P_n \) is just the simplest case of a broader framework.

<table>
<thead>
<tr>
<th>Group</th>
<th>Subgroup (K)</th>
<th>Quotient</th>
<th>(H_1(K)) for big (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(B_n)</td>
<td>(P_n)</td>
<td>(S_n)</td>
<td>(\text{Sym}^2 V/V)</td>
</tr>
<tr>
<td>mapping class group</td>
<td>Torelli group</td>
<td>(\text{Sp}_{2g}(\mathbb{Z}))</td>
<td>(\bigwedge^3 V/V)</td>
</tr>
</tbody>
</table>
(In)stability in group homology

The pure braid group P_n is just the simplest case of a broader framework.

<table>
<thead>
<tr>
<th>Group</th>
<th>Subgroup K</th>
<th>Quotient</th>
<th>$H_1(K)$ for big n</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_n</td>
<td>P_n</td>
<td>S_n</td>
<td>$\text{Sym}^2 V/V$</td>
</tr>
<tr>
<td>mapping class group</td>
<td>Torelli group</td>
<td>$\text{Sp}_{2g}(\mathbb{Z})$</td>
<td>$\bigwedge^3 V/V$</td>
</tr>
<tr>
<td>$\text{Aut}(F_n)$</td>
<td>$\text{IAut}(F_n)$</td>
<td>$\text{GL}_n(\mathbb{Z})$</td>
<td>$V^* \otimes \bigwedge^2 V$</td>
</tr>
</tbody>
</table>
The pure braid group P_n is just the simplest case of a broader framework.

<table>
<thead>
<tr>
<th>Group</th>
<th>Subgroup K</th>
<th>Quotient</th>
<th>$H_1(K)$ for big n</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_n</td>
<td>P_n</td>
<td>S_n</td>
<td>$\text{Sym}^2 V/V$</td>
</tr>
<tr>
<td>mapping class group</td>
<td>Torelli group</td>
<td>$\text{Sp}_{2g}(\mathbb{Z})$</td>
<td>$\wedge^3 V/V$</td>
</tr>
<tr>
<td>$\text{Aut}(F_n)$</td>
<td>$\text{IAut}(F_n)$</td>
<td>$\text{GL}_n(\mathbb{Z})$</td>
<td>$V^* \otimes \wedge^2 V$</td>
</tr>
<tr>
<td>$\text{SL}_n(\mathbb{Z})$</td>
<td>level p cong subgrp.</td>
<td>$\text{SL}_n(\mathbb{Z}/p\mathbb{Z})$</td>
<td>$\mathfrak{sl}_n(\mathbb{F}_p)$</td>
</tr>
</tbody>
</table>
(In)stability in group homology

The pure braid group P_n is just the simplest case of a broader framework.

<table>
<thead>
<tr>
<th>Group</th>
<th>Subgroup K</th>
<th>Quotient</th>
<th>$H_1(K)$ for big n</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_n</td>
<td>P_n</td>
<td>S_n</td>
<td>$\text{Sym}^2 V/V$</td>
</tr>
<tr>
<td>mapping class group</td>
<td>Torelli group</td>
<td>$\text{Sp}_{2g}(\mathbb{Z})$</td>
<td>$\wedge^3 V/V$</td>
</tr>
<tr>
<td>$\text{Aut}(F_n)$</td>
<td>$\text{IAut}(F_n)$</td>
<td>$\text{GL}_n(\mathbb{Z})$</td>
<td>$V^* \otimes \wedge^2 V$</td>
</tr>
<tr>
<td>$\text{SL}_n(\mathbb{Z})$</td>
<td>level p cong subgrp.</td>
<td>$\text{SL}_n(\mathbb{Z}/p\mathbb{Z})$</td>
<td>$\mathfrak{sl}_n(\mathbb{F}_p)$</td>
</tr>
</tbody>
</table>

homological stability holds
(In)stability in group homology

The pure braid group P_n is just the simplest case of a broader framework.

<table>
<thead>
<tr>
<th>Group</th>
<th>Subgroup K</th>
<th>Quotient</th>
<th>$H_1(K)$ for big n</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_n</td>
<td>P_n</td>
<td>S_n</td>
<td>$\text{Sym}^2 V/V$</td>
</tr>
<tr>
<td>mapping class group</td>
<td>Torelli group</td>
<td>$\text{Sp}_{2g}(\mathbb{Z})$</td>
<td>$\wedge^3 V/V$</td>
</tr>
<tr>
<td>$\text{Aut}(F_n)$</td>
<td>$\text{IAut}(F_n)$</td>
<td>$\text{GL}_n(\mathbb{Z})$</td>
<td>$V^* \otimes \wedge^2 V$</td>
</tr>
<tr>
<td>$\text{SL}_n(\mathbb{Z})$</td>
<td>level p congruence subgroup</td>
<td>$\text{SL}_n(\mathbb{Z}/p\mathbb{Z})$</td>
<td>$\frak{sl}_n(\mathbb{F}_p)$</td>
</tr>
</tbody>
</table>

Homological stability holds as $n \to \infty$

Dim goes to ∞ as $n \to \infty$
(In)stability in group homology

The pure braid group P_n is just the simplest case of a broader framework.

<table>
<thead>
<tr>
<th>Group</th>
<th>Subgroup K</th>
<th>Quotient</th>
<th>$H_1(K)$ for big n</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_n</td>
<td>P_n</td>
<td>S_n</td>
<td>$\text{Sym}^2 V/V$</td>
</tr>
<tr>
<td>mapping class group</td>
<td>Torelli group</td>
<td>$\text{Sp}_{2g}(\mathbb{Z})$</td>
<td>$\wedge^3 V/V$</td>
</tr>
<tr>
<td>$\text{Aut}(F_n)$</td>
<td>$\text{IAut}(F_n)$</td>
<td>$\text{GL}_n(\mathbb{Z})$</td>
<td>$V^* \otimes \wedge^2 V$</td>
</tr>
<tr>
<td>$\text{SL}_n(\mathbb{Z})$</td>
<td>level p cong subgrp.</td>
<td>$\text{SL}_n(\mathbb{Z}/p\mathbb{Z})$</td>
<td>$\mathfrak{s}l_n(\mathbb{F}_p)$</td>
</tr>
</tbody>
</table>

homological stability holds

homological stability **fails**

dim goes to ∞ as $n \to \infty$
The pure braid group P_n is just the simplest case of a broader framework.

<table>
<thead>
<tr>
<th>Group</th>
<th>Subgroup K</th>
<th>Quotient</th>
<th>$H_1(K)$ for big n</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_n</td>
<td>P_n</td>
<td>S_n</td>
<td>$\text{Sym}^2 V/V$</td>
</tr>
<tr>
<td>mapping class group</td>
<td>Torelli group</td>
<td>$\text{Sp}_{2g}(\mathbb{Z})$</td>
<td>$\wedge^3 V/V$</td>
</tr>
<tr>
<td>$\text{Aut}(F_n)$</td>
<td>$\text{IAut}(F_n)$</td>
<td>$\text{GL}_n(\mathbb{Z})$</td>
<td>$V^* \otimes \wedge^2 V$</td>
</tr>
<tr>
<td>$\text{SL}_n(\mathbb{Z})$</td>
<td>level p cong subgrp.</td>
<td>$\text{SL}_n(\mathbb{Z}/p\mathbb{Z})$</td>
<td>$\mathfrak{s}l_n(\mathbb{F}_p)$</td>
</tr>
</tbody>
</table>

homological stability holds
homological stability **fails**
group of Lie type
dim goes to ∞ as $n \to \infty$
Application 1:
Configuration spaces on manifolds

For any space M:

$$\text{PConf}_n(M) := \{(z_1, \ldots, z_n) \in M^n | z_i \neq z_j\}.$$
Configuration spaces on manifolds

For any space M:

$$\text{PConf}_n(M) := \{(z_1, \ldots, z_n) \in M^n | z_i \neq z_j \}.$$

S_n acts on $\text{PConf}_n(M)$:

$$\text{Conf}_n(M) := \text{PConf}_n(M)/S_n.$$
Configuration spaces on manifolds

For any space M:

$$\text{PConf}_n(M) := \{(z_1, \ldots, z_n) \in M^n | z_i \neq z_j\}.$$

S_n acts on $\text{PConf}_n(M)$:

$$\text{Conf}_n(M) := \text{PConf}_n(M)/S_n.$$

Example

$\text{PConf}_n(\mathbb{C}) = \text{space } X_n$ associated to pure braid group P_n

$\text{Conf}_n(\mathbb{C}) = \text{space } Y_n$ associated to braid group B_n
Theorem (Church)

For any manifold M and any $i \geq 0$, the cohomology $H^i(PConf_n(M); \mathbb{Q})$ is representation stable.
Theorem (Church)

For any manifold M and any $i \geq 0$, the cohomology $H^i(\text{PConf}_n(M); \mathbb{Q})$ is representation stable.

Corollary: Homological stability (over \mathbb{Q}) for $\text{Conf}_n(M)$!
Theorem (Church)

For any manifold M and any $i \geq 0$, the cohomology $H^i(\text{PConf}_n(M); \mathbb{Q})$ is representation stable.

Corollary: Homological stability (over \mathbb{Q}) for $\text{Conf}_n(M)$.

Proof: Apply theorem to trivial representation $V(0)$. □
Theorem (Church)

For any manifold M and any $i \geq 0$, the cohomology $H^i(PConf_n(M); \mathbb{Q})$ is
representation stable.

Corollary: Homological stability (over \mathbb{Q}) for $Conf_n(M)$!

Proof: Apply theorem to trivial representation $V(0)$. □

- Previously known only for open manifolds M (McDuff-Segal).
Theorem (Church)

For any manifold M and any $i \geq 0$, the cohomology $H^i(PConf_n(M); \mathbb{Q})$ is representation stable.

Corollary: Homological stability (over \mathbb{Q}) for $Conf_n(M)$!

Proof: Apply theorem to trivial representation $V(0)$. □

- Previously known only for open manifolds M (McDuff-Segal).
- False over \mathbb{Z} for closed M.
Application 2:
Puncture stability

Let $\mathcal{M}_{g,n}$ = moduli space of genus g Riemann surfaces with n marked points.
Puncture stability

Let $\mathcal{M}_{g,n}$ = moduli space of genus g Riemann surfaces with n marked points.

Theorem (Jimenez Rolland)

Let $g \geq 2$, $i \geq 1$. The sequence $\{H^i(\mathcal{M}_{g,n}; \mathbb{Q})\}$ is representation stable.
Let $\mathcal{M}_{g,n} =$ moduli space of genus g Riemann surfaces with n marked points.

Theorem (Jimenez Rolland)

Let $g \geq 2$, $i \geq 1$. The sequence $\{H^i(\mathcal{M}_{g,n}; \mathbb{Q})\}$ is representation stable.

- Apply to trivial rep. \implies recent theorem of Hatcher-Wahl (over \mathbb{Q}).
Application 3:
Statistics for polynomials in $\mathbb{F}_q[T]$

Joint with Tom Church and Jordan Ellenberg.
Statistics for polynomials in $\mathbb{F}_q[T]$

Joint with Tom Church and Jordan Ellenberg.

$\text{Conf}_n(\mathbb{C}) = \text{space of sets of } n \text{ distinct points in } \mathbb{C}$
Statistics for polynomials in $\mathbb{F}_q[T]$

Joint with Tom Church and Jordan Ellenberg.

$\text{Conf}_n(\mathbb{C}) = \text{space of sets of } n \text{ distinct points in } \mathbb{C}$

$Z_n(\mathbb{C}) = \text{space of squarefree degree } n \text{ monic polynomials}$
Statistics for polynomials in $\mathbb{F}_q[T]$

Joint with Tom Church and Jordan Ellenberg.

$$\text{Conf}_n(\mathbb{C}) = \text{space of sets of } n \text{ distinct points in } \mathbb{C}$$

$$Z_n(\mathbb{C}) = \text{space of squarefree degree } n \text{ monic polynomials}$$

$$\text{Conf}_n(\mathbb{C}) \iff Z_n(\mathbb{C})$$
Statistics for polynomials in $\mathbb{F}_q[T]$

Joint with Tom Church and Jordan Ellenberg.

$\text{Conf}_n(\mathbb{C})$ = space of sets of n distinct points in \mathbb{C}
$Z_n(\mathbb{C})$ = space of squarefree degree n monic polynomials

$\text{Conf}_n(\mathbb{C}) \leftrightarrow Z_n(\mathbb{C})$

$\{\lambda_1, \ldots, \lambda_n\} \leftrightarrow (z - \lambda_1) \cdots (z - \lambda_n)$
Statistics for polynomials in $\mathbb{F}_q[T]$
Observation: there is a polynomial that tells us when $z^n + \cdots + a_1z + a_0$ has repeated roots.
Statistics for polynomials in $\mathbb{F}_q[T]$

Observation: there is a *polynomial* that tells us when $z^n + \cdots + a_1z + a_0$ has repeated roots.

$$Z_2(\mathbb{C}) = \left\{ z^2 + bz + c \quad \middle| \quad b^2 - 4c \neq 0 \right\}$$
Observation: there is a polynomial that tells us when $z^n + \cdots + a_1z + a_0$ has repeated roots.

$Z_2(\mathbb{C}) = \left\{ z^2 + bz + c \mid b^2 - 4c \neq 0 \right\}$

$Z_3(\mathbb{C}) = \left\{ z^3 + bz^2 + cz + d \mid b^2c^2 - 4c^3 - 4b^3d - 27d^2 + 18bcd \neq 0 \right\}$
Statistics for polynomials in $\mathbb{F}_q[T]$

Observation: there is a **polynomial** that tells us when $z^n + \cdots + a_1 z + a_0$ has repeated roots.

$$Z_2(\mathbb{C}) = \left\{ z^2 + b z + c \bigg| b^2 - 4c \neq 0 \right\}$$

$$Z_3(\mathbb{C}) = \left\{ z^3 + b z^2 + c z + d \bigg| b^2 c^2 - 4c^3 - 4b^3 d - 27d^2 + 18bcd \neq 0 \right\}$$

$Z_n(\mathbb{F}_q) =$ space of squarefree degree n polynomials in $\mathbb{F}_q[T]$
Statistics for polynomials in $\mathbb{F}_q[T]$

Observation: there is a polynomial that tells us when $z^n + \cdots + a_1 z + a_0$ has repeated roots.

$$Z_2(\mathbb{C}) = \left\{ z^2 + bz + c \mid b^2 - 4c
eq 0 \right\}$$

$$Z_3(\mathbb{C}) = \left\{ z^3 + bz^2 + cz + d \mid b^2 c^2 - 4c^3 - 4b^3 d - 27d^2 + 18bcd
eq 0 \right\}$$

$Z_n(\mathbb{F}_q) =$ space of squarefree degree n polynomials in $\mathbb{F}_q[T]$

Idea: Compute statistics about $Z_n(\mathbb{F}_q)$ from info on \[V(\lambda) < H^*(Z_n(\mathbb{C})) = H^*(PConf_n(\mathbb{C})). \]
Statistics for polynomials in $\mathbb{F}_q[T]$

$\#$ of squarefree polys in $\mathbb{F}_q[T] = |\text{Conf}_n(\mathbb{A}^1(\mathbb{F}_q))|$
Statistics for polynomials in $\mathbb{F}_q[T]$

\[
\text{\# of squarefree polys in } \mathbb{F}_q[T] = \left| \text{Conf}_n(\mathbb{A}^1(\mathbb{F}_q)) \right|
\]

\[
= \text{\# of fixed pts. of Frobenius on } \text{Conf}_n(\mathbb{A}^1(\overline{\mathbb{F}}_q))
\]
Statistics for polynomials in $\mathbb{F}_q[T]$

\[
\# \text{ of squarefree polys in } \mathbb{F}_q[T] = \left| \text{Conf}_n(\mathbb{A}^1(\mathbb{F}_q)) \right|
\]

\[= \# \text{ of fixed pts. of Frobenius on Conf}_n(\mathbb{A}^1(\mathbb{F}_q))
\]

[Lefschetz fixed pt. formula] \[= \text{alt. sum of traces of action on } H^i\]
Statistics for polynomials in $\mathbb{F}_q[T]$

$\#$ of squarefree polys in $\mathbb{F}_q[T] = |\text{Conf}_n(\mathbb{A}^1(\mathbb{F}_q))|$

$= \#$ of fixed pts. of Frobenius on $\text{Conf}_n(\mathbb{A}^1(\overline{\mathbb{F}}_q))$

[Grothendieck-Lefschetz] $= \sum_{i \geq 0} (-1)^i \text{tr} (\text{Frob}_*|H^i(\text{Conf}_n(\mathbb{A}^1)))$
Statistics for polynomials in $\mathbb{F}_q[T]$

of squarefree polys in $\mathbb{F}_q[T] = |\text{Conf}_n(\mathbb{A}^1(\mathbb{F}_q))|$

= # of fixed pts. of Frobenius on $\text{Conf}_n(\mathbb{A}^1(\overline{\mathbb{F}}_q))$

[Grothendieck-Lefschetz] $= \sum_{i \geq 0} (-1)^i \text{tr} (\text{Frob}_*|H^i(\text{Conf}_n(\mathbb{A}^1)))$

$[H^i(B_n) = 0 \text{ for } i \geq 2]$ $= \text{tr} (\text{Frob}_*|H^0(\text{Conf}_n(\mathbb{A}^1)))$

$- \text{tr} (\text{Frob}_*|H^1(\text{Conf}_n(\mathbb{A}^1)))$
Statistics for polynomials in $\mathbb{F}_q[T]$

of squarefree polys in $\mathbb{F}_q[T] = |\text{Conf}_n(\mathbb{A}^1(\mathbb{F}_q))|$

$= \# \text{ of fixed pts. of Frobenius on } \text{Conf}_n(\mathbb{A}^1(\mathbb{F}_q))$

[Grothendieck-Lefschetz] $= \sum_{i \geq 0} (-1)^i \text{tr} (\text{Frob}_*|H^i(\text{Conf}_n(\mathbb{A}^1)))$

$[H^i(B_n) = 0 \text{ for } i \geq 2] = \text{tr} (\text{Frob}_*|H^0(\text{Conf}_n(\mathbb{A}^1)))$

$- \text{tr} (\text{Frob}_*|H^1(\text{Conf}_n(\mathbb{A}^1)))$

$[H^0(B_n) = H^1(B_n) = \mathbb{Q}] = q^n - q^{n-1}$
Statistics for polynomials in $\mathbb{F}_q[T]$

\[
\text{# of squarefree polys in } \mathbb{F}_q[T] = | \text{Conf}_n(\mathbb{A}^1(\mathbb{F}_q)) | \\
= \text{# of fixed pts. of Frobenius on } \text{Conf}_n(\mathbb{A}^1(\overline{\mathbb{F}}_q))
\]

[Grothendieck-Lefschetz] \[= \sum_{i \geq 0} (-1)^i \text{tr} (\text{Frob}_* \mid H^i(\text{Conf}_n(\mathbb{A}^1)))
\]

$[H^i(B_n) = 0 \text{ for } i \geq 2] = \text{tr} (\text{Frob}_* \mid H^0(\text{Conf}_n(\mathbb{A}^1)))$

$- \text{tr} (\text{Frob}_* \mid H^1(\text{Conf}_n(\mathbb{A}^1)))$

$[H^0(B_n) = H^1(B_n) = \mathbb{Q}] = q^n - q^{n-1}$

Method: Compute other statistics using *twisted* cohomology of $\text{Conf}_n(\mathbb{A}^1(\mathbb{C})) = \text{Conf}_n(\mathbb{C})$.
<p>| Irred. S_n-representation $V(\lambda)$ | Counting theorem in $\mathbb{F}_q[T]$ |</p>
<table>
<thead>
<tr>
<th>Irred. S_n-representation $V(\lambda)$</th>
<th>Counting theorem in $\mathbb{F}_q[T]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trivial representation $V(0)$</td>
<td># of degree n squarefree polynomials $= q^n - q^{n-1}$</td>
</tr>
<tr>
<td>Irred. S_n-representation $V(\lambda)$</td>
<td>Counting theorem in $\mathbb{F}_q[T]$</td>
</tr>
<tr>
<td>---</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>Trivial representation $V(0)$</td>
<td>$#$ of degree n squarefree polynomials $= q^n - q^{n-1}$</td>
</tr>
<tr>
<td>Standard representation $V(1)$</td>
<td>expected $#$ of linear factors $= 1 - \frac{1}{q} + \frac{1}{q^2} - \frac{1}{q^3} + \cdots \pm \frac{1}{q^{n-2}}$</td>
</tr>
</tbody>
</table>
Statistics for polynomials in $\mathbb{F}_q[T]$

<table>
<thead>
<tr>
<th>Irred. S_n-representation $V(\lambda)$</th>
<th>Counting theorem in $\mathbb{F}_q[T]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trivial representation $V(0)$</td>
<td># of degree n squarefree polynomials $= q^n - q^{n-1}$</td>
</tr>
<tr>
<td>Standard representation $V(1)$</td>
<td>expected # of linear factors $= 1 - \frac{1}{q} + \frac{1}{q^2} - \frac{1}{q^3} + \cdots \pm \frac{1}{q^{n-2}}$</td>
</tr>
<tr>
<td>Sign representation (never occurs)</td>
<td>the discriminant of a random polynomial is equidistributed in \mathbb{F}_q^\times between residues and nonresidues</td>
</tr>
</tbody>
</table>
Statistics for polynomials in $\mathbb{F}_q[T]$

<table>
<thead>
<tr>
<th>Irred. S_n-representation $V(\lambda)$</th>
<th>Counting theorem in $\mathbb{F}_q[T]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trivial representation $V(0)$</td>
<td>$#$ of degree n squarefree polynomials $= q^n - q^{n-1}$</td>
</tr>
<tr>
<td>Standard representation $V(1)$</td>
<td>expected $#$ of linear factors $= 1 - \frac{1}{q} + \frac{1}{q^2} - \frac{1}{q^3} + \cdots \pm \frac{1}{q^{n-2}}$</td>
</tr>
<tr>
<td>Sign representation (never occurs)</td>
<td>the discriminant of a random polynomial is equidistributed in \mathbb{F}_q^\times between residues and nonresidues</td>
</tr>
<tr>
<td>Certain virtual representation</td>
<td>Prime Number Theorem for $\mathbb{F}q[T]$: $#$ of irreducible polynomials $= \sum{d</td>
</tr>
</tbody>
</table>
Application 4:
Statistics for tori in $\text{GL}_n(F_q)$

Irred. S_n-representation $V(\lambda)$ Counting theorem for tori in $\text{GL}_n(F_q)$
Statistics for tori in $\text{GL}_n(\mathbb{F}_q)$

<table>
<thead>
<tr>
<th>Irred. S_n-representation $V(\lambda)$</th>
<th>Counting theorem for tori in $\text{GL}_n(\mathbb{F}_q)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trivial representation $V(0)$</td>
<td>$#$ of maximal tori in $\text{GL}_n \mathbb{F}_q$ (both split and non-split) $= q^{n^2-n}$</td>
</tr>
</tbody>
</table>
Statistics for tori in $GL_n(\mathbb{F}_q)$

<table>
<thead>
<tr>
<th>Irred. S_n-representation $V(\lambda)$</th>
<th>Counting theorem for tori in $GL_n(\mathbb{F}_q)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trivial representation $V(0)$</td>
<td>$#$ of maximal tori in $GL_n \mathbb{F}_q$ (both split and non-split) $= q^{n^2-n}$</td>
</tr>
<tr>
<td>Standard representation $V(1)$</td>
<td>Expected $#$ of eigenvectors defined over \mathbb{F}_q</td>
</tr>
<tr>
<td></td>
<td>$= 1 + \frac{1}{q} + \frac{1}{q^2} + \cdots + \frac{1}{q^{n-1}}$</td>
</tr>
</tbody>
</table>
Statistics for tori in $\text{GL}_n(\mathbb{F}_q)$

<table>
<thead>
<tr>
<th>Irred. S_n-representation $V(\lambda)$</th>
<th>Counting theorem for tori in $\text{GL}_n(\mathbb{F}_q)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trivial representation $V(0)$</td>
<td># of maximal tori in $\text{GL}_n \mathbb{F}_q$ (both split and non-split) = q^{n^2-n}</td>
</tr>
<tr>
<td>Standard representation $V(1)$</td>
<td>Expected # of eigenvectors defined over \mathbb{F}_q</td>
</tr>
<tr>
<td></td>
<td>$= 1 + \frac{1}{q} + \frac{1}{q^2} + \cdots + \frac{1}{q^{n-1}}$</td>
</tr>
<tr>
<td>Sign representation (does occur here)</td>
<td>split a random torus into its totally non-split factors:</td>
</tr>
<tr>
<td></td>
<td>the # of factors is more likely to be even than odd,</td>
</tr>
<tr>
<td></td>
<td>with bias $\sqrt{# \text{ of tori}}$</td>
</tr>
</tbody>
</table>

Benson Farb (University of Chicago)
Representation stability
June 7, 2011
20 / 25
Final remarks: the ubiquity of representation stability
Final remarks: the ubiquity of representation stability

Note: representation stability can be defined for representations of $\text{SL}_n \mathbb{Q}$, $\text{GL}_n \mathbb{Q}$, $\text{Sp}_{2n} \mathbb{Q}$, other finite groups of Lie type, etc.
Group homology
Group homology

- String motion group (J. Wilson)
- Conjectures for the Torelli group and $\text{IAut}(F_n)$.
- Congruence subgroups of arithmetic groups, mapping class groups, and $\text{Aut}(F_n)$. [Uses modular representation theory. A new phenomenon arises: stable periodicity.]
Lie algebras and their homology

- Graded components of:
 - Free Lie algebras and free nilpotent Lie algebras
 - Malcev completions of surface groups
 - Malcev completions of pure braid and Torelli groups (conj.).
- Homology of various families of Lie algebras
 (e.g. Heisenberg Lie algebras)
Lie algebras and their homology

• Graded components of:
 Free Lie algebras and free nilpotent Lie algebras
 Malcev completions of surface groups
 Malcev completions of pure braid and Torelli groups (conj.).
• Homology of various families of Lie algebras
 (e.g. Heisenberg Lie algebras)

Theorem: \(\{\mathcal{L}_n\} \) is representation stable

\[\iff \]

\(\{H_i(\mathcal{L}_n)\} \) is representation stable for all \(i \geq 0 \).
More examples of representation stability

Enumerative geometry
- Cohomology of flag varieties.
- Equivariant cohomology of Schubert varieties.

Algebraic combinatorics
- Lefschetz representations associated to rank-selected posets.
- Relates to the $(n+1)^{(n-1)}$ Conjecture (Haiman Theorem)
The Fundamental Theorem

Theorem (Neumann-Neumann, 1946):
The Fundamental Theorem

Theorem (Neumann-Neumann, 1946):