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1. Introduction

07T0 In this chapter we discuss Artin’s axioms for the representability of functors by
algebraic spaces. As references we suggest the papers [Art69], [Art70], [Art74].

This is a chapter of the Stacks Project, version 74af77a7, compiled on Jun 27, 2023.
1
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Some of the notation, conventions, and terminology in this chapter is awkward and
may seem backwards to the more experienced reader. This is intentional. Please
see Quot, Section 2 for an explanation.

Let S be a locally Noetherian base scheme. Let

p : X −→ (Sch/S)fppf

be a category fibred in groupoids. Let x0 be an object of X over a field k of
finite type over S. Throughout this chapter an important role is played by the
predeformation category (see Formal Deformation Theory, Definition 6.2)

FX ,k,x0 −→ {Artinian local S-algebras with residue field k}

associated to x0 over k. We introduce the Rim-Schlessinger condition (RS) for X
and show it guarantees that FX ,k,x0 is a deformation category, i.e., FX ,k,x0 satisies
(RS) itself. We discuss how FX ,k,x0 changes if one replaces k by a finite extension
and we discuss tangent spaces.

Next, we discuss formal objects ξ = (ξn) of X which are inverse systems of objects
lying over the quotients R/mn where R is a Noetherian complete local S-algebra
whose residue field is of finite type over S. This is the same thing as having a formal
object in FX ,k,x0 for some x0 and k. A formal object is called effective when there
is an object of X over R which gives rise to the inverse system. A formal object of
X is called versal if it gives rise to a versal formal object of FX ,k,x0 . Finally, given
a finite type S-scheme U , an object x of X over U , and a closed point u0 ∈ U we
say x is versal at u0 if the induced formal object over the complete local ring O∧

U,u0
is versal.

Having worked through this material we can state Artin’s celebrated theorem: our
X is an algebraic stack if the following are true

(1) OS,s is a G-ring for all s ∈ S,
(2) ∆ : X → X ×X is representable by algebraic spaces,
(3) X is a stack for the étale topology,
(4) X is limit preserving,
(5) X satisfies (RS),
(6) tangent spaces and spaces of infinitesimal automorphisms of the deforma-

tion categories FX ,k,x0 are finite dimensional,
(7) formal objects are effective,
(8) X satisfies openness of versality.

This is Lemma 17.1; see also Proposition 17.2 for a slight improvement. There is
an analogous proposition characterizing which functors F : (Sch/S)opp

fppf → Sets are
algebraic spaces, see Section 16.

Here is a rough outline of the proof of Artin’s theorem. First we show that there
are plenty of versal formal objects using (RS) and the finite dimensionality of tan-
gent and aut spaces, see for example Formal Deformation Theory, Lemma 27.6.
These formal objects are effective by assumption. Effective formal objects can be
“approximated” by objects x over finite type S-schemes U , see Lemma 10.1. This
approximation uses the local rings of S are G-rings and that X is limit preserv-
ing; it is perhaps the most difficult part of the proof relying as it does on general
Néron desingularization to approximate formal solutions of algebraic equations over
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a Noetherian local G-ring by solutions in the henselization. Next openness of ver-
sality implies we may (after shrinking U) assume x is versal at every closed point
of U . Having done all of this we show that U → X is a smooth morphism. Taking
sufficiently many U → X we show that we obtain a “smooth atlas” for X which
shows that X is an algebraic stack.

In checking Artin’s axioms for a given category X fibred in groupoids, the most
difficult step is often to verify openness of versality. For the discussion that follows,
assume that X/S already satisfies the other conditions listed above. In this chapter
we offer two methods that will allow the reader to prove X satisfies openness of
versality:

(1) The first is to assume a stronger Rim-Schlessinger condition, called (RS*)
and to assume a stronger version of formal effectiveness, essentially requir-
ing objects over inverse systems of thickenings to be effective. It turns
out that under these assumptions, openness of versality comes for free, see
Lemma 20.3. Please observe that here we are using in an essential man-
ner that X is defined on that category of all schemes over S, not just the
category of Noetherian schemes!

(2) The second, following Artin, is to require X to come equipped with an
obstruction theory. If said obstruction theory “commutes with products”
in a suitable sense, then X satisfies openness of versality, see Lemma 22.2.

Obstruction theories can be axiomatized in many different ways and indeed many
variants (often adapted to specific moduli stacks) can be found in the literature.
We explain a variant using the derived category (which often arises naturally from
deformation theory computations done in the literature) in Lemma 24.4.

In Section 26 we discuss what needs to be modified to make things work for functors
defined on the category (Noetherian/S)étale of locally Noetherian schemes over S.

In the final section of this chapter as an application of Artin’s axioms we prove
Artin’s theorem on the existence of contractions, see Section 27. The theorem says
roughly that given an algebraic space X ′ separated of finite type over S, a closed
subset T ′ ⊂ |X ′|, and a formal modification

f : X ′
/T ′ −→ X

where X is a Noetherian formal algebraic space over S, there exists a proper mor-
phism f : X ′ → X which “realizes the contraction”. By this we mean that there
exists an identification X = X/T such that f = f/T ′ : X ′

/T ′ → X/T where T = f(T ′)
and moreover f is an isomorphism over X \ T . The proof proceeds by defining a
functor F on the category of locally Noetherian schemes over S and proving Artin’s
axioms for F . Amusingly, in this application of Artin’s axioms, openness of versal-
ity is not the hardest thing to prove, instead the proof that F is limit preserving
requires a lot of work and preliminary results.

2. Conventions

07T1 The conventions we use in this chapter are the same as those in the chapter on
algebraic stacks, see Algebraic Stacks, Section 2. In this chapter the base scheme
S will often be locally Noetherian (although we will always reiterate this condition
when stating results).
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3. Predeformation categories

07T2 Let S be a locally Noetherian base scheme. Let

p : X −→ (Sch/S)fppf

be a category fibred in groupoids. Let k be a field and let Spec(k) → S be a
morphism of finite type (see Morphisms, Lemma 16.1). We will sometimes simply
say that k is a field of finite type over S. Let x0 be an object of X lying over Spec(k).
Given S, X , k, and x0 we will construct a predeformation category, as defined in
Formal Deformation Theory, Definition 6.2. The construction will resemble the
construction of Formal Deformation Theory, Remark 6.4.

First, by Morphisms, Lemma 16.1 we may pick an affine open Spec(Λ) ⊂ S such
that Spec(k) → S factors through Spec(Λ) and the associated ring map Λ → k
is finite. This provides us with the category CΛ, see Formal Deformation Theory,
Definition 3.1. The category CΛ, up to canonical equivalence, does not depend on
the choice of the affine open Spec(Λ) of S. Namely, CΛ is equivalent to the opposite
of the category of factorizations

(3.0.1)07T3 Spec(k)→ Spec(A)→ S

of the structure morphism such that A is an Artinian local ring and such that
Spec(k) → Spec(A) corresponds to a ring map A → k which identifies k with the
residue field of A.

We let F = FX ,k,x0 be the category whose
(1) objects are morphisms x0 → x of X where p(x) = Spec(A) with A an

Artinian local ring and p(x0)→ p(x)→ S a factorization as in (3.0.1), and
(2) morphisms (x0 → x)→ (x0 → x′) are commutative diagrams

x x′oo

x0

`` >>

in X . (Note the reversal of arrows.)
If x0 → x is an object of F then writing p(x) = Spec(A) we obtain an object A of
CΛ. We often say that x0 → x or x lies over A. A morphism of F between objects
x0 → x lying over A and x0 → x′ lying over A′ corresponds to a morphism x′ → x
of X , hence a morphism p(x′ → x) : Spec(A′)→ Spec(A) which in turn corresponds
to a ring map A→ A′. As X is a category over the category of schemes over S we
see that A→ A′ is Λ-algebra homomorphism. Thus we obtain a functor

(3.0.2)07T4 p : F = FX ,k,x0 −→ CΛ.

We will use the notation F(A) to denote the fibre category over an object A of CΛ.
An object of F(A) is simply a morphism x0 → x of X such that x lies over Spec(A)
and x0 → x lies over Spec(k)→ Spec(A).

Lemma 3.1.07T5 The functor p : F → CΛ defined above is a predeformation category.

Proof. We have to show that F is (a) cofibred in groupoids over CΛ and (b)
that F(k) is a category equivalent to a category with a single object and a single
morphism.

https://stacks.math.columbia.edu/tag/07T5
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Proof of (a). The fibre categories of F over CΛ are groupoids as the fibre categories
of X are groupoids. Let A→ A′ be a morphism of CΛ and let x0 → x be an object of
F(A). Because X is fibred in groupoids, we can find a morphism x′ → x lying over
Spec(A′) → Spec(A). Since the composition A → A′ → k is equal the given map
A → k we see (by uniqueness of pullbacks up to isomorphism) that the pullback
via Spec(k)→ Spec(A′) of x′ is x0, i.e., that there exists a morphism x0 → x′ lying
over Spec(k)→ Spec(A′) compatible with x0 → x and x′ → x. This proves that F
has pushforwards. We conclude by (the dual of) Categories, Lemma 35.2.
Proof of (b). If A = k, then Spec(k) = Spec(A) and since X is fibred in groupoids
over (Sch/S)fppf we see that given any object x0 → x in F(k) the morphism x0 → x
is an isomorphism. Hence every object of F(k) is isomorphic to x0 → x0. Clearly
the only self morphism of x0 → x0 in F is the identity. □

Let S be a locally Noetherian base scheme. Let F : X → Y be a 1-morphism
between categories fibred in groupoids over (Sch/S)fppf . Let k is a field of finite
type over S. Let x0 be an object of X lying over Spec(k). Set y0 = F (x0) which is
an object of Y lying over Spec(k). Then F induces a functor
(3.1.1)07WJ F : FX ,k,x0 −→ FY,k,y0

of categories cofibred over CΛ. Namely, to the object x0 → x of FX ,k,x0(A) we
associate the object F (x0)→ F (x) of FY,k,y0(A).

Lemma 3.2.07WK Let S be a locally Noetherian scheme. Let F : X → Y be a 1-
morphism of categories fibred in groupoids over (Sch/S)fppf . Assume either

(1) F is formally smooth on objects (Criteria for Representability, Section 6),
(2) F is representable by algebraic spaces and formally smooth, or
(3) F is representable by algebraic spaces and smooth.

Then for every finite type field k over S and object x0 of X over k the functor
(3.1.1) is smooth in the sense of Formal Deformation Theory, Definition 8.1.

Proof. Case (1) is a matter of unwinding the definitions. Assumption (2) implies
(1) by Criteria for Representability, Lemma 6.3. Assumption (3) implies (2) by
More on Morphisms of Spaces, Lemma 19.6 and the principle of Algebraic Stacks,
Lemma 10.9. □

Lemma 3.3.07WL Let S be a locally Noetherian scheme. Let

W

��

// Z

��
X // Y

be a 2-fibre product of categories fibred in groupoids over (Sch/S)fppf . Let k be a
finite type field over S and w0 an object of W over k. Let x0, z0, y0 be the images
of w0 under the morphisms in the diagram. Then

FW,k,w0

��

// FZ,k,z0

��
FX ,k,x0

// FY,k,y0

is a fibre product of predeformation categories.

https://stacks.math.columbia.edu/tag/07WK
https://stacks.math.columbia.edu/tag/07WL
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Proof. This is a matter of unwinding the definitions. Details omitted. □

4. Pushouts and stacks

07WM In this section we show that algebraic stacks behave well with respect to certain
pushouts. The results in this section hold over any base scheme.

The following lemma is also correct when Y , X ′, X, Y ′ are algebraic spaces, see
(insert future reference here).

Lemma 4.1.07WN Let S be a scheme. Let

X //

��

X ′

��
Y // Y ′

be a pushout in the category of schemes over S where X → X ′ is a thickening and
X → Y is affine, see More on Morphisms, Lemma 14.3. Let Z be an algebraic
stack over S. Then the functor of fibre categories

ZY ′ −→ ZY ×ZX
ZX′

is an equivalence of categories.

Proof. Let y′ be an object of left hand side. The sheaf Isom(y′, y′) on the category
of schemes over Y ′ is representable by an algebraic space I over Y ′, see Algebraic
Stacks, Lemma 10.11. We conclude that the functor of the lemma is fully faithful
as Y ′ is the pushout in the category of algebraic spaces as well as the category of
schemes, see Pushouts of Spaces, Lemma 6.1.

Let (y, x′, f) be an object of the right hand side. Here f : y|X → x′|X is an
isomorphism. To finish the proof we have to construct an object y′ of ZY ′ whose
restrictions to Y and X ′ agree with y and x′ in a manner compatible with f . In
fact, it suffices to construct y′ fppf locally on Y ′, see Stacks, Lemma 4.8. Choose a
representable algebraic stack W and a surjective smooth morphism W → Z. Then

(Sch/Y )fppf ×y,Z W and (Sch/X ′)fppf ×x′,Z W

are algebraic stacks representable by algebraic spaces V and U ′ smooth over Y
and X ′. The isomorphism f induces an isomorphism φ : V ×Y X → U ′ ×X′ X
over X. By Pushouts of Spaces, Lemmas 6.2 and 6.7 we see that the pushout
V ′ = V ⨿V ×Y X U ′ is an algebraic space smooth over Y ′ whose base change to Y
and X ′ recovers V and U ′ in a manner compatible with φ.

LetW be the algebraic space representingW. The projections V →W and U ′ →W
agree as morphisms over V ×Y X ∼= U ′ ×X′ X hence the universal property of the
pushout determines a morphism of algebraic spaces V ′ →W . Choose a scheme Y ′

1
and a surjective étale morphism Y ′

1 → V ′. Set Y1 = Y ×Y ′ Y ′
1 , X ′

1 = X ′ ×Y ′ Y ′
1 ,

X1 = X ×Y ′ Y ′
1 . The composition

(Sch/Y ′
1)→ (Sch/V ′)→ (Sch/W ) =W → Z

corresponds by the 2-Yoneda lemma to an object y′
1 of Z over Y ′

1 whose restriction
to Y1 and X ′

1 agrees with y|Y1 and x′|X′
1

in a manner compatible with f |X1 . Thus
we have constructed our desired object smooth locally over Y ′ and we win. □

https://stacks.math.columbia.edu/tag/07WN
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5. The Rim-Schlessinger condition

06L9 The motivation for the following definition comes from Lemma 4.1 and Formal
Deformation Theory, Definition 16.1 and Lemma 16.4.

Definition 5.1.07WP Let S be a locally Noetherian scheme. Let Z be a category
fibred in groupoids over (Sch/S)fppf . We say Z satisfies condition (RS) if for every
pushout

X //

��

X ′

��
Y // Y ′ = Y ⨿X X ′

in the category of schemes over S where
(1) X, X ′, Y , Y ′ are spectra of local Artinian rings,
(2) X, X ′, Y , Y ′ are of finite type over S, and
(3) X → X ′ (and hence Y → Y ′) is a closed immersion

the functor of fibre categories
ZY ′ −→ ZY ×ZX

ZX′

is an equivalence of categories.

If A is an Artinian local ring with residue field k, then any morphism Spec(A)→ S
is affine and of finite type if and only if the induced morphism Spec(k) → S is of
finite type, see Morphisms, Lemmas 11.13 and 16.2.

Lemma 5.2.07WQ Let X be an algebraic stack over a locally Noetherian base S. Then
X satisfies (RS).

Proof. Immediate from the definitions and Lemma 4.1. □

Lemma 5.3.07WR Let S be a scheme. Let p : X → Y and q : Z → Y be 1-morphisms
of categories fibred in groupoids over (Sch/S)fppf . If X , Y, and Z satisfy (RS),
then so does X ×Y Z.

Proof. This is formal. Let
X //

��

X ′

��
Y // Y ′ = Y ⨿X X ′

be a diagram as in Definition 5.1. We have to show that
(X ×Y Z)Y ′ −→ (X ×Y Z)Y ×(X ×Y Z)X

(X ×Y Z)X′

is an equivalence. Using the definition of the 2-fibre product this becomes
(5.3.1)07WS XY ′ ×YY ′ ZY ′ −→ (XY ×YY

ZY )×(XX ×YX
ZX ) (XX′ ×YX′ ZX′).

We are given that each of the functors
XY ′ → XY ×YY

ZY , YY ′ → XX ×YX
ZX , ZY ′ → XX′ ×YX′ ZX′

are equivalences. An object of the right hand side of (5.3.1) is a system
((xY , zY , ϕY ), (xX′ , zX′ , ϕX′), (α, β)).

https://stacks.math.columbia.edu/tag/07WP
https://stacks.math.columbia.edu/tag/07WQ
https://stacks.math.columbia.edu/tag/07WR
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Then (xY , xY ′ , α) is isomorphic to the image of an object xY ′ in XY ′ and (zY , zY ′ , β)
is isomorphic to the image of an object zY ′ of ZY ′ . The pair of morphisms (ϕY , ϕX′)
corresponds to a morphism ψ between the images of xY ′ and zY ′ in YY ′ . Then
(xY ′ , zY ′ , ψ) is an object of the left hand side of (5.3.1) mapping to the given object
of the right hand side. This proves that (5.3.1) is essentially surjective. We omit
the proof that it is fully faithful. □

6. Deformation categories

07WT We match the notation introduced above with the notation from the chapter “For-
mal Deformation Theory”.

Lemma 6.1.07WU Let S be a locally Noetherian scheme. Let X be a category fibred in
groupoids over (Sch/S)fppf satisfying (RS). For any field k of finite type over S
and any object x0 of X lying over k the predeformation category p : FX ,k,x0 → CΛ
(3.0.2) is a deformation category, see Formal Deformation Theory, Definition 16.8.

Proof. Set F = FX ,k,x0 . Let f1 : A1 → A and f2 : A2 → A be ring maps in CΛ
with f2 surjective. We have to show that the functor

F(A1 ×A A2) −→ F(A1)×F(A) F(A2)

is an equivalence, see Formal Deformation Theory, Lemma 16.4. Set X = Spec(A),
X ′ = Spec(A2), Y = Spec(A1) and Y ′ = Spec(A1×AA2). Note that Y ′ = Y ⨿X X ′

in the category of schemes, see More on Morphisms, Lemma 14.3. We know that
in the diagram of functors of fibre categories

XY ′ //

��

XY ×XX
XX′

��
XSpec(k) XSpec(k)

the top horizontal arrow is an equivalence by Definition 5.1. Since F(B) is the
category of objects of XSpec(B) with an identification with x0 over k we win. □

Remark 6.2.07WV Let S be a locally Noetherian scheme. Let X be fibred in groupoids
over (Sch/S)fppf . Let k be a field of finite type over S and x0 an object of X over
k. Let p : F → CΛ be as in (3.0.2). If F is a deformation category, i.e., if F satisfies
the Rim-Schlessinger condition (RS), then we see that F satisfies Schlessinger’s
conditions (S1) and (S2) by Formal Deformation Theory, Lemma 16.6. Let F be
the functor of isomorphism classes, see Formal Deformation Theory, Remarks 5.2
(10). Then F satisfies (S1) and (S2) as well, see Formal Deformation Theory,
Lemma 10.5. This holds in particular in the situation of Lemma 6.1.

7. Change of field

07WW This section is the analogue of Formal Deformation Theory, Section 29. As pointed
out there, to discuss what happens under change of field we need to write CΛ,k

instead of CΛ. In the following lemma we use the notation Fl/k introduced in
Formal Deformation Theory, Situation 29.1.

Lemma 7.1.07WX Let S be a locally Noetherian scheme. Let X be a category fibred
in groupoids over (Sch/S)fppf . Let k be a field of finite type over S and let l/k be

https://stacks.math.columbia.edu/tag/07WU
https://stacks.math.columbia.edu/tag/07WV
https://stacks.math.columbia.edu/tag/07WX
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a finite extension. Let x0 be an object of F lying over Spec(k). Denote xl,0 the
restriction of x0 to Spec(l). Then there is a canonical functor

(FX ,k,x0)l/k −→ FX ,l,xl,0

of categories cofibred in groupoids over CΛ,l. If X satisfies (RS), then this functor
is an equivalence.

Proof. Consider a factorization
Spec(l)→ Spec(B)→ S

as in (3.0.1). By definition we have
(FX ,k,x0)l/k(B) = FX ,k,x0(B ×l k)

see Formal Deformation Theory, Situation 29.1. Thus an object of this is a mor-
phism x0 → x of X lying over the morphism Spec(k) → Spec(B ×l k). Choosing
pullback functor for X we can associate to x0 → x the morphism xl,0 → xB where
xB is the restriction of x to Spec(B) (via the morphism Spec(B) → Spec(B ×l k)
coming from B×l k ⊂ B). This construction is functorial in B and compatible with
morphisms.
Next, assume X satisfies (RS). Consider the diagrams

l Boo

k

OO

B ×l koo

OO

and

Spec(l)

��

// Spec(B)

��
Spec(k) // Spec(B ×l k)

The diagram on the left is a fibre product of rings. The diagram on the right is a
pushout in the category of schemes, see More on Morphisms, Lemma 14.3. These
schemes are all of finite type over S (see remarks following Definition 5.1). Hence
(RS) kicks in to give an equivalence of fibre categories

XSpec(B×lk) −→ XSpec(k) ×XSpec(l) XSpec(B)

This implies that the functor defined above gives an equivalence of fibre categories.
Hence the functor is an equivalence on categories cofibred in groupoids by (the dual
of) Categories, Lemma 35.9. □

8. Tangent spaces

07WY Let S be a locally Noetherian scheme. Let X be a category fibred in groupoids over
(Sch/S)fppf . Let k be a field of finite type over S and let x0 be an object of X over
k. In Formal Deformation Theory, Section 12 we have defined the tangent space

(8.0.1)07WZ TFX ,k,x0 =
{

isomorphism classes of morphisms
x0 → x over Spec(k)→ Spec(k[ϵ])

}
of the predeformation category FX ,k,x0 . In Formal Deformation Theory, Section 19
we have defined
(8.0.2)07X0 Inf(FX ,k,x0) = Ker

(
AutSpec(k[ϵ])(x′

0)→ AutSpec(k)(x0)
)

where x′
0 is the pullback of x0 to Spec(k[ϵ]). If X satisfies the Rim-Schlessinger

condition (RS), then TFX ,k,x0 comes equipped with a natural k-vector space struc-
ture by Formal Deformation Theory, Lemma 12.2 (assumptions hold by Lemma 6.1
and Remark 6.2). Moreover, Formal Deformation Theory, Lemma 19.9 shows that
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Inf(FX ,k,x0) has a natural k-vector space structure such that addition agrees with
composition of automorphisms. A natural condition is to ask these vector spaces
to have finite dimension.
The following lemma tells us this is true if X is locally of finite type over S (see
Morphisms of Stacks, Section 17).

Lemma 8.1.07X1 Let S be a locally Noetherian scheme. Assume
(1) X is an algebraic stack,
(2) U is a scheme locally of finite type over S, and
(3) (Sch/U)fppf → X is a smooth surjective morphism.

Then, for any F = FX ,k,x0 as in Section 3 the tangent space TF and infinitesimal
automorphism space Inf(F) have finite dimension over k.

Proof. Let us write U = (Sch/U)fppf . By our definition of algebraic stacks the
1-morphism U → X is representable by algebraic spaces. Hence in particular the
2-fibre product

Ux0 = (Sch/ Spec(k))fppf ×X U
is representable by an algebraic space Ux0 over Spec(k). Then Ux0 → Spec(k)
is smooth and surjective (in particular Ux0 is nonempty). By Spaces over Fields,
Lemma 16.2 we can find a finite extension l/k and a point Spec(l) → Ux0 over k.
We have

(FX ,k,x0)l/k = FX ,l,xl,0

by Lemma 7.1 and the fact that X satisfies (RS). Thus we see that
TF ⊗k l ∼= TFX ,l,xl,0 and Inf(F)⊗k l ∼= Inf(FX ,l,xl,0)

by Formal Deformation Theory, Lemmas 29.3 and 29.4 (these are applicable by
Lemmas 5.2 and 6.1 and Remark 6.2). Hence it suffices to prove that TFX ,l,xl,0

and Inf(FX ,l,xl,0) have finite dimension over l. Note that xl,0 comes from a point
u0 of U over l.
We interrupt the flow of the argument to show that the lemma for infinitesimal
automorphisms follows from the lemma for tangent spaces. Namely, letR = U×XU .
Let r0 be the l-valued point (u0, u0, idx0) of R. Combining Lemma 3.3 and Formal
Deformation Theory, Lemma 26.2 we see that

Inf(FX ,l,xl,0) ⊂ TFR,l,r0

Note that R is an algebraic stack, see Algebraic Stacks, Lemma 14.2. Also, R is
representable by an algebraic space R smooth over U (via either projection, see
Algebraic Stacks, Lemma 16.2). Hence, choose an scheme U ′ and a surjective étale
morphism U ′ → R we see that U ′ is smooth over U , hence locally of finite type over
S. As (Sch/U ′)fppf → R is surjective and smooth, we have reduced the question
to the case of tangent spaces.
The functor (3.1.1)

FU,l,u0 −→ FX ,l,xl,0

is smooth by Lemma 3.2. The induced map on tangent spaces
TFU,l,u0 −→ TFX ,l,xl,0

is l-linear (by Formal Deformation Theory, Lemma 12.4) and surjective (as smooth
maps of predeformation categories induce surjective maps on tangent spaces by

https://stacks.math.columbia.edu/tag/07X1
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Formal Deformation Theory, Lemma 8.8). Hence it suffices to prove that the tan-
gent space of the deformation space associated to the representable algebraic stack
U at the point u0 is finite dimensional. Let Spec(R) ⊂ U be an affine open such
that u0 : Spec(l)→ U factors through Spec(R) and such that Spec(R)→ S factors
through Spec(Λ) ⊂ S. Let mR ⊂ R be the kernel of the Λ-algebra map φ0 : R→ l
corresponding to u0. Note that R, being of finite type over the Noetherian ring
Λ, is a Noetherian ring. Hence mR = (f1, . . . , fn) is a finitely generated ideal. We
have

TFU,l,u0 = {φ : R→ l[ϵ] | φ is a Λ-algebra map and φ mod ϵ = φ0}

An element of the right hand side is determined by its values on f1, . . . , fn hence
the dimension is at most n and we win. Some details omitted. □

Lemma 8.2.07X2 Let S be a locally Noetherian scheme. Let p : X → Y and q : Z → Y
be 1-morphisms of categories fibred in groupoids over (Sch/S)fppf . Assume X , Y,
Z satisfy (RS). Let k be a field of finite type over S and let w0 be an object of
W = X ×Y Z over k. Denote x0, y0, z0 the objects of X ,Y,Z you get from w0.
Then there is a 6-term exact sequence

0 // Inf(FW,k,w0) // Inf(FX ,k,x0)⊕ Inf(FZ,k,z0) // Inf(FY,k,y0)

rr
TFW,k,w0

// TFX ,k,x0 ⊕ TFZ,k,z0
// TFY,k,y0

of k-vector spaces.

Proof. By Lemma 5.3 we see that W satisfies (RS) and hence the lemma makes
sense. To see the lemma is true, apply Lemmas 3.3 and 6.1 and Formal Deformation
Theory, Lemma 20.1. □

9. Formal objects

07X3 In this section we transfer some of the notions already defined in the chapter “For-
mal Deformation Theory” to the current setting. In the following we will say “R
is an S-algebra” to indicate that R is a ring endowed with a morphism of schemes
Spec(R)→ S.

Definition 9.1.07X4 Let S be a locally Noetherian scheme. Let p : X → (Sch/S)fppf

be a category fibred in groupoids.
(1) A formal object ξ = (R, ξn, fn) of X consists of a Noetherian complete

local S-algebra R, objects ξn of X lying over Spec(R/mn
R), and morphisms

fn : ξn → ξn+1 of X lying over Spec(R/mn) → Spec(R/mn+1) such that
R/m is a field of finite type over S.

(2) A morphism of formal objects a : ξ = (R, ξn, fn)→ η = (T, ηn, gn) is given
by morphisms an : ξn → ηn such that for every n the diagram

ξn
fn

//

an

��

ξn+1

an+1

��
ηn

gn // ηn+1

https://stacks.math.columbia.edu/tag/07X2
https://stacks.math.columbia.edu/tag/07X4
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is commutative. Applying the functor p we obtain a compatible collection
of morphisms Spec(R/mn

R) → Spec(T/mn
T ) and hence a morphism a0 :

Spec(R)→ Spec(T ) over S. We say that a lies over a0.

Thus we obtain a category of formal objects of X .

Remark 9.2.0CXH Let S be a locally Noetherian scheme. Let p : X → (Sch/S)fppf

be a category fibred in groupoids. Let ξ = (R, ξn, fn) be a formal object. Set
k = R/m and x0 = ξ1. The formal object ξ defines a formal object ξ of the
predeformation category FX ,k,x0 . This follows immediately from Definition 9.1
above, Formal Deformation Theory, Definition 7.1, and our construction of the
predeformation category FX ,k,x0 in Section 3.

If F : X → Y is a 1-morphism of categories fibred in groupoids over (Sch/S)fppf ,
then F induces a functor between categories of formal objects as well.

Lemma 9.3.07X5 Let S be a locally Noetherian scheme. Let F : X → Y be a 1-
morphism of categories fibred in groupoids over (Sch/S)fppf . Let η = (R, ηn, gn) be
a formal object of Y and let ξ1 be an object of X with F (ξ1) ∼= η1. If F is formally
smooth on objects (see Criteria for Representability, Section 6), then there exists a
formal object ξ = (R, ξn, fn) of X such that F (ξ) ∼= η.

Proof. Note that each of the morphisms Spec(R/mn) → Spec(R/mn+1) is a first
order thickening of affine schemes over S. Hence the assumption on F means
that we can successively lift ξ1 to objects ξ2, ξ3, . . . of X endowed with compatible
isomorphisms ηn|Spec(R/mn−1) ∼= ηn−1 and F (ηn) ∼= ξn. □

Let S be a locally Noetherian scheme. Let p : X → (Sch/S)fppf be a category
fibred in groupoids. Suppose that x is an object of X over R, where R is a Noe-
therian complete local S-algebra with residue field of finite type over S. Then
we can consider the system of restrictions ξn = x|Spec(R/mn) endowed with the
natural morphisms ξ1 → ξ2 → . . . coming from transitivity of restriction. Thus
ξ = (R, ξn, ξn → ξn+1) is a formal object of X . This construction is functorial in
the object x. Thus we obtain a functor

(9.3.1)07X6

objects x of X such that p(x) = Spec(R)
where R is Noetherian complete local

with R/m of finite type over S

 −→ {
formal objects of X

}
To be precise the left hand side is the full subcategory of X consisting of objects
as indicated and the right hand side is the category of formal objects of X as in
Definition 9.1.

Definition 9.4.07X7 Let S be a locally Noetherian scheme. Let X be a category
fibred in groupoids over (Sch/S)fppf . A formal object ξ = (R, ξn, fn) of X is called
effective if it is in the essential image of the functor (9.3.1).

If the category fibred in groupoids is an algebraic stack, then every formal object
is effective as follows from the next lemma.

Lemma 9.5.07X8 Let S be a locally Noetherian scheme. Let X be an algebraic stack
over S. The functor (9.3.1) is an equivalence.

https://stacks.math.columbia.edu/tag/0CXH
https://stacks.math.columbia.edu/tag/07X5
https://stacks.math.columbia.edu/tag/07X7
https://stacks.math.columbia.edu/tag/07X8
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Proof. Case I: X is representable (by a scheme). Say X = (Sch/X)fppf for some
scheme X over S. Unwinding the definitions we have to prove the following: Given
a Noetherian complete local S-algebra R with R/m of finite type over S we have

MorS(Spec(R), X) −→ lim MorS(Spec(R/mn), X)

is bijective. This follows from Formal Spaces, Lemma 33.2.

Case II. X is representable by an algebraic space. Say X is representable by X.
Again we have to show that

MorS(Spec(R), X) −→ lim MorS(Spec(R/mn), X)

is bijective for R as above. This is Formal Spaces, Lemma 33.3.

Case III: General case of an algebraic stack. A general remark is that the left and
right hand side of (9.3.1) are categories fibred in groupoids over the category of
affine schemes over S which are spectra of Noetherian complete local rings with
residue field of finite type over S. We will also see in the proof below that they
form stacks for a certain topology on this category.

We first prove fully faithfulness. Let R be a Noetherian complete local S-algebra
with k = R/m of finite type over S. Let x, x′ be objects of X over R. As X is an
algebraic stack Isom(x, x′) is representable by an algebraic space I over Spec(R),
see Algebraic Stacks, Lemma 10.11. Applying Case II to I over Spec(R) implies
immediately that (9.3.1) is fully faithful on fibre categories over Spec(R). Hence
the functor is fully faithful by Categories, Lemma 35.9.

Essential surjectivity. Let ξ = (R, ξn, fn) be a formal object of X . Choose a scheme
U over S and a surjective smooth morphism f : (Sch/U)fppf → X . For every n
consider the fibre product

(Sch/ Spec(R/mn))fppf ×ξn,X ,f (Sch/U)fppf

By assumption this is representable by an algebraic space Vn surjective and smooth
over Spec(R/mn). The morphisms fn : ξn → ξn+1 induce cartesian squares

Vn+1

��

Vn

��

oo

Spec(R/mn+1) Spec(R/mn)oo

of algebraic spaces. By Spaces over Fields, Lemma 16.2 we can find a finite separable
extension k′/k and a point v′

1 : Spec(k′)→ V1 over k. Let R ⊂ R′ be the finite étale
extension whose residue field extension is k′/k (exists and is unique by Algebra,
Lemmas 153.7 and 153.9). By the infinitesimal lifting criterion of smoothness (see
More on Morphisms of Spaces, Lemma 19.6) applied to Vn → Spec(R/mn) for
n = 2, 3, 4, . . . we can successively find morphisms v′

n : Spec(R′/(m′)n) → Vn over
Spec(R/mn) fitting into commutative diagrams

Spec(R′/(m′)n+1)

v′
n+1

��

Spec(R′/(m′)n)

v′
n

��

oo

Vn+1 Vn
oo
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Composing with the projection morphisms Vn → U we obtain a compatible system
of morphisms u′

n : Spec(R′/(m′)n) → U . By Case I the family (u′
n) comes from a

unique morphism u′ : Spec(R′) → U . Denote x′ the object of X over Spec(R′) we
get by applying the 1-morphism f to u′. By construction, there exists a morphism
of formal objects

(9.3.1)(x′) = (R′, x′|Spec(R′/(m′)n), . . .) −→ (R, ξn, fn)
lying over Spec(R′) → Spec(R). Note that R′ ⊗R R′ is a finite product of spectra
of Noetherian complete local rings to which our current discussion applies. Denote
p0, p1 : Spec(R′ ⊗R R′) → Spec(R′) the two projections. By the fully faithfulness
shown above there exists a canonical isomorphism φ : p∗

0x
′ → p∗

1x
′ because we

have such isomorphisms over Spec((R′ ⊗R R′)/mn(R′ ⊗R R′)). We omit the proof
that the isomorphism φ satisfies the cocycle condition (see Stacks, Definition 3.1).
Since {Spec(R′) → Spec(R)} is an fppf covering we conclude that x′ descends to
an object x of X over Spec(R). We omit the proof that xn is the restriction of x
to Spec(R/mn). □

Lemma 9.6.07X9 Let S be a scheme. Let p : X → Y and q : Z → Y be 1-morphisms
of categories fibred in groupoids over (Sch/S)fppf . If the functor (9.3.1) is an
equivalence for X , Y, and Z, then it is an equivalence for X ×Y Z.

Proof. The left and the right hand side of (9.3.1) for X ×Y Z are simply the
2-fibre products of the left and the right hand side of (9.3.1) for X , Z over Y.
Hence the result follows as taking 2-fibre products is compatible with equivalences
of categories, see Categories, Lemma 31.7. □

10. Approximation

07XA A fundamental insight of Michael Artin is that you can approximate objects of a
limit preserving stack. Namely, given an object x of the stack over a Noetherian
complete local ring, you can find an object xA over an algebraic ring which is “close
to” x. Here an algebraic ring means a finite type S-algebra and close means adically
close. In this section we present this in a simple, yet general form.
To formulate the result we need to pull together some definitions from different
places in the Stacks project. First, in Criteria for Representability, Section 5
we introduced limit preserving on objects for 1-morphisms of categories fibred in
groupoids over the category of schemes. In More on Algebra, Definition 50.1 we
defined the notion of a G-ring. Let S be a locally Noetherian scheme. Let A be
an S-algebra. We say that A is of finite type over S or is a finite type S-algebra if
Spec(A)→ S is of finite type. In this case A is a Noetherian ring. Finally, given a
ring A and ideal I we denote GrI(A) =

⊕
In/In+1.

Lemma 10.1.07XB Let S be a locally Noetherian scheme. Let p : X → (Sch/S)fppf

be a category fibred in groupoids. Let x be an object of X lying over Spec(R) where
R is a Noetherian complete local ring with residue field k of finite type over S. Let
s ∈ S be the image of Spec(k)→ S. Assume that (a) OS,s is a G-ring and (b) p is
limit preserving on objects. Then for every integer N ≥ 1 there exist

(1) a finite type S-algebra A,
(2) a maximal ideal mA ⊂ A,
(3) an object xA of X over Spec(A),
(4) an S-isomorphism R/mN

R
∼= A/mN

A ,

https://stacks.math.columbia.edu/tag/07X9
https://stacks.math.columbia.edu/tag/07XB
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(5) an isomorphism x|Spec(R/mN
R

)
∼= xA|Spec(A/mN

A
) compatible with (4), and

(6) an isomorphism GrmR
(R) ∼= GrmA

(A) of graded k-algebras.

Proof. Choose an affine open Spec(Λ) ⊂ S such that k is a finite Λ-algebra, see
Morphisms, Lemma 16.1. We may and do replace S by Spec(Λ).

We may write R as a directed colimit R = colimCj where each Cj is a finite type Λ-
algebra (see Algebra, Lemma 127.2). By assumption (b) the object x is isomorphic
to the restriction of an object over one of the Cj . Hence we may choose a finite
type Λ-algebra C, a Λ-algebra map C → R, and an object xC of X over Spec(C)
such that x = xC |Spec(R). The choice of C is a bookkeeping device and could be
avoided. For later use, let us write C = Λ[y1, . . . , yu]/(f1, . . . , fv) and we denote
ai ∈ R the image of yi under the map C → R. Set mC = C ∩mR.

Choose a Λ-algebra surjection Λ[x1, . . . , xs] → k and denote m′ the kernel. By
the universal property of polynomial rings we may lift this to a Λ-algebra map
Λ[x1, . . . , xs] → R. We add some variables (i.e., we increase s a bit) mapping to
generators of mR. Having done this we see that Λ[x1, . . . , xs]→ R/m2

R is surjective.
Then we see that

(10.1.1)07XC P = Λ[x1, . . . , xs]∧m′ −→ R

is a surjective map of Noetherian complete local rings, see for example Formal
Deformation Theory, Lemma 4.2.

Choose lifts ai ∈ P of ai we found above. Choose generators b1, . . . , br ∈ P for the
kernel of (10.1.1). Choose cji ∈ P such that

fj(a1, . . . , au) =
∑

cjibi

in P which is possible by the choices made so far. Choose generators

k1, . . . , kt ∈ Ker(P⊕r (b1,...,br)−−−−−−→ P )

and write ki = (ki1, . . . , kir) and K = (kij) so that

P⊕t K−→ P⊕r (b1,...,br)−−−−−−→ P → R→ 0

is an exact sequence of P -modules. In particular we have
∑
kijbj = 0. After

possibly increasing N we may assume N − 1 works in the Artin-Rees lemma for
the first two maps of this exact sequence (see More on Algebra, Section 4 for
terminology).

By assumption OS,s = ΛΛ∩m′ is a G-ring. Hence by More on Algebra, Proposition
50.10 the ring Λ[x1, . . . , xs]m′ is aG-ring. Hence by Smoothing Ring Maps, Theorem
13.2 there exist an étale ring map

Λ[x1, . . . , xs]m′ → B,

a maximal ideal mB of B lying over m′, and elements a′
i, b

′
i, c

′
ij , k

′
ij ∈ B′ such that

(1) κ(m′) = κ(mB) which implies that Λ[x1, . . . , xs]m′ ⊂ BmB
⊂ P and P is

identified with the completion of B at mB , see remark preceding Smoothing
Ring Maps, Theorem 13.2,

(2) ai − a′
i, bi − b′

i, cij − c′
ij , kij − k′

ij ∈ (m′)NP , and
(3) fj(a′

1, . . . , a
′
u) =

∑
c′

jib
′
i and

∑
k′

ijb
′
j = 0.



ARTIN’S AXIOMS 16

Set A = B/(b′
1, . . . , b

′
r) and denote mA the image of mB in A. (Note that A is

essentially of finite type over Λ; at the end of the proof we will show how to obtain
an A which is of finite type over Λ.) There is a ring map C → A sending yi 7→ a′

i

because the a′
i satisfy the desired equations modulo (b′

1, . . . , b
′
r). Note that A/mN

A =
R/mN

R as quotients of P = B∧ by property (2) above. Set xA = xC |Spec(A). Since
the maps

C → A→ A/mN
A
∼= R/mN

R and C → R→ R/mN
R

are equal we see that xA and x agree modulo mN
R via the isomorphism A/mN

A =
R/mN

R . At this point we have shown properties (1) – (5) of the statement of the
lemma. To see (6) note that

P⊕t K−→ P⊕r (b1,...,br)−−−−−−→ P and P⊕t K′

−−→ P⊕r (b′
1,...,b′

r)−−−−−−→ P

are two complexes of P -modules which are congruent modulo (m′)N with the first
one being exact. By our choice of N above we see from More on Algebra, Lemma 4.2
that R = P/(b1, . . . , br) and P/(b′

1, . . . , b
′
r) = B∧/(b′

1, . . . , b
′
r) = A∧ have isomorphic

associated graded algebras, which is what we wanted to show.

This last paragraph of the proof serves to clean up the issue that A is essentially
of finite type over S and not yet of finite type. The construction above gives
A = B/(b′

1, . . . , b
′
r) and mA ⊂ A with B étale over Λ[x1, . . . , xs]m′ . Hence A is

of finite type over the Noetherian ring Λ[x1, . . . , xs]m′ . Thus we can write A =
(A0)m′ for some finite type Λ[x1, . . . , xn] algebra A0. Then A = colim(A0)f where
f ∈ Λ[x1, . . . , xn] \ m′, see Algebra, Lemma 9.9. Because p : X → (Sch/S)fppf

is limit preserving on objects, we see that xA comes from some object x(A0)f
over

Spec((A0)f ) for an f as above. After replacing A by (A0)f and xA by x(A0)f
and

mA by (A0)f ∩mA the proof is finished. □

11. Limit preserving

07XK The morphism p : X → (Sch/S)fppf is limit preserving on objects, as defined in
Criteria for Representability, Section 5, if the functor of the definition below is
essentially surjective. However, the example in Examples, Section 53 shows that
this isn’t equivalent to being limit preserving.

Definition 11.1.07XL Let S be a scheme. Let X be a category fibred in groupoids
over (Sch/S)fppf . We say X is limit preserving if for every affine scheme T over S
which is a limit T = limTi of a directed inverse system of affine schemes Ti over S,
we have an equivalence

colimXTi
−→ XT

of fibre categories.

We spell out what this means. First, given objects x, y of X over Ti we should have

MorXT
(x|T , y|T ) = colimi′≥i MorXT

i′
(x|Ti′ , y|Ti′ )

and second every object of XT is isomorphic to the restriction of an object over Ti

for some i. Note that the first condition means that the presheaves IsomX (x, y)
(see Stacks, Definition 2.2) are limit preserving.

Lemma 11.2.07XM Let S be a scheme. Let p : X → Y and q : Z → Y be 1-morphisms
of categories fibred in groupoids over (Sch/S)fppf .

https://stacks.math.columbia.edu/tag/07XL
https://stacks.math.columbia.edu/tag/07XM
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(1) If X → (Sch/S)fppf and Z → (Sch/S)fppf are limit preserving on objects
and Y is limit preserving, then X ×Y Z → (Sch/S)fppf is limit preserving
on objects.

(2) If X , Y, and Z are limit preserving, then so is X ×Y Z.

Proof. This is formal. Proof of (1). Let T = limi∈I Ti be the directed limit of
affine schemes Ti over S. We will prove that the functor colimXTi

→ XT is essen-
tially surjective. Recall that an object of the fibre product over T is a quadruple
(T, x, z, α) where x is an object of X lying over T , z is an object of Z lying over T ,
and α : p(x)→ q(z) is a morphism in the fibre category of Y over T . By assumption
on X and Z we can find an i and objects xi and zi over Ti such that xi|T ∼= T and
zi|T ∼= z. Then α corresponds to an isomorphism p(xi)|T → q(zi)|T which comes
from an isomorphism αi′ : p(xi)|Ti′ → q(zi)|Ti′ by our assumption on Y. After
replacing i by i′, xi by xi|Ti′ , and zi by zi|Ti′ we see that (Ti, xi, zi, αi) is an object
of the fibre product over Ti which restricts to an object isomorphic to (T, x, z, α)
over T as desired.

We omit the arguments showing that colimXTi
→ XT is fully faithful in (2). □

Lemma 11.3.07XN Let S be a scheme. Let X be an algebraic stack over S. Then the
following are equivalent

(1) X is a stack in setoids and X → (Sch/S)fppf is limit preserving on objects,
(2) X is a stack in setoids and limit preserving,
(3) X is representable by an algebraic space locally of finite presentation.

Proof. Under each of the three assumptions X is representable by an algebraic
space X over S, see Algebraic Stacks, Proposition 13.3. It is clear that (1) and
(2) are equivalent as a functor between setoids is an equivalence if and only if it is
surjective on isomorphism classes. Finally, (1) and (3) are equivalent by Limits of
Spaces, Proposition 3.10. □

Lemma 11.4.0CXI Let S be a scheme. Let X be a category fibred in groupoids over
(Sch/S)fppf . Assume ∆ : X → X × X is representable by algebraic spaces and X
is limit preserving. Then ∆ is locally of finite type.

Proof. We apply Criteria for Representability, Lemma 5.6. Let V be an affine
scheme V locally of finite presentation over S and let θ be an object of X × X
over V . Let Fθ be an algebraic space representing X ×∆,X ×X ,θ (Sch/V )fppf and
let fθ : Fθ → V be the canonical morphism (see Algebraic Stacks, Section 9). It
suffices to show that Fθ → V has the corresponding properties. By Lemmas 11.2
and 11.3 we see that Fθ → S is locally of finite presentation. It follows that Fθ → V
is locally of finite type by Morphisms of Spaces, Lemma 23.6. □

12. Versality

07XD In the previous section we explained how to approximate objects over complete
local rings by algebraic objects. But in order to show that a stack X is an algebraic
stack, we need to find smooth 1-morphisms from schemes towards X . Since we are
not going to assume a priori that X has a representable diagonal, we cannot even
speak about smooth morphisms towards X . Instead, borrowing terminology from
deformation theory, we will introduce versal objects.

https://stacks.math.columbia.edu/tag/07XN
https://stacks.math.columbia.edu/tag/0CXI
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Definition 12.1.0CXJ Let S be a locally Noetherian scheme. Let p : X → (Sch/S)fppf

be a category fibred in groupoids. Let ξ = (R, ξn, fn) be a formal object. Set
k = R/m and x0 = ξ1. We will say that ξ is versal if ξ as a formal object of FX ,k,x0

(Remark 9.2) is versal in the sense of Formal Deformation Theory, Definition 8.9.

We briefly spell out what this means. With notation as in the definition, sup-
pose given morphisms ξ1 = x0 → y → z of X lying over closed immersions
Spec(k) → Spec(A) → Spec(B) where A,B are Artinian local rings with residue
field k. Suppose given an n ≥ 1 and a commutative diagram

y

~~
ξn ξ1

OO

oo

lying over

Spec(A)

xx
Spec(R/mn) Spec(k)

OO

oo

Versality means that for any data as above there exists anm ≥ n and a commutative
diagram

z

~~

y

~~

OO

ξm ξn
oo ξ1

OO

oo

lying over

Spec(B)

ww

Spec(A)

xx

OO

Spec(R/mm) Spec(R/mn)oo Spec(k)

OO

oo

Please compare with Formal Deformation Theory, Remark 8.10.
Let S be a locally Noetherian scheme. Let U be a scheme over S with structure
morphism U → S locally of finite type. Let u0 ∈ U be a finite type point of U , see
Morphisms, Definition 16.3. Set k = κ(u0). Note that the composition Spec(k)→ S
is also of finite type, see Morphisms, Lemma 15.3. Let p : X → (Sch/S)fppf be a
category fibred in groupoids. Let x be an object of X which lies over U . Denote x0
the pullback of x by u0. By the 2-Yoneda lemma x corresponds to a 1-morphism

x : (Sch/U)fppf −→ X ,
see Algebraic Stacks, Section 5. We obtain a morphism of predeformation cate-
gories
(12.1.1)07XE x̂ : F(Sch/U)fppf ,k,u0 −→ FX ,k,x0 ,

over CΛ see (3.1.1).

Definition 12.2.07XF Let S be a locally Noetherian scheme. Let X be fibred in
groupoids over (Sch/S)fppf . Let U be a scheme locally of finite type over S. Let
x be an object of X lying over U . Let u0 be finite type point of U . We say x is
versal at u0 if the morphism x̂ (12.1.1) is smooth, see Formal Deformation Theory,
Definition 8.1.

This definition matches our notion of versality for formal objects of X .

Lemma 12.3.0CXK With notation as in Definition 12.2. Let R = O∧
U,u0

. Let ξ be the
formal object of X over R associated to x|Spec(R), see (9.3.1). Then

x is versal at u0 ⇔ ξ is versal

https://stacks.math.columbia.edu/tag/0CXJ
https://stacks.math.columbia.edu/tag/07XF
https://stacks.math.columbia.edu/tag/0CXK
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Proof. Observe that OU,u0 is a Noetherian local S-algebra with residue field k.
Hence R = O∧

U,u0
is an object of C∧

Λ , see Formal Deformation Theory, Definition
4.1. Recall that ξ is versal if ξ : R|CΛ → FX ,k,x0 is smooth and x is versal at u0 if x̂ :
F(Sch/U)fppf ,k,u0 → FX ,k,x0 is smooth. There is an identification of predeformation
categories

R|CΛ = F(Sch/U)fppf ,k,u0 ,

see Formal Deformation Theory, Remark 7.12 for notation. Namely, given an Ar-
tinian local S-algebra A with residue field identified with k we have

MorC∧
Λ

(R,A) = {φ ∈ MorS(Spec(A), U) | φ|Spec(k) = u0}

Unwinding the definitions the reader verifies that the resulting map

R|CΛ = F(Sch/U)fppf ,k,u0
x̂−→ FX ,k,x0 ,

is equal to ξ and we see that the lemma is true. □

Here is a sanity check.

Lemma 12.4.0CXL Let S be a locally Noetherian scheme. Let f : U → V be a
morphism of schemes locally of finite type over S. Let u0 ∈ U be a finite type point.
The following are equivalent

(1) f is smooth at u0,
(2) f viewed as an object of (Sch/V )fppf over U is versal at u0.

Proof. This is a restatement of More on Morphisms, Lemma 12.1. □

It turns out that this notion is well behaved with respect to field extensions.

Lemma 12.5.07XG Let S, X , U , x, u0 be as in Definition 12.2. Let l be a field and
let ul,0 : Spec(l)→ U be a morphism with image u0 such that l/k = κ(u0) is finite.
Set xl,0 = x0|Spec(l). If X satisfies (RS) and x is versal at u0, then

F(Sch/U)fppf ,l,ul,0 −→ FX ,l,xl,0

is smooth.

Proof. Note that (Sch/U)fppf satisfies (RS) by Lemma 5.2. Hence the functor of
the lemma is the functor

(F(Sch/U)fppf ,k,u0)l/k −→ (FX ,k,x0)l/k

associated to x̂, see Lemma 7.1. Hence the lemma follows from Formal Deformation
Theory, Lemma 29.5. □

The following lemma is another sanity check. It more or less signifies that if x is
versal at u0 as in Definition 12.2, then x viewed as a morphism from U to X is
smooth whenever we make a base change by a scheme.

Lemma 12.6.0CXM Let S, X , U , x, u0 be as in Definition 12.2. Assume
(1) ∆ : X → X ×X is representable by algebraic spaces,
(2) ∆ is locally of finite type (for example if X is limit preserving), and
(3) X has (RS).

https://stacks.math.columbia.edu/tag/0CXL
https://stacks.math.columbia.edu/tag/07XG
https://stacks.math.columbia.edu/tag/0CXM
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Let V be a scheme locally of finite type over S and let y be an object of X over V .
Form the 2-fibre product

Z //

��

(Sch/U)fppf

x

��
(Sch/V )fppf

y // X

Let Z be the algebraic space representing Z and let z0 ∈ |Z| be a finite type point
lying over u0. If x is versal at u0, then the morphism Z → V is smooth at z0.

Proof. (The parenthetical remark in the statement holds by Lemma 11.4.) Observe
that Z exists by assumption (1) and Algebraic Stacks, Lemma 10.11. By assumption
(2) we see that Z → V ×S U is locally of finite type. Choose a scheme W , a
closed point w0 ∈ W , and an étale morphism W → Z mapping w0 to z0, see
Morphisms of Spaces, Definition 25.2. Then W is locally of finite type over S and
w0 is a finite type point of W . Let l = κ(z0). Denote zl,0, vl,0, ul,0, and xl,0 the
objects of Z, (Sch/V )fppf , (Sch/U)fppf , and X over Spec(l) obtained by pullback
to Spec(l) = w0. Consider

F(Sch/W )fppf ,l,w0
// FZ,l,zl,0

��

// F(Sch/U)fppf ,l,ul,0

��
F(Sch/V )fppf ,l,vl,0

// FX ,l,xl,0

By Lemma 3.3 the square is a fibre product of predeformation categories. By
Lemma 12.5 we see that the right vertical arrow is smooth. By Formal Deformation
Theory, Lemma 8.7 the left vertical arrow is smooth. By Lemma 3.2 we see that
the left horizontal arrow is smooth. We conclude that the map

F(Sch/W )fppf ,l,w0 → F(Sch/V )fppf ,l,vl,0

is smooth by Formal Deformation Theory, Lemma 8.7. Thus we conclude that
W → V is smooth at w0 by More on Morphisms, Lemma 12.1. This exactly means
that Z → V is smooth at z0 and the proof is complete. □

We restate the approximation result in terms of versal objects.

Lemma 12.7.07XH Let S be a locally Noetherian scheme. Let p : X → (Sch/S)fppf be
a category fibred in groupoids. Let ξ = (R, ξn, fn) be a formal object of X with ξ1
lying over Spec(k)→ S with image s ∈ S. Assume

(1) ξ is versal,
(2) ξ is effective,
(3) OS,s is a G-ring, and
(4) p : X → (Sch/S)fppf is limit preserving on objects.

Then there exist a morphism of finite type U → S, a finite type point u0 ∈ U with
residue field k, and an object x of X over U such that x is versal at u0 and such
that x|Spec(OU,u0 /mn

u0 ) ∼= ξn.

Proof. Choose an object xR of X lying over Spec(R) whose associated formal
object is ξ. Let N = 2 and apply Lemma 10.1. We obtain A,mA, xA, . . .. Let

https://stacks.math.columbia.edu/tag/07XH
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η = (A∧, ηn, gn) be the formal object associated to xA|Spec(A∧). We have a diagram

η

��
ξ //

;;

ξ2 = η2

lying over

A∧

��
R //

88

R/m2
R = A/m2

A

The versality of ξ means exactly that we can find the dotted arrows in the dia-
grams, because we can successively find morphisms ξ → η3, ξ → η4, and so on by
Formal Deformation Theory, Remark 8.10. The corresponding ring map R → A∧

is surjective by Formal Deformation Theory, Lemma 4.2. On the other hand, we
have dimk m

n
R/m

n+1
R = dimk m

n
A/m

n+1
A for all n by construction. Hence R/mn

R

and A/mn
A have the same (finite) length as Λ-modules by additivity of length and

Formal Deformation Theory, Lemma 3.4. It follows that R/mn
R → A/mn

A is an
isomorphism for all n, hence R → A∧ is an isomorphism. Thus η is isomorphic to
a versal object, hence versal itself. By Lemma 12.3 we conclude that xA is versal
at the point u0 of U = Spec(A) corresponding to mA. □

Example 12.8.07XI In this example we show that the local ringOS,s has to be a G-ring
in order for the result of Lemma 12.7 to be true. Namely, let Λ be a Noetherian
ring and let m be a maximal ideal of Λ. Set R = Λ∧

m. Let Λ → C → R be a
factorization with C of finite type over Λ. Set S = Spec(Λ), U = S \ {m}, and
S′ = U ⨿ Spec(C). Consider the functor F : (Sch/S)opp

fppf → Sets defined by the
rule

F (T ) =
{
∗ if T → S factors through S′

∅ else
Let X = SF is the category fibred in sets associated to F , see Algebraic Stacks,
Section 7. Then X → (Sch/S)fppf is limit preserving on objects and there exists
an effective, versal formal object ξ over R. Hence if the conclusion of Lemma 12.7
holds for X , then there exists a finite type ring map Λ → A and a maximal ideal
mA lying over m such that

(1) κ(m) = κ(mA),
(2) Λ→ A and mA satisfy condition (4) of Algebra, Lemma 141.2, and
(3) there exists a Λ-algebra map C → A.

Thus Λ → A is smooth at mA by the lemma cited. Slicing A we may assume
that Λ → A is étale at mA, see for example More on Morphisms, Lemma 38.5 or
argue directly. Write C = Λ[y1, . . . , yn]/(f1, . . . , fm). Then C → R corresponds
to a solution in R of the system of equations f1 = . . . = fm = 0, see Smoothing
Ring Maps, Section 13. Thus if the conclusion of Lemma 12.7 holds for every X
as above, then a system of equations which has a solution in R has a solution in
the henselization of Λm. In other words, the approximation property holds for Λh

m.
This implies that Λh

m is a G-ring (insert future reference here; see also discussion in
Smoothing Ring Maps, Section 1) which in turn implies that Λm is a G-ring.

13. Openness of versality

07XP Next, we come to openness of versality.

Definition 13.1.07XQ Let S be a locally Noetherian scheme.

https://stacks.math.columbia.edu/tag/07XI
https://stacks.math.columbia.edu/tag/07XQ


ARTIN’S AXIOMS 22

(1) Let X be a category fibred in groupoids over (Sch/S)fppf . We say X
satisfies openness of versality if given a scheme U locally of finite type over
S, an object x of X over U , and a finite type point u0 ∈ U such that x is
versal at u0, then there exists an open neighbourhood u0 ∈ U ′ ⊂ U such
that x is versal at every finite type point of U ′.

(2) Let f : X → Y be a 1-morphism of categories fibred in groupoids over
(Sch/S)fppf . We say f satisfies openness of versality if given a scheme U
locally of finite type over S, an object y of Y over U , openness of versality
holds for (Sch/U)fppf ×Y X .

Openness of versality is often the hardest to check. The following example shows
that requiring this is necessary however.

Example 13.2.07XR Let k be a field and set Λ = k[s, t]. Consider the functor F :
Λ-algebras −→ Sets defined by the rule

F (A) =

∗ if there exist f1, . . . , fn ∈ A such that
A = (s, t, f1, . . . , fn) and fis = 0 ∀i

∅ else
Geometrically F (A) = ∗ means there exists a quasi-compact open neighbourhood
W of V (s, t) ⊂ Spec(A) such that s|W = 0. Let X ⊂ (Sch/ Spec(Λ))fppf be
the full subcategory consisting of schemes T which have an affine open covering
T =

⋃
Spec(Aj) with F (Aj) = ∗ for all j. Then X satisfies [0], [1], [2], [3], and [4]

but not [5]. Namely, over U = Spec(k[s, t]/(s)) there exists an object x which is
versal at u0 = (s, t) but not at any other point. Details omitted.

Let S be a locally Noetherian scheme. Let f : X → Y be a 1-morphism of categories
fibred in groupoids over (Sch/S)fppf . Consider the following property

(13.2.1)07XS for all fields k of finite type over S and all x0 ∈ Ob(XSpec(k)) the
map FX ,k,x0 → FY,k,f(x0) of predeformation categories is smooth

We formulate some lemmas around this concept. First we link it with (openness
of) versality.

Lemma 13.3.07XT Let S be a locally Noetherian scheme. Let X be a category fibred
in groupoids over (Sch/S)fppf . Let U be a scheme locally of finite type over S. Let
x be an object of X over U . Assume that x is versal at every finite type point of U
and that X satisfies (RS). Then x : (Sch/U)fppf → X satisfies (13.2.1).

Proof. Let Spec(l)→ U be a morphism with l of finite type over S. Then the image
u0 ∈ U is a finite type point of U and l/κ(u0) is a finite extension, see discussion in
Morphisms, Section 16. Hence we see that F(Sch/U)fppf ,l,ul,0 → FX ,l,xl,0 is smooth
by Lemma 12.5. □

Lemma 13.4.07XU Let S be a locally Noetherian scheme. Let f : X → Y and g : Y →
Z be composable 1-morphisms of categories fibred in groupoids over (Sch/S)fppf .
If f and g satisfy (13.2.1) so does g ◦ f .

Proof. This follows formally from Formal Deformation Theory, Lemma 8.7. □

Lemma 13.5.07XV Let S be a locally Noetherian scheme. Let f : X → Y and Z → Y
be 1-morphisms of categories fibred in groupoids over (Sch/S)fppf . If f satisfies
(13.2.1) so does the projection X ×Y Z → Z.

https://stacks.math.columbia.edu/tag/07XR
https://stacks.math.columbia.edu/tag/07XT
https://stacks.math.columbia.edu/tag/07XU
https://stacks.math.columbia.edu/tag/07XV


ARTIN’S AXIOMS 23

Proof. Follows immediately from Lemma 3.3 and Formal Deformation Theory,
Lemma 8.7. □

Lemma 13.6.07XW Let S be a locally Noetherian scheme. Let f : X → Y be a
1-morphisms of categories fibred in groupoids over (Sch/S)fppf . If f is formally
smooth on objects, then f satisfies (13.2.1). If f is representable by algebraic spaces
and smooth, then f satisfies (13.2.1).

Proof. A reformulation of Lemma 3.2. □

Lemma 13.7.07XX Let S be a locally Noetherian scheme. Let f : X → Y be a 1-
morphism of categories fibred in groupoids over (Sch/S)fppf . Assume

(1) f is representable by algebraic spaces,
(2) f satisfies (13.2.1),
(3) X → (Sch/S)fppf is limit preserving on objects, and
(4) Y is limit preserving.

Then f is smooth.

Proof. The key ingredient of the proof is More on Morphisms, Lemma 12.1 which
(almost) says that a morphism of schemes of finite type over S satisfying (13.2.1) is
a smooth morphism. The other arguments of the proof are essentially bookkeeping.

Let V be a scheme over S and let y be an object of Y over V . Let Z be an
algebraic space representing the 2-fibre product Z = X ×f,X ,y (Sch/V )fppf . We
have to show that the projection morphism Z → V is smooth, see Algebraic Stacks,
Definition 10.1. In fact, it suffices to do this when V is an affine scheme locally
of finite presentation over S, see Criteria for Representability, Lemma 5.6. Then
(Sch/V )fppf is limit preserving by Lemma 11.3. Hence Z → S is locally of finite
presentation by Lemmas 11.2 and 11.3. Choose a scheme W and a surjective étale
morphism W → Z. Then W is locally of finite presentation over S.

Since f satisfies (13.2.1) we see that so does Z → (Sch/V )fppf , see Lemma 13.5.
Next, we see that (Sch/W )fppf → Z satisfies (13.2.1) by Lemma 13.6. Thus the
composition

(Sch/W )fppf → Z → (Sch/V )fppf

satisfies (13.2.1) by Lemma 13.4. More on Morphisms, Lemma 12.1 shows that the
composition W → Z → V is smooth at every finite type point w0 of W . Since the
smooth locus is open we conclude that W → V is a smooth morphism of schemes
by Morphisms, Lemma 16.7. Thus we conclude that Z → V is a smooth morphism
of algebraic spaces by definition. □

The lemma below is how we will use openness of versality.

Lemma 13.8.07XY Let S be a locally Noetherian scheme. Let p : X → (Sch/S)fppf be
a category fibred in groupoids. Let k be a finite type field over S and let x0 be an
object of X over Spec(k) with image s ∈ S. Assume

(1) ∆ : X → X ×X is representable by algebraic spaces,
(2) X satisfies axioms [1], [2], [3] (see Section 14),
(3) every formal object of X is effective,
(4) openness of versality holds for X , and
(5) OS,s is a G-ring.

https://stacks.math.columbia.edu/tag/07XW
https://stacks.math.columbia.edu/tag/07XX
https://stacks.math.columbia.edu/tag/07XY
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Then there exist a morphism of finite type U → S and an object x of X over U
such that

x : (Sch/U)fppf −→ X
is smooth and such that there exists a finite type point u0 ∈ U whose residue field
is k and such that x|u0

∼= x0.

Proof. By axiom [2], Lemma 6.1, and Remark 6.2 we see that FX ,k,x0 satisfies
(S1) and (S2). Since also the tangent space has finite dimension by axiom [3] we
deduce from Formal Deformation Theory, Lemma 13.4 that FX ,k,x0 has a versal
formal object ξ. Assumption (3) says ξ is effective. By axiom [1] and Lemma 12.7
there exists a morphism of finite type U → S, an object x of X over U , and a finite
type point u0 of U with residue field k such that x is versal at u0 and such that
x|Spec(k) ∼= x0. By openness of versality we may shrink U and assume that x is
versal at every finite type point of U . We claim that

x : (Sch/U)fppf −→ X

is smooth which proves the lemma. Namely, by Lemma 13.3 x satisfies (13.2.1)
whereupon Lemma 13.7 finishes the proof. □

14. Axioms

07XJ Let S be a locally Noetherian scheme. Let p : X → (Sch/S)fppf be a category
fibred in groupoids. Here are the axioms we will consider on X .

[-1] a set theoretic condition1 to be ignored by readers who are not interested
in set theoretical issues,

[0] X is a stack in groupoids for the étale topology,
[1] X is limit preserving,
[2] X satisfies the Rim-Schlessinger condition (RS),
[3] the spaces TFX ,k,x0 and Inf(FX ,k,x0) are finite dimensional for every k and

x0, see (8.0.1) and (8.0.2),
[4] the functor (9.3.1) is an equivalence,
[5] X and ∆ : X → X ×X satisfy openness of versality.

15. Axioms for functors

07XZ Let S be a scheme. Let F : (Sch/S)opp
fppf → Sets be a functor. Denote X = SF

the category fibred in sets associated to F , see Algebraic Stacks, Section 7. In this
section we provide a translation between the material above as it applies to X , to
statements about F .

Let S be a locally Noetherian scheme. Let F : (Sch/S)opp
fppf → Sets be a functor.

Let k be a field of finite type over S. Let x0 ∈ F (Spec(k)). The associated
predeformation category (3.0.2) corresponds to the functor

Fk,x0 : CΛ −→ Sets, A 7−→ {x ∈ F (Spec(A)) | x|Spec(k) = x0}.

1The condition is the following: the supremum of all the cardinalities | Ob(XSpec(k))/ ∼= | and
|Arrows(XSpec(k))| where k runs over the finite type fields over S is ≤ than the size of some object
of (Sch/S)fppf .
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Recall that we do not distinguish between categories cofibred in sets over CΛ and
functor CΛ → Sets, see Formal Deformation Theory, Remarks 5.2 (11). Given a
transformation of functors a : F → G, setting y0 = a(x0) we obtain a morphism

Fk,x0 −→ Gk,y0

see (3.1.1). Lemma 3.2 tells us that if a : F → G is formally smooth (in the sense
of More on Morphisms of Spaces, Definition 13.1), then Fk,x0 −→ Gk,y0 is smooth
as in Formal Deformation Theory, Remark 8.4.
Lemma 4.1 says that if Y ′ = Y ⨿X X ′ in the category of schemes over S where
X → X ′ is a thickening and X → Y is affine, then the map

F (Y ⨿X X ′)→ F (Y )×F (X) F (X ′)
is a bijection, provided that F is an algebraic space. We say a general functor
F satisfies the Rim-Schlessinger condition or we say F satisfies (RS) if given any
pushout Y ′ = Y ⨿X X ′ where Y,X,X ′ are spectra of Artinian local rings of finite
type over S, then

F (Y ⨿X X ′)→ F (Y )×F (X) F (X ′)
is a bijection. Thus every algebraic space satisfies (RS).
Lemma 6.1 says that given a functor F which satisfies (RS), then all Fk,x0 are
deformation functors as in Formal Deformation Theory, Definition 16.8, i.e., they
satisfy (RS) as in Formal Deformation Theory, Remark 16.5. In particular the
tangent space

TFk,x0 = {x ∈ F (Spec(k[ϵ])) | x|Spec(k) = x0}
has the structure of a k-vector space by Formal Deformation Theory, Lemma 12.2.
Lemma 8.1 says that an algebraic space F locally of finite type over S gives rise to
deformation functors Fk,x0 with finite dimensional tangent spaces TFk,x0 .
A formal object2 ξ = (R, ξn) of F consists of a Noetherian complete local S-
algebra R whose residue field is of finite type over S, together with elements
ξn ∈ F (Spec(R/mn)) such that ξn+1|Spec(R/mn) = ξn. A formal object ξ defines
a formal object ξ of FR/m,ξ1 . We say ξ is versal if and only if it is versal in the
sense of Formal Deformation Theory, Definition 8.9. A formal object ξ = (R, ξn)
is called effective if there exists an x ∈ F (Spec(R)) such that ξn = x|Spec(R/mn) for
all n ≥ 1. Lemma 9.5 says that if F is an algebraic space, then every formal object
is effective.
Let U be a scheme locally of finite type over S and let x ∈ F (U). Let u0 ∈
U be a finite type point. We say that x is versal at u0 if and only if ξ =
(O∧

U,u0
, x|Spec(OU,u0 /mn

u0 )) is a versal formal object in the sense described above.

Let S be a locally Noetherian scheme. Let F : (Sch/S)opp
fppf → Sch be a functor.

Here are the axioms we will consider on F .
[-1] a set theoretic condition3 to be ignored by readers who are not interested

in set theoretical issues,
[0] F is a sheaf for the étale topology,
[1] F is limit preserving,

2This is what Artin calls a formal deformation.
3The condition is the following: the supremum of all the cardinalities |F (Spec(k))| where k

runs over the finite type fields over S is ≤ than the size of some object of (Sch/S)fppf .
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[2] F satisfies the Rim-Schlessinger condition (RS),
[3] every tangent space TFk,x0 is finite dimensional,
[4] every formal object is effective,
[5] F satisfies openness of versality.

Here limit preserving is the notion defined in Limits of Spaces, Definition 3.1 and
openness of versality means the following: Given a scheme U locally of finite type
over S, given x ∈ F (U), and given a finite type point u0 ∈ U such that x is versal
at u0, then there exists an open neighbourhood u0 ∈ U ′ ⊂ U such that x is versal
at every finite type point of U ′.

16. Algebraic spaces

07Y0 The following is our first main result on algebraic spaces.

Proposition 16.1.07Y1 Let S be a locally Noetherian scheme. Let F : (Sch/S)opp
fppf →

Sets be a functor. Assume that
(1) ∆ : F → F × F is representable by algebraic spaces,
(2) F satisfies axioms [-1], [0], [1], [2], [3], [4], [5] (see Section 15), and
(3) OS,s is a G-ring for all finite type points s of S.

Then F is an algebraic space.

Proof. Lemma 13.8 applies to F . Using this we choose, for every finite type field
k over S and x0 ∈ F (Spec(k)), an affine scheme Uk,x0 of finite type over S and a
smooth morphism Uk,x0 → F such that there exists a finite type point uk,x0 ∈ Uk,x0

with residue field k such that x0 is the image of uk,x0 . Then

U =
∐

k,x0
Uk,x0 −→ F

is smooth4. To finish the proof it suffices to show this map is surjective, see Boot-
strap, Lemma 12.3 (this is where we use axiom [0]). By Criteria for Representability,
Lemma 5.6 it suffices to show that U×F V → V is surjective for those V → F where
V is an affine scheme locally of finite presentation over S. Since U ×F V → V is
smooth the image is open. Hence it suffices to show that the image of U ×F V → V
contains all finite type points of V , see Morphisms, Lemma 16.7. Let v0 ∈ V be
a finite type point. Then k = κ(v0) is a finite type field over S. Denote x0 the
composition Spec(k) v0−→ V → F . Then (uk,x0 , v0) : Spec(k) → U ×F V is a point
mapping to v0 and we win. □

Lemma 16.2.07Y2 Let S be a locally Noetherian scheme. Let a : F → G be a trans-
formation of functors (Sch/S)opp

fppf → Sets. Assume that
(1) a is injective,
(2) F satisfies axioms [0], [1], [2], [4], and [5],
(3) OS,s is a G-ring for all finite type points s of S,
(4) G is an algebraic space locally of finite type over S,

Then F is an algebraic space.

4Set theoretical remark: This coproduct is (isomorphic) to an object of (Sch/S)fppf as we
have a bound on the index set by axiom [-1], see Sets, Lemma 9.9.

https://stacks.math.columbia.edu/tag/07Y1
https://stacks.math.columbia.edu/tag/07Y2
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Proof. By Lemma 8.1 the functor G satisfies [3]. As F → G is injective, we
conclude that F also satisfies [3]. Moreover, as F → G is injective, we see that given
schemes U , V and morphisms U → F and V → F , then U ×F V = U ×G V . Hence
∆ : F → F × F is representable (by schemes) as this holds for G by assumption.
Thus Proposition 16.1 applies5. □

17. Algebraic stacks

07Y3 Proposition 17.2 is our first main result on algebraic stacks.

Lemma 17.1.07Y4 Let S be a locally Noetherian scheme. Let p : X → (Sch/S)fppf be
a category fibred in groupoids. Assume that

(1) ∆ : X → X ×X is representable by algebraic spaces,
(2) X satisfies axioms [-1], [0], [1], [2], [3] (see Section 14),
(3) every formal object of X is effective,
(4) X satisfies openness of versality, and
(5) OS,s is a G-ring for all finite type points s of S.

Then X is an algebraic stack.

Proof. Lemma 13.8 applies to X . Using this we choose, for every finite type field
k over S and every isomorphism class of object x0 ∈ Ob(XSpec(k)), an affine scheme
Uk,x0 of finite type over S and a smooth morphism (Sch/Uk,x0)fppf → X such that
there exists a finite type point uk,x0 ∈ Uk,x0 with residue field k such that x0 is the
image of uk,x0 . Then

(Sch/U)fppf → X , with U =
∐

k,x0
Uk,x0

is smooth6. To finish the proof it suffices to show this map is surjective, see Criteria
for Representability, Lemma 19.1 (this is where we use axiom [0]). By Criteria for
Representability, Lemma 5.6 it suffices to show that (Sch/U)fppf×X (Sch/V )fppf →
(Sch/V )fppf is surjective for those y : (Sch/V )fppf → X where V is an affine
scheme locally of finite presentation over S. By assumption (1) the fibre product
(Sch/U)fppf×X (Sch/V )fppf is representable by an algebraic space W . Then W →
V is smooth, hence the image is open. Hence it suffices to show that the image
of W → V contains all finite type points of V , see Morphisms, Lemma 16.7. Let
v0 ∈ V be a finite type point. Then k = κ(v0) is a finite type field over S. Denote
x0 = y|Spec(k) the pullback of y by v0. Then (uk,x0 , v0) will give a morphism
Spec(k)→W whose composition with W → V is v0 and we win. □

Proposition 17.2.07Y5 Let S be a locally Noetherian scheme. Let p : X → (Sch/S)fppf

be a category fibred in groupoids. Assume that
(1) ∆∆ : X → X ×X ×X X is representable by algebraic spaces,
(2) X satisfies axioms [-1], [0], [1], [2], [3], [4], and [5] (see Section 14),
(3) OS,s is a G-ring for all finite type points s of S.

Then X is an algebraic stack.

5The set theoretic condition [-1] holds for F as it holds for G. Details omitted.
6Set theoretical remark: This coproduct is (isomorphic to) an object of (Sch/S)fppf as we

have a bound on the index set by axiom [-1], see Sets, Lemma 9.9.
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Proof. We first prove that ∆ : X → X × X is representable by algebraic spaces.
To do this it suffices to show that

Y = X ×∆,X ×X ,y (Sch/V )fppf

is representable by an algebraic space for any affine scheme V locally of finite
presentation over S and object y of X ×X over V , see Criteria for Representability,
Lemma 5.57. Observe that Y is fibred in setoids (Stacks, Lemma 2.5) and let
Y : (Sch/S)opp

fppf → Sets, T 7→ Ob(YT )/ ∼= be the functor of isomorphism classes.
We will apply Proposition 16.1 to see that Y is an algebraic space.
Note that ∆Y : Y → Y×Y (and hence also Y → Y ×Y ) is representable by algebraic
spaces by condition (1) and Criteria for Representability, Lemma 4.4. Observe that
Y is a sheaf for the étale topology by Stacks, Lemmas 6.3 and 6.7, i.e., axiom [0]
holds. Also Y is limit preserving by Lemma 11.2, i.e., we have [1]. Note that Y has
(RS), i.e., axiom [2] holds, by Lemmas 5.2 and 5.3. Axiom [3] for Y follows from
Lemmas 8.1 and 8.2. Axiom [4] follows from Lemmas 9.5 and 9.6. Axiom [5] for
Y follows directly from openness of versality for ∆X which is part of axiom [5] for
X . Thus all the assumptions of Proposition 16.1 are satisfied and Y is an algebraic
space.
At this point it follows from Lemma 17.1 that X is an algebraic stack. □

18. Strong Rim-Schlessinger

0CXN In the rest of this chapter the following strictly stronger version of the Rim-
Schlessinger conditions will play an important role.

Definition 18.1.07Y8 Let S be a scheme. Let X be a category fibred in groupoids over
(Sch/S)fppf . We say X satisfies condition (RS*) if given a fibre product diagram

B′ // B

A′ = A×B B′

OO

// A

OO

of S-algebras, with B′ → B surjective with square zero kernel, the functor of fibre
categories

XSpec(A′) −→ XSpec(A) ×XSpec(B) XSpec(B′)

is an equivalence of categories.

We make some observations: with A→ B ← B′ as in Definition 18.1
(1) we have Spec(A′) = Spec(A)⨿Spec(B) Spec(B′) in the category of schemes,

see More on Morphisms, Lemma 14.3, and
(2) if X is an algebraic stack, then X satisfies (RS*) by Lemma 18.2.

If S is locally Noetherian, then
(3) if A, B, B′ are of finite type over S and B is finite over A, then A′ is of

finite type over S8, and

7The set theoretic condition in Criteria for Representability, Lemma 5.5 will hold: the size of
the algebraic space Y representing Y is suitably bounded. Namely, Y → S will be locally of finite
type and Y will satisfy axiom [-1]. Details omitted.

8If Spec(A) maps into an affine open of S this follows from More on Algebra, Lemma 5.1. The
general case follows using More on Algebra, Lemma 5.3.
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(4) if X satisfies (RS*), then X satisfies (RS) because (RS) covers exactly those
cases of (RS*) where A, B, B′ are Artinian local.

Lemma 18.2.0CXP Let X be an algebraic stack over a base S. Then X satisfies (RS*).

Proof. This is implied by Lemma 4.1, see remarks following Definition 18.1. □

Lemma 18.3.0CXQ Let S be a scheme. Let p : X → Y and q : Z → Y be 1-morphisms
of categories fibred in groupoids over (Sch/S)fppf . If X , Y, and Z satisfy (RS*),
then so does X ×Y Z.

Proof. The proof is exactly the same as the proof of Lemma 5.3. □

19. Versality and generalizations

0G2I We prove that versality is preserved under generalizations for stacks which have
(RS*) and are limit preserving. We suggest skipping this section on a first reading.

Lemma 19.1.0G2J Let S be a locally Noetherian scheme. Let X be a category fibred in
groupoids over (Sch/S)fppf having (RS*). Let x be an object of X over an affine
scheme U of finite type over S. Let u ∈ U be a finite type point such that x is not
versal at u. Then there exists a morphism x→ y of X lying over U → T satisfying

(1) the morphism U → T is a first order thickening,
(2) we have a short exact sequence

0→ κ(u)→ OT → OU → 0
(3) there does not exist a pair (W,α) consisting of an open neighbourhood W ⊂

T of u and a morphism β : y|W → x such that the composition

x|U∩W
restriction of x→y−−−−−−−−−−−−→ y|W

β−→ x

is the canonical morphism x|U∩W → x.

Proof. Let R = O∧
U,u. Let k = κ(u) be the residue field of R. Let ξ be the

formal object of X over R associated to x. Since x is not versal at u, we see that
ξ is not versal, see Lemma 12.3. By the discussion following Definition 12.1 this
means we can find morphisms ξ1 → xA → xB of X lying over closed immersions
Spec(k) → Spec(A) → Spec(B) where A,B are Artinian local rings with residue
field k, an n ≥ 1 and a commutative diagram

xA

~~
ξn ξ1

OO

oo

lying over

Spec(A)

xx
Spec(R/mn) Spec(k)

OO

oo

such that there does not exist an m ≥ n and a commutative diagram

xB

}}

xA

~~

OO

ξm ξn
oo ξ1

OO

oo

lying over

Spec(B)

ww

Spec(A)

xx

OO

Spec(R/mm) Spec(R/mn)oo Spec(k)

OO

oo
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We may moreover assume that B → A is a small extension, i.e., that the kernel
I of the surjection B → A is isomorphic to k as an A-module. This follows from
Formal Deformation Theory, Remark 8.10. Then we simply define

T = U ⨿Spec(A) Spec(B)

By property (RS*) we find y over T whose restriction to Spec(B) is xB and whose
restriction to U is x (this gives the arrow x → y lying over U → T ). To finish the
proof we verify conditions (1), (2), and (3).

By the construction of the pushout we have a commutative diagram

0 // I // B // A // 0

0 // I //

OO

Γ(T,OT ) //

OO

Γ(U,OU ) //

OO

0

with exact rows. This immediately proves (1) and (2). To finish the proof we will
argue by contradiction. Assume we have a pair (W,β) as in (3). Since Spec(B)→ T
factors through W we get the morphism

xB → y|W
β−→ x

Since B is Artinian local with residue field k = κ(u) we see that xB → x lies over a
morphism Spec(B)→ U which factors through Spec(OU,u/m

m
u ) for some m ≥ n. In

other words, xB → x factors through ξm giving a map xB → ξm. The compatibility
condition on the morphism α in condition (3) translates into the condition that

xB

��

xA

��

oo

ξm ξn
oo

is commutative. This gives the contradiction we were looking for. □

Lemma 19.2.0G2K Let S be a locally Noetherian scheme. Let X be a category fibred
in groupoids over (Sch/S)fppf . Assume

(1) ∆ : X → X ×X is representable by algebraic spaces,
(2) X has (RS*),
(3) X is limit preserving.

Let x be an object of X over a scheme U of finite type over S. Let u ⇝ u0 be a
specialization of finite type points of U such that x is versal at u0. Then x is versal
at u.

Proof. After shrinking U we may assume U is affine and U maps into an affine
open Spec(Λ) of S. If x is not versal at u then we may pick x→ y lying over U → T
as in Lemma 19.1. Write U = Spec(R0) and T = Spec(R). The morphism U → T
corresponds to a surjective ring map R → R0 whose kernel is an ideal of square
zero. By assumption (3) we get that y comes from an object x′ over U ′ = Spec(R′)
for some finite type Λ-subalgebra R′ ⊂ R. After increasing R′ we may and do
assume that R′ → R0 is surjective, so that U ⊂ U ′ is a first order thickening. Thus
we now have

x→ y → x′ lying over U → T → U ′

https://stacks.math.columbia.edu/tag/0G2K
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By assumption (1) there is an algebraic space Z over S representing
(Sch/U)fppf ×x,X ,x′ (Sch/U ′)fppf

see Algebraic Stacks, Lemma 10.11. By construction of 2-fibre products, a V -valued
point of Z corresponds to a triple (a, a′, α) consisting of morphisms a : V → U ,
a′ : V → U ′ and a morphism α : a∗x→ (a′)∗x′. We obtain a commutative diagram

U

��

��

''
Z

p′
//

p

��

U ′

��
U // S

The morphism i : U → Z comes the isomorphism x → x′|U . Let z0 = i(u0) ∈ Z.
By Lemma 12.6 we see that Z → U ′ is smooth at z0. After replacing U by an affine
open neighbourhood of u0, replacing U ′ by the corresponding open, and replacing
Z by the intersection of the inverse images of these opens by p and p′, we reach the
situation where Z → U ′ is smooth along i(U). Since u⇝ u0 the point u is in this
open. Condition (3) of Lemma 19.1 is clearly preserved by shrinking U (all of the
schemes U , T , U ′ have the same underlying topological space). Since U → U ′ is a
first order thickening of affine schemes, we can choose a morphism i′ : U ′ → Z such
that p′ ◦ i′ = idU ′ and whose restriction to U is i (More on Morphisms of Spaces,
Lemma 19.6). Pulling back the universal morphism p∗x → (p′)∗x′ by i′ we obtain
a morphism

x′ → x

lying over p ◦ i′ : U ′ → U such that the composition
x→ x′ → x

is the identity. Recall that we have y → x′ lying over the morphism T → U ′.
Composing we get a morphism y → x whose existence contradicts condition (3) of
Lemma 19.1. This contradiction finishes the proof. □

20. Strong formal effectiveness

0CXR In this section we demonstrate how a strong version of effectiveness of formal objects
implies openness of versality. The proof of [Bha16, Theorem 1.1] shows that quasi-
compact and quasi-separated algebraic spaces satisfy the strong formal effectiveness
discussed in Remark 20.2. In addition, the theory we develop is nonempty: we use it
later to show openness of versality for the stack of coherent sheaves and for moduli
of complexes, see Quot, Theorems 6.1 and 16.12.

Lemma 20.1.0G2S Let S be a locally Noetherian scheme. Let X be a category fibred in
groupoids over (Sch/S)fppf having (RS*). Let x be an object of X over an affine
scheme U of finite type over S. Let un ∈ U , n ≥ 1 be finite type points such that
(a) there are no specializations un ⇝ um for n ̸= m, and (b) x is not versal at un

for all n. Then there exist morphisms
x→ x1 → x2 → . . . in X lying over U → U1 → U2 → . . .

over S such that

https://stacks.math.columbia.edu/tag/0G2S


ARTIN’S AXIOMS 32

(1) for each n the morphism U → Un is a first order thickening,
(2) for each n we have a short exact sequence

0→ κ(un)→ OUn
→ OUn−1 → 0

with U0 = U for n = 1,
(3) for each n there does not exist a pair (W,α) consisting of an open neigh-

bourhood W ⊂ Un of un and a morphism α : xn|W → x such that the
composition

x|U∩W
restriction of x→xn−−−−−−−−−−−−−→ xn|W

α−→ x

is the canonical morphism x|U∩W → x.

Proof. Since there are no specializations among the points un (and in particular
the un are pairwise distinct), for every n we can find an open U ′ ⊂ U such that
un ∈ U ′ and ui ̸∈ U ′ for i = 1, . . . , n − 1. By Lemma 19.1 for each n ≥ 1 we can
find

x→ yn in X lying over U → Tn

such that
(1) the morphism U → Tn is a first order thickening,
(2) we have a short exact sequence

0→ κ(un)→ OTn
→ OU → 0

(3) there does not exist a pair (W,α) consisting of an open neighbourhood
W ⊂ Tn of un and a morphism β : yn|W → x such that the composition

x|U∩W
restriction of x→yn−−−−−−−−−−−−→ yn|W

β−→ x

is the canonical morphism x|U∩W → x.
Thus we can define inductively

U1 = T1, Un+1 = Un ⨿U Tn+1

Setting x1 = y1 and using (RS*) we find inductively xn+1 over Un+1 restricting
to xn over Un and yn+1 over Tn+1. Property (1) for U → Un follows from the
construction of the pushout in More on Morphisms, Lemma 14.3. Property (2) for
Un similarly follows from property (2) for Tn by the construction of the pushout.
After shrinking to an open neighbourhood U ′ of un as discussed above, property (3)
for (Un, xn) follows from property (3) for (Tn, yn) simply because the corresponding
open subschemes of Tn and Un are isomorphic. Some details omitted. □

Remark 20.2 (Strong effectiveness).0CXT Let S be a locally Noetherian scheme. Let
X be a category fibred in groupoids over (Sch/S)fppf . Assume we have

(1) an affine open Spec(Λ) ⊂ S,
(2) an inverse system (Rn) of Λ-algebras with surjective transition maps whose

kernels are locally nilpotent,
(3) a system (ξn) of objects of X lying over the system (Spec(Rn)).

In this situation, set R = limRn. We say that (ξn) is effective if there exists an
object ξ of X over Spec(R) whose restriction to Spec(Rn) gives the system (ξn).

It is not the case that every algebraic stack X over S satisfies a strong effectiveness
axiom of the form: every system (ξn) as in Remark 20.2 is effective. An example
is given in Examples, Section 72.
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ARTIN’S AXIOMS 33

Lemma 20.3.0CXU Let S be a locally Noetherian scheme. Let X be a category fibred
in groupoids over (Sch/S)fppf . Assume

(1) ∆ : X → X ×X is representable by algebraic spaces,
(2) X has (RS*),
(3) X is limit preserving,
(4) systems (ξn) as in Remark 20.2 where Ker(Rm → Rn) is an ideal of square

zero for all m ≥ n are effective.
Then X satisfies openness of versality.

Proof. Choose a scheme U locally of finite type over S, a finite type point u0 of U ,
and an object x of X over U such that x is versal at u0. After shrinking U we may
assume U is affine and U maps into an affine open Spec(Λ) of S. Let E ⊂ U be the
set of finite type points u such that x is not versal at u. By Lemma 19.2 if u ∈ E
then u0 is not a specialization of u. If openness of versality does not hold, then u0
is in the closure E of E. By Properties, Lemma 5.13 we may choose a countable
subset E′ ⊂ E with the same closure as E. By Properties, Lemma 5.12 we may
assume there are no specializations among the points of E′. Observe that E′ has to
be (countably) infinite as u0 isn’t the specialization of any point of E′ as pointed
out above. Thus we can write E′ = {u1, u2, u3, . . .}, there are no specializations
among the ui, and u0 is in the closure of E′.
Choose x → x1 → x2 → . . . lying over U → U1 → U2 → . . . as in Lemma 20.1.
Write Un = Spec(Rn) and U = Spec(R0). Set R = limRn. Observe that R → R0
is surjective with kernel an ideal of square zero. By assumption (4) we get ξ over
Spec(R) whose base change to Rn is xn. By assumption (3) we get that ξ comes
from an object ξ′ over U ′ = Spec(R′) for some finite type Λ-subalgebra R′ ⊂ R.
After increasing R′ we may and do assume that R′ → R0 is surjective, so that
U ⊂ U ′ is a first order thickening. Thus we now have

x→ x1 → x2 → . . .→ ξ′ lying over U → U1 → U2 → . . .→ U ′

By assumption (1) there is an algebraic space Z over S representing
(Sch/U)fppf ×x,X ,ξ′ (Sch/U ′)fppf

see Algebraic Stacks, Lemma 10.11. By construction of 2-fibre products, a T -valued
point of Z corresponds to a triple (a, a′, α) consisting of morphisms a : T → U ,
a′ : T → U ′ and a morphism α : a∗x→ (a′)∗ξ′. We obtain a commutative diagram

U

��

��

''
Z

p′
//

p

��

U ′

��
U // S

The morphism i : U → Z comes the isomorphism x → ξ′|U . Let z0 = i(u0) ∈ Z.
By Lemma 12.6 we see that Z → U ′ is smooth at z0. After replacing U by an affine
open neighbourhood of u0, replacing U ′ by the corresponding open, and replacing
Z by the intersection of the inverse images of these opens by p and p′, we reach
the situation where Z → U ′ is smooth along i(U). Note that this also involves
replacing un by a subsequence, namely by those indices such that un is in the open.
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Moreover, condition (3) of Lemma 20.1 is clearly preserved by shrinking U (all of
the schemes U , Un, U ′ have the same underlying topological space). Since U → U ′

is a first order thickening of affine schemes, we can choose a morphism i′ : U ′ → Z
such that p′ ◦ i′ = idU ′ and whose restriction to U is i (More on Morphisms of
Spaces, Lemma 19.6). Pulling back the universal morphism p∗x→ (p′)∗ξ′ by i′ we
obtain a morphism

ξ′ → x

lying over p ◦ i′ : U ′ → U such that the composition

x→ ξ′ → x

is the identity. Recall that we have x1 → ξ′ lying over the morphism U1 → U ′.
Composing we get a morphism x1 → x whose existence contradicts condition (3)
of Lemma 20.1. This contradiction finishes the proof. □

Remark 20.4.0CXV There is a way to deduce openness of versality of the diagonal
of an category fibred in groupoids from a strong formal effectiveness axiom. Let
S be a locally Noetherian scheme. Let X be a category fibred in groupoids over
(Sch/S)fppf . Assume

(1) ∆∆ : X → X ×X ×X X is representable by algebraic spaces,
(2) X has (RS*),
(3) X is limit preserving,
(4) given an inverse system (Rn) of S-algebras as in Remark 20.2 where Ker(Rm →

Rn) is an ideal of square zero for all m ≥ n the functor

XSpec(lim Rn) −→ limn XSpec(Rn)

is fully faithful.
Then ∆ : X → X × X satisfies openness of versality. This follows by applying
Lemma 20.3 to fibre products of the form X ×∆,X ×X ,y (Sch/V )fppf for any affine
scheme V locally of finite presentation over S and object y of X × X over V . If
we ever need this, we will change this remark into a lemma and provide a detailed
proof.

21. Infinitesimal deformations

07Y6 In this section we discuss a generalization of the notion of the tangent space intro-
duced in Section 8. To do this intelligently, we borrow some notation from Formal
Deformation Theory, Sections 11, 17, and 19.

Let S be a scheme. Let X be a category fibred in groupoids over (Sch/S)fppf . Given
a homomorphism A′ → A of S-algebras and an object x of X over Spec(A) we write
Lift(x,A′) for the category of lifts of x to Spec(A′). An object of Lift(x,A′) is a
morphism x→ x′ of X lying over Spec(A)→ Spec(A′) and morphisms of Lift(x,A′)
are defined as commutative diagrams. The set of isomorphism classes of Lift(x,A′)
is denoted Lift(x,A′). See Formal Deformation Theory, Definition 17.1 and Remark
17.2. If A′ → A is surjective with locally nilpotent kernel we call an element x′ of
Lift(x,A′) a (infinitesimal) deformation of x. In this case the group of infinitesimal
automorphisms of x′ over x is the kernel

Inf(x′/x) = Ker
(

AutXSpec(A′)(x
′)→ AutXSpec(A)(x)

)
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ARTIN’S AXIOMS 35

Note that an element of Inf(x′/x) is the same thing as a lift of idx over Spec(A′)
for (the category fibred in sets associated to) AutX (x′). Compare with Formal
Deformation Theory, Definition 19.1 and Formal Deformation Theory, Remark 19.8.
If M is an A-module we denote A[M ] the A-algebra whose underlying A-module
is A⊕M and whose multiplication is given by (a,m) · (a′,m′) = (aa′, am′ + a′m).
When M = A this is the ring of dual numbers over A, which we denote A[ϵ]
as is customary. There is an A-algebra map A[M ] → A. The pullback of x to
Spec(A[M ]) is called the trivial deformation of x to Spec(A[M ]).
Lemma 21.1.07Y7 Let S be a scheme. Let f : X → Y be a 1-morphism of categories
fibred in groupoids over (Sch/S)fppf . Let

B′ // B

A′

OO

// A

OO

be a commutative diagram of S-algebras. Let x be an object of X over Spec(A), let
y be an object of Y over Spec(B), and let ϕ : f(x)|Spec(B) → y be a morphism of Y
over Spec(B). Then there is a canonical functor

Lift(x,A′) −→ Lift(y,B′)
of categories of lifts induced by f and ϕ. The construction is compatible with com-
positions of 1-morphisms of categories fibred in groupoids in an obvious manner.
Proof. This lemma proves itself. □

Let S be a base scheme. Let X be a category fibred in groupoids over (Sch/S)fppf .
We define a category whose objects are pairs (x,A′ → A) where

(1) A′ → A is a surjection of S-algebras whose kernel is an ideal of square zero,
(2) x is an object of X lying over Spec(A).

A morphism (y,B′ → B)→ (x,A′ → A) is given by a commutative diagram

B′ // B

A′

OO

// A

OO

of S-algebras together with a morphism x|Spec(B) → y over Spec(B). Let us call
this the category of deformation situations.
Lemma 21.2.07Y9 Let S be a scheme. Let X be a category fibred in groupoids over
(Sch/S)fppf . Assume X satisfies condition (RS*). Let A be an S-algebra and let
x be an object of X over Spec(A).

(1) There exists an A-linear functor Infx : ModA → ModA such that given a
deformation situation (x,A′ → A) and a lift x′ there is an isomorphism
Infx(I)→ Inf(x′/x) where I = Ker(A′ → A).

(2) There exists an A-linear functor Tx : ModA → ModA such that
(a) given M in ModA there is a bijection Tx(M)→ Lift(x,A[M ]),
(b) given a deformation situation (x,A′ → A) there is an action

Tx(I)× Lift(x,A′)→ Lift(x,A′)
where I = Ker(A′ → A). It is simply transitive if Lift(x,A′) ̸= ∅.
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Proof. We define Infx as the functor
ModA −→ Sets, M −→ Inf(x′

M/x) = Lift(idx, A[M ])
mapping M to the group of infinitesimal automorphisms of the trivial deformation
x′

M of x to Spec(A[M ]) or equivalently the group of lifts of idx in AutX (x′
M ). We

define Tx as the functor
ModA −→ Sets, M −→ Lift(x,A[M ])

of isomorphism classes of infintesimal deformations of x to Spec(A[M ]). We apply
Formal Deformation Theory, Lemma 11.4 to Infx and Tx. This lemma is applicable,
since (RS*) tells us that

Lift(x,A[M ×N ]) = Lift(x,A[M ])× Lift(x,A[N ])
as categories (and trivial deformations match up too).
Let (x,A′ → A) be a deformation situation. Consider the ring map g : A′×A A

′ →
A[I] defined by the rule g(a1, a2) = a1 ⊕ a2 − a1. There is an isomorphism

A′ ×A A′ −→ A′ ×A A[I]
given by (a1, a2) 7→ (a1, g(a1, a2)). This isomorphism commutes with the projec-
tions to A′ on the first factor, and hence with the projections to A. Thus applying
(RS*) twice we find equivalences of categories

Lift(x,A′)× Lift(x,A′) = Lift(x,A′ ×A A′)
= Lift(x,A′ ×A A[I])
= Lift(x,A′)× Lift(x,A[I])

Using these maps and projection onto the last factor of the last product we see that
we obtain “difference maps”

Inf(x′/x)× Inf(x′/x) −→ Infx(I) and Lift(x,A′)× Lift(x,A′) −→ Tx(I)
These difference maps satisfy the transitivity rule “(x′

1−x′
2) + (x′

2−x′
3) = x′

1−x′
3”

because
A′ ×A A′ ×A A′

(a1,a2,a3) 7→(g(a1,a2),g(a2,a3))
//

(a1,a2,a3) 7→g(a1,a3)
,,

A[I]×A A[I] = A[I × I]

+
��

A[I]

is commutative. Inverting the string of equivalences above we obtain an action
which is free and transitive provided Inf(x′/x), resp. Lift(x,A′) is nonempty. Note
that Inf(x′/x) is always nonempty as it is a group. □

Remark 21.3 (Functoriality).07YA Assumptions and notation as in Lemma 21.2. Sup-
pose A→ B is a ring map and y = x|Spec(B). Let M ∈ ModA, N ∈ ModB and let
M → N an A-linear map. Then there are canonical maps Infx(M)→ Infy(N) and
Tx(M)→ Ty(N) simply because there is a pullback functor

Lift(x,A[M ])→ Lift(y,B[N ])
coming from the ring map A[M ] → B[N ]. Similarly, given a morphism of de-
formation situations (y,B′ → B) → (x,A′ → A) we obtain a pullback functor
Lift(x,A′) → Lift(y,B′). Since the construction of the action, the addition, and
the scalar multiplication on Infx and Tx use only morphisms in the categories of
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lifts (see proof of Formal Deformation Theory, Lemma 11.4) we see that the con-
structions above are functorial. In other words we obtain A-linear maps

Infx(M)→ Infy(N) and Tx(M)→ Ty(N)
such that the diagrams

Infy(J) // Inf(y′/y)

Infx(I) //

OO

Inf(x′/x)

OO

and

Ty(J)× Lift(y,B′) // Lift(y,B′)

Tx(I)× Lift(x,A′) //

OO

Lift(x,A′)

OO

commute. Here I = Ker(A′ → A), J = Ker(B′ → B), x′ is a lift of x to A′ (which
may not always exist) and y′ = x′|Spec(B′).

Remark 21.4 (Automorphisms).07YB Assumptions and notation as in Lemma 21.2.
Let x′, x′′ be lifts of x to A′. Then we have a composition map

Inf(x′/x)×MorLift(x,A′)(x′, x′′)× Inf(x′′/x) −→ MorLift(x,A′)(x′, x′′).
Since Lift(x,A′) is a groupoid, if MorLift(x,A′)(x′, x′′) is nonempty, then this defines
a simply transitive left action of Inf(x′/x) on MorLift(x,A′)(x′, x′′) and a simply tran-
sitive right action by Inf(x′′/x). Now the lemma says that Inf(x′/x) = Infx(I) =
Inf(x′′/x). We claim that the two actions described above agree via these identifi-
cations. Namely, either x′ ̸∼= x′′ in which the claim is clear, or x′ ∼= x′′ and in that
case we may assume that x′′ = x′ in which case the result follows from the fact
that Inf(x′/x) is commutative. In particular, we obtain a well defined action

Infx(I)×MorLift(x,A′)(x′, x′′) −→ MorLift(x,A′)(x′, x′′)
which is simply transitive as soon as MorLift(x,A′)(x′, x′′) is nonempty.

Remark 21.5.07YE Let S be a scheme. Let X be a category fibred in groupoids over
(Sch/S)fppf . Let A be an S-algebra. There is a notion of a short exact sequence

(x,A′
1 → A)→ (x,A′

2 → A)→ (x,A′
3 → A)

of deformation situations: we ask the corresponding maps between the kernels
Ii = Ker(A′

i → A) give a short exact sequence
0→ I3 → I2 → I1 → 0

of A-modules. Note that in this case the map A′
3 → A′

1 factors through A, hence
there is a canonical isomorphism A′

1 = A[I1].

Lemma 21.6.0DNN Let S be a scheme. Let p : X → Y and q : Z → Y be 1-morphisms
of categories fibred in groupoids over (Sch/S)fppf . Assume X , Y, Z satisfy (RS*).
Let A be an S-algebra and let w be an object of W = X ×Y Z over A. Denote x, y, z
the objects of X ,Y,Z you get from w. For any A-module M there is a 6-term exact
sequence

0 // Infw(M) // Infx(M)⊕ Infz(M) // Infy(M)

ss
Tw(M) // Tx(M)⊕ Tz(M) // Ty(M)

of A-modules.
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Proof. By Lemma 18.3 we see that W satisfies (RS*) and hence Tw(M) and
Infw(M) are defined. The horizontal arrows are defined using the functoriality
of Lemma 21.1.

Definition of the “boundary” map δ : Infy(M) → Tw(M). Choose isomorphisms
p(x) → y and y → q(z) such that w = (x, z, p(x) → y → q(z)) in the description
of the 2-fibre product of Categories, Lemma 35.7 and more precisely Categories,
Lemma 32.3. Let x′, y′, z′, w′ denote the trivial deformation of x, y, z, w over A[M ].
By pullback we get isomorphisms y′ → p(x′) and q(z′) → y′. An element α ∈
Infy(M) is the same thing as an automorphism α : y′ → y′ over A[M ] which
restricts to the identity on y over A. Thus setting

δ(α) = (x′, z′, p(x′)→ y′ α−→ y′ → q(z′))

we obtain an object of Tw(M). This is a map of A-modules by Formal Deformation
Theory, Lemma 11.5.

The rest of the proof is exactly the same as the proof of Formal Deformation Theory,
Lemma 20.1. □

Remark 21.7 (Compatibility with previous tangent spaces).0D18 Let S be a locally
Noetherian scheme. Let X be a category fibred in groupoids over (Sch/S)fppf .
Assume X has (RS*). Let k be a field of finite type over S and let x0 be an object
of X over Spec(k). Then we have equalities of k-vector spaces

TFX ,k,x0 = Tx0(k) and Inf(FX ,k,x0) = Infx0(k)

where the spaces on the left hand side of the equality signs are given in (8.0.1) and
(8.0.2) and the spaces on the right hand side are given by Lemma 21.2.

Remark 21.8 (Canonical element).07YC Assumptions and notation as in Lemma 21.2.
Choose an affine open Spec(Λ) ⊂ S such that Spec(A) → S corresponds to a ring
map Λ→ A. Consider the ring map

A −→ A[ΩA/Λ], a 7−→ (a,dA/Λ(a))

Pulling back x along the corresponding morphism Spec(A[ΩA/Λ]) → Spec(A) we
obtain a deformation xcan of x over A[ΩA/Λ]. We call this the canonical element

xcan ∈ Tx(ΩA/Λ) = Lift(x,A[ΩA/Λ]).

Next, assume that Λ is Noetherian and Λ → A is of finite type. Let k = κ(p) be
a residue field at a finite type point u0 of U = Spec(A). Let x0 = x|u0 . By (RS*)
and the fact that A[k] = A ×k k[k] the space Tx(k) is the tangent space to the
deformation functor FX ,k,x0 . Via

TFU,k,u0 = DerΛ(A, k) = HomA(ΩA/Λ, k)

(see Formal Deformation Theory, Example 11.11) and functoriality of Tx the canon-
ical element produces the map on tangent spaces induced by the object x over U .
Namely, θ ∈ TFU,k,u0 maps to Tx(θ)(xcan) in Tx(k) = TFX ,k,x0 .

Remark 21.9 (Canonical automorphism).07YD Let S be a locally Noetherian scheme.
Let X be a category fibred in groupoids over (Sch/S)fppf . Assume X satisfies
condition (RS*). Let A be an S-algebra such that Spec(A) → S maps into an
affine open and let x, y be objects of X over Spec(A). Further, let A→ B be a ring
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map and let α : x|Spec(B) → y|Spec(B) be a morphism of X over Spec(B). Consider
the ring map

B −→ B[ΩB/A], b 7−→ (b,dB/A(b))
Pulling back α along the corresponding morphism Spec(B[ΩB/A]) → Spec(B) we
obtain a morphism αcan between the pullbacks of x and y over B[ΩB/A]. On
the other hand, we can pullback α by the morphism Spec(B[ΩB/A]) → Spec(B)
corresponding to the injection of B into the first summand of B[ΩB/A]. By the
discussion of Remark 21.4 we can take the difference

φ(x, y, α) = αcan − α|Spec(B[ΩB/A]) ∈ Infx|Spec(B)(ΩB/A).
We will call this the canonical automorphism. It depends on all the ingredients A,
x, y, A→ B and α.

22. Obstruction theories

07YF In this section we describe what an obstruction theory is. Contrary to the spaces of
infinitesimal deformations and infinitesimal automorphisms, an obstruction theory
is an additional piece of data. The formulation is motivated by the results of Lemma
21.2 and Remark 21.3.

Definition 22.1.07YG Let S be a locally Noetherian base. Let X be a category fibred
in groupoids over (Sch/S)fppf . An obstruction theory is given by the following data

(1) for every S-algebra A such that Spec(A)→ S maps into an affine open and
every object x of X over Spec(A) an A-linear functor

Ox : ModA → ModA

of obstruction modules,
(2) for (x,A) as in (1), a ring map A → B, M ∈ ModA, N ∈ ModB , and an

A-linear map M → N an induced A-linear map Ox(M) → Oy(N) where
y = x|Spec(B), and

(3) for every deformation situation (x,A′ → A) an obstruction element ox(A′) ∈
Ox(I) where I = Ker(A′ → A).

These data are subject to the following conditions
(i) the functoriality maps turn the obstruction modules into a functor from

the category of triples (x,A,M) to sets,
(ii) for every morphism of deformation situations (y,B′ → B) → (x,A′ → A)

the element ox(A′) maps to oy(B′), and
(iii) we have

Lift(x,A′) ̸= ∅ ⇔ ox(A′) = 0
for every deformation situation (x,A′ → A).

This last condition explains the terminology. The module Ox(A′) is called the ob-
struction module. The element ox(A′) is the obstruction. Most obstruction theories
have additional properties, and in order to make them useful additional conditions
are needed. Moreover, this is just a sample definition, for example in the definition
we could consider only deformation situations of finite type over S.
One of the main reasons for introducing obstruction theories is to check openness of
versality. An example of this type of result is Lemma 22.2 below. The initial idea
to do this is due to Artin, see the papers of Artin mentioned in the introduction. It
has been taken up for example in the work by Flenner [Fle81], Hall [Hal17], Hall and
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Rydh [HR12], Olsson [Ols06], Olsson and Starr [OS03], and Lieblich [Lie06] (random
order of references). Moreover, for particular categories fibred in groupoids, often
authors develop a little bit of theory adapted to the problem at hand. We will
develop this theory later (insert future reference here).

Lemma 22.2.0CYF This is [Hal17,
Theorem 4.4]

Let S be a locally Noetherian scheme. Let X be a category fibred
in groupoids over (Sch/S)fppf . Assume

(1) ∆ : X → X ×X is representable by algebraic spaces,
(2) X has (RS*),
(3) X is limit preserving,
(4) there exists an obstruction theory9,
(5) for an object x of X over Spec(A) and A-modules Mn, n ≥ 1 we have

(a) Tx(
∏
Mn) =

∏
Tx(Mn),

(b) Ox(
∏
Mn)→

∏
Ox(Mn) is injective.

Then X satisfies openness of versality.

Proof. We prove this by verifying condition (4) of Lemma 20.3. Let (ξn) and (Rn)
be as in Remark 20.2 such that Ker(Rm → Rn) is an ideal of square zero for all
m ≥ n. Set A = R1 and x = ξ1. Denote Mn = Ker(Rn → R1). Then Mn is an
A-module. Set R = limRn. Let

R̃ = {(r1, r2, r3 . . .) ∈
∏

Rn such that all have the same image in A}

Then R̃ → A is surjective with kernel M =
∏
Mn. There is a map R → R̃ and a

map R̃ → A[M ], (r1, r2, r3, . . .) 7→ (r1, r2 − r1, r3 − r2, . . .). Together these give a
short exact sequence

(x,R→ A)→ (x, R̃→ A)→ (x,A[M ])
of deformation situations, see Remark 21.5. The associated sequence of kernels
0 → limMn → M → M → 0 is the canonical sequence computing the limit of the
system of modules (Mn).

Let ox(R̃) ∈ Ox(M) be the obstruction element. Since we have the lifts ξn we see
that ox(R̃) maps to zero in Ox(Mn). By assumption (5)(b) we see that ox(R̃) = 0.
Choose a lift ξ̃ of x to Spec(R̃). Let ξ̃n be the restriction of ξ̃ to Spec(Rn). There
exists elements tn ∈ Tx(Mn) such that tn · ξ̃n = ξn by Lemma 21.2 part (2)(b). By
assumption (5)(a) we can find t ∈ Tx(M) mapping to tn in Tx(Mn). After replacing
ξ̃ by t · ξ̃ we find that ξ̃ restricts to ξn over Spec(Rn) for all n. In particular, since
ξn+1 restricts to ξn over Spec(Rn), the restriction ξ of ξ̃ to Spec(A[M ]) has the
property that it restricts to the trivial deformation over Spec(A[Mn]) for all n.
Hence by assumption (5)(a) we find that ξ is the trivial deformation of x. By
axiom (RS*) applied to R = R̃ ×A[M ] A this implies that ξ̃ is the pullback of a
deformation ξ of x over R. This finishes the proof. □

Example 22.3.07YH Let S = Spec(Λ) for some Noetherian ring Λ. Let W → S be a
morphism of schemes. Let F be a quasi-coherent OW -module flat over S. Consider
the functor

F : (Sch/S)opp
fppf −→ Sets, T/S −→ H0(WT ,FT )

9Analyzing the proof the reader sees that in fact it suffices to check the functoriality (ii) of
obstruction classes in Definition 22.1 for maps (y, B′ → B) → (x, A′ → A) with B = A and y = x.
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where WT = T ×S W is the base change and FT is the pullback of F to WT . If
T = Spec(A) we will write WT = WA, etc. Let X → (Sch/S)fppf be the category
fibred in groupoids associated to F . Then X has an obstruction theory. Namely,

(1) given A over Λ and x ∈ H0(WA,FA) we set Ox(M) = H1(WA,FA⊗A M),
(2) given a deformation situation (x,A′ → A) we let ox(A′) ∈ Ox(A) be the

image of x under the boundary map

H0(WA,FA) −→ H1(WA,FA ⊗A I)

coming from the short exact sequence of modules

0→ FA ⊗A I → FA′ → FA → 0.

We have omitted some details, in particular the construction of the short exact
sequence above (it uses that WA and WA′ have the same underlying topological
space) and the explanation for why flatness of F over S implies that the sequence
above is short exact.

Example 22.4 (Key example).07YI Let S = Spec(Λ) for some Noetherian ring Λ.
Say X = (Sch/X)fppf with X = Spec(R) and R = Λ[x1, . . . , xn]/J . The naive
cotangent complex NLR/Λ is (canonically) homotopy equivalent to

J/J2 −→
⊕

i=1,...,n
Rdxi,

see Algebra, Lemma 134.2. Consider a deformation situation (x,A′ → A). Denote
I the kernel of A′ → A. The object x corresponds to (a1, . . . , an) with ai ∈ A such
that f(a1, . . . , an) = 0 in A for all f ∈ J . Set

Ox(A′) = HomR(J/J2, I)/HomR(R⊕n, I)
= Ext1

R(NLR/Λ, I)
= Ext1

A(NLR/Λ⊗RA, I).

Choose lifts a′
i ∈ A′ of ai in A. Then ox(A′) is the class of the map J/J2 → I

defined by sending f ∈ J to f(a′
1, . . . , a

′
n) ∈ I. We omit the verification that ox(A′)

is independent of choices. It is clear that if ox(A′) = 0 then the map lifts. Finally,
functoriality is straightforward. Thus we obtain an obstruction theory. We observe
that ox(A′) can be described a bit more canonically as the composition

NLR/Λ → NLA/Λ → NLA/A′ = I[1]

in D(A), see Algebra, Lemma 134.6 for the last identification.

23. Naive obstruction theories

07YJ The title of this section refers to the fact that we will use the naive cotangent
complex in this section. Let (x,A′ → A) be a deformation situation for a given
category fibred in groupoids over a locally Noetherian scheme S. The key Example
22.4 suggests that any obstruction theory should be closely related to maps in D(A)
with target the naive cotangent complex of A. Working this out we find a criterion
for versality in Lemma 23.3 which leads to a criterion for openness of versality in
Lemma 23.4. We introduce a notion of a naive obstruction theory in Definition
23.5 to try to formalize the notion a bit further.
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In the following we will use the naive cotangent complex as defined in Algebra,
Section 134. In particular, if A′ → A is a surjection of Λ-algebras with square zero
kernel I, then there are maps

NLA′/Λ → NLA/Λ → NLA/A′

whose composition is homotopy equivalent to zero (see Algebra, Remark 134.5).
This doesn’t form a distinguished triangle in general as we are using the naive
cotangent complex and not the full one. There is a homotopy equivalenceNLA/A′ →
I[1] (the complex consisting of I placed in degree −1, see Algebra, Lemma 134.6).
Finally, note that there is a canonical map NLA/Λ → ΩA/Λ.

Lemma 23.1.07YK Let A → k be a ring map with k a field. Let E ∈ D−(A). Then
Exti

A(E, k) = Homk(H−i(E ⊗L k), k).

Proof. Omitted. Hint: Replace E by a bounded above complex of free A-modules
and compute both sides. □

Lemma 23.2.07YL Let Λ → A → k be finite type ring maps of Noetherian rings with
k = κ(p) for some prime p of A. Let ξ : E → NLA/Λ be morphism of D−(A)
such that H−1(ξ ⊗L k) is not surjective. Then there exists a surjection A′ → A of
Λ-algebras such that

(a) I = Ker(A′ → A) has square zero and is isomorphic to k as an A-module,
(b) ΩA′/Λ ⊗ k = ΩA/Λ ⊗ k, and
(c) E → NLA/A′ is zero.

Proof. Let f ∈ A, f ̸∈ p. Suppose that A′′ → Af satisfies (a), (b), (c) for the
induced map E ⊗A Af → NLAf /Λ, see Algebra, Lemma 134.13. Then we can set
A′ = A′′ ×Af

A and get a solution. Namely, it is clear that A′ → A satisfies (a)
because Ker(A′ → A) = Ker(A′′ → A) = I. Pick f ′′ ∈ A′′ lifting f . Then the
localization of A′ at (f ′′, f) is isomorphic to A′′ (for example by More on Algebra,
Lemma 5.3). Thus (b) and (c) are clear for A′ too. In this way we see that we
may replace A by the localization Af (finitely many times). In particular (after
such a replacement) we may assume that p is a maximal ideal of A, see Morphisms,
Lemma 16.1.
Choose a presentation A = Λ[x1, . . . , xn]/J . Then NLA/Λ is (canonically) homo-
topy equivalent to

J/J2 −→
⊕

i=1,...,n
Adxi,

see Algebra, Lemma 134.2. After localizing if necessary (using Nakayama’s lemma)
we can choose generators f1, . . . , fm of J such that fj⊗1 form a basis for J/J2⊗Ak.
Moreover, after renumbering, we can assume that the images of df1, . . . ,dfr form
a basis for the image of J/J2 ⊗ k →

⊕
kdxi and that dfr+1, . . . ,dfm map to zero

in
⊕
kdxi. With these choices the space

H−1(NLA/Λ⊗L
Ak) = H−1(NLA/Λ⊗Ak)

has basis fr+1⊗ 1, . . . , fm⊗ 1. Changing basis once again we may assume that the
image of H−1(ξ ⊗L k) is contained in the k-span of fr+1 ⊗ 1, . . . , fm−1 ⊗ 1. Set

A′ = Λ[x1, . . . , xn]/(f1, . . . , fm−1, pfm)
By construction A′ → A satisfies (a). Since dfm maps to zero in

⊕
kdxi we see that

(b) holds. Finally, by construction the induced map E → NLA/A′ = I[1] induces
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the zero map H−1(E⊗L
A k)→ I⊗A k. By Lemma 23.1 we see that the composition

is zero. □

The following lemma is our key technical result.

Lemma 23.3.07YM Let S be a locally Noetherian scheme. Let X be a category fibred in
groupoids over (Sch/S)fppf satisfying (RS*). Let U = Spec(A) be an affine scheme
of finite type over S which maps into an affine open Spec(Λ). Let x be an object of
X over U . Let ξ : E → NLA/Λ be a morphism of D−(A). Assume

(i) for every deformation situation (x,A′ → A) we have: x lifts to Spec(A′) if
and only if E → NLA/Λ → NLA/A′ is zero, and

(ii) there is an isomorphism of functors Tx(−) → Ext0
A(E,−) such that E →

NLA/Λ → Ω1
A/Λ corresponds to the canonical element (see Remark 21.8).

Let u0 ∈ U be a finite type point with residue field k = κ(u0). Consider the following
statements

(1) x is versal at u0, and
(2) ξ : E → NLA/Λ induces a surjection H−1(E ⊗L

A k) → H−1(NLA/Λ⊗L
Ak)

and an injection H0(E ⊗L
A k)→ H0(NLA/Λ⊗L

Ak).
Then we always have (2) ⇒ (1) and we have (1) ⇒ (2) if u0 is a closed point.

Proof. Let p = Ker(A→ k) be the prime corresponding to u0.
Assume that x versal at u0 and that u0 is a closed point of U . If H−1(ξ ⊗L

A k) is
not surjective, then let A′ → A be an extension with kernel I as in Lemma 23.2.
Because u0 is a closed point, we see that I is a finite A-module, hence that A′ is a
finite type Λ-algebra (this fails if u0 is not closed). In particular A′ is Noetherian.
By property (c) for A′ and (i) for ξ we see that x lifts to an object x′ over A′. Let
p′ ⊂ A′ be kernel of the surjective map to k. By Artin-Rees (Algebra, Lemma 51.2)
there exists an n > 1 such that (p′)n ∩ I = 0. Then we see that

B′ = A′/(p′)n −→ A/pn = B

is a small, essential extension of local Artinian rings, see Formal Deformation The-
ory, Lemma 3.12. On the other hand, as x is versal at u0 and as x′|Spec(B′) is a lift
of x|Spec(B), there exists an integer m ≥ n and a map q : A/pm → B′ such that the
composition A/pm → B′ → B is the quotient map. Since the maximal ideal of B′

has nth power equal to zero, this q factors through B which contradicts the fact
that B′ → B is an essential surjection. This contradiction shows that H−1(ξ⊗L

A k)
is surjective.
Assume that x versal at u0. By Lemma 23.1 the map H0(ξ ⊗L

A k) is dual to the
map Ext0

A(NLA/Λ, k)→ Ext0
A(E, k). Note that

Ext0
A(NLA/Λ, k) = DerΛ(A, k) and Tx(k) = Ext0

A(E, k)

Condition (ii) assures us the map Ext0
A(NLA/Λ, k) → Ext0

A(E, k) sends a tangent
vector θ to U at u0 to the corresponding infinitesimal deformation of x0, see Remark
21.8. Hence if x is versal, then this map is surjective, see Formal Deformation
Theory, Lemma 13.2. Hence H0(ξ ⊗L

A k) is injective. This finishes the proof of (1)
⇒ (2) in case u0 is a closed point.
For the rest of the proof assume H−1(E ⊗L

A k) → H−1(NLA/Λ⊗L
Ak) is surjective

and H0(E ⊗L
A k) → H0(NLA/Λ⊗L

Ak) injective. Set R = A∧
p and let η be the
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formal object over R associated to x|Spec(R). The map dη on tangent spaces is
surjective because it is identified with the dual of the injective map H0(E ⊗L

A

k)→ H0(NLA/Λ⊗L
Ak) (see previous paragraph). According to Formal Deformation

Theory, Lemma 13.2 it suffices to prove the following: Let C ′ → C be a small
extension of finite type Artinian local Λ-algebras with residue field k. Let R→ C be
a Λ-algebra map compatible with identifications of residue fields. Let y = x|Spec(C)
and let y′ be a lift of y to C ′. To show: we can lift the Λ-algebra map R → C to
R→ C ′.
Observe that it suffices to lift the Λ-algebra map A → C. Let I = Ker(C ′ → C).
Note that I is a 1-dimensional k-vector space. The obstruction ob to lifting A→ C
is an element of Ext1

A(NLA/Λ, I), see Example 22.4. By Lemma 23.1 and our
assumption the map ξ induces an injection

Ext1
A(NLA/Λ, I) −→ Ext1

A(E, I)

By the construction of ob and (i) the image of ob in Ext1
A(E, I) is the obstruction

to lifting x to A ×C C ′. By (RS*) the fact that y/C lifts to y′/C ′ implies that x
lifts to A×C C ′. Hence ob = 0 and we are done. □

The key lemma above allows us to conclude that we have openness of versality in
some cases.

Lemma 23.4.07YN Let S be a locally Noetherian scheme. Let X be a category fibred in
groupoids over (Sch/S)fppf satisfying (RS*). Let U = Spec(A) be an affine scheme
of finite type over S which maps into an affine open Spec(Λ). Let x be an object of
X over U . Let ξ : E → NLA/Λ be a morphism of D−(A). Assume

(i) for every deformation situation (x,A′ → A) we have: x lifts to Spec(A′) if
and only if E → NLA/Λ → NLA/A′ is zero,

(ii) there is an isomorphism of functors Tx(−) → Ext0
A(E,−) such that E →

NLA/Λ → Ω1
A/Λ corresponds to the canonical element (see Remark 21.8),

(iii) the cohomology groups of E are finite A-modules.
If x is versal at a closed point u0 ∈ U , then there exists an open neighbourhood
u0 ∈ U ′ ⊂ U such that x is versal at every finite type point of U ′.

Proof. Let C be the cone of ξ so that we have a distinguished triangle
E → NLA/Λ → C → E[1]

in D−(A). By Lemma 23.3 the assumption that x is versal at u0 implies that
H−1(C ⊗L k) = 0. By More on Algebra, Lemma 76.4 there exists an f ∈ A not
contained in the prime corresponding to u0 such that H−1(C ⊗L

A M) = 0 for any
Af -module M . Using Lemma 23.3 again we see that we have versality for all finite
type points of the open D(f) ⊂ U . □

The technical lemmas above suggest the following definition.

Definition 23.5.07YP Let S be a locally Noetherian base. Let X be a category fibred
in groupoids over (Sch/S)fppf . Assume that X satisfies (RS*). A naive obstruction
theory is given by the following data

(1)07YQ for every S-algebra A such that Spec(A) → S maps into an affine open
Spec(Λ) ⊂ S and every object x of X over Spec(A) we are given an object
Ex ∈ D−(A) and a map ξx : E → NLA/Λ,

https://stacks.math.columbia.edu/tag/07YN
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(2)07YR given (x,A) as in (1) there are transformations of functors

Infx(−)→ Ext−1
A (Ex,−) and Tx(−)→ Ext0

A(Ex,−)
(3)07YS for (x,A) as in (1) and a ring map A → B setting y = x|Spec(B) there is a

functoriality map Ex → Ey in D(A).
These data are subject to the following conditions

(i) in the situation of (3) the diagram

Ey
ξy

// NLB/Λ

Ex

OO

ξx // NLA/Λ

OO

is commutative in D(A),
(ii) given (x,A) as in (1) and A → B → C setting y = x|Spec(B) and z =

x|Spec(C) the composition of the functoriality maps Ex → Ey and Ey → Ez

is the functoriality map Ex → Ez,
(iii) the maps of (2) are isomorphisms compatible with the functoriality maps

and the maps of Remark 21.3,
(iv) the composition Ex → NLA/Λ → ΩA/Λ corresponds to the canonical ele-

ment of Tx(ΩA/Λ) = Ext0(Ex,ΩA/Λ), see Remark 21.8,
(v) given a deformation situation (x,A′ → A) with I = Ker(A′ → A) the

composition Ex → NLA/Λ → NLA/A′ is zero in

HomA(Ex, NLA/Λ) = Ext0
A(Ex, NLA/A′) = Ext1

A(Ex, I)
if and only if x lifts to A′.

Thus we see in particular that we obtain an obstruction theory as in Section 22 by
setting Ox(−) = Ext1

A(Ex,−).

Lemma 23.6.07YT Let S and X be as in Definition 23.5 and let X be endowed with a
naive obstruction theory. Let A→ B and y → x be as in (3). Let k be a B-algebra
which is a field. Then the functoriality map Ex → Ey induces bijections

Hi(Ex ⊗L
A k)→ Hi(Ey ⊗L

B k)
for i = 0, 1.

Proof. Let z = x|Spec(k). Then (RS*) implies that
Lift(x,A[k]) = Lift(z, k[k]) and Lift(y,B[k]) = Lift(z, k[k])

because A[k] = A ×k k[k] and B[k] = B ×k k[k]. Hence the properties of a naive
obstruction theory imply that the functoriality map Ex → Ey induces bijections
Exti

A(Ex, k) → Exti
B(Ey, k) for i = −1, 0. By Lemma 23.1 our maps Hi(Ex ⊗L

A

k) → Hi(Ey ⊗L
B k), i = 0, 1 induce isomorphisms on dual vector spaces hence are

isomorphisms. □

Lemma 23.7.07YU Let S be a locally Noetherian scheme. Let p : X → (Sch/S)opp
fppf

be a category fibred in groupoids. Assume that X satisfies (RS*) and that X has
a naive obstruction theory. Then openness of versality holds for X provided the
complexes Ex of Definition 23.5 have finitely generated cohomology groups for pairs
(A, x) where A is of finite type over S.

https://stacks.math.columbia.edu/tag/07YT
https://stacks.math.columbia.edu/tag/07YU
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Proof. Let U be a scheme locally of finite type over S, let x be an object of X over
U , and let u0 be a finite type point of U such that x is versal at u0. We may first
shrink U to an affine scheme such that u0 is a closed point and such that U → S
maps into an affine open Spec(Λ). Say U = Spec(A). Let ξx : Ex → NLA/Λ be the
obstruction map. At this point we may apply Lemma 23.4 to conclude. □

24. A dual notion

07YV Let (x,A′ → A) be a deformation situation for a given category X fibred in
groupoids over a locally Noetherian scheme S. Assume X has an obstruction the-
ory, see Definition 22.1. In practice one often has a complex K• of A-modules and
isomorphisms of functors

Infx(−)→ H0(K• ⊗L
A −), Tx(−)→ H1(K• ⊗L

A −), Ox(−)→ H2(K• ⊗L
A −)

In this section we formalize this a little bit and show how this leads to a verification
of openness of versality in some cases.

Example 24.1.07YW Let Λ, S,W,F be as in Example 22.3. Assume that W → S is
proper and F coherent. By Cohomology of Schemes, Remark 22.2 there exists a
finite complex of finite projective Λ-modules N• which universally computes the
cohomology of F . In particular the obstruction spaces from Example 22.3 are
Ox(M) = H1(N• ⊗Λ M). Hence with K• = N• ⊗Λ A[−1] we see that Ox(M) =
H2(K• ⊗L

A M).

Situation 24.2.07YX Let S be a locally Noetherian scheme. Let X be a category fibred
in groupoids over (Sch/S)fppf . Assume that X has (RS*) so that we can speak of
the functor Tx(−), see Lemma 21.2. Let U = Spec(A) be an affine scheme of finite
type over S which maps into an affine open Spec(Λ). Let x be an object of X over
U . Assume we are given

(1) a complex of A-modules K•,
(2) a transformation of functors Tx(−)→ H1(K• ⊗L

A −),
(3) for every deformation situation (x,A′ → A) with kernel I = Ker(A′ → A)

an element ox(A′) ∈ H2(K• ⊗L
A I)

satisfying the following (minimal) conditions
(i) the transformation Tx(−)→ H1(K• ⊗L

A −) is an isomorphism,
(ii) given a morphism (x,A′′ → A)→ (x,A′ → A) of deformation situations the

element ox(A′) maps to the element ox(A′′) via the map H2(K• ⊗L
A I) →

H2(K• ⊗L
A I ′) where I ′ = Ker(A′′ → A), and

(iii) x lifts to an object over Spec(A′) if and only if ox(A′) = 0.
It is possible to incorporate infinitesimal automorphisms as well, but we refrain
from doing so in order to get the sharpest possible result.

In Situation 24.2 an important role will be played by K• ⊗L
A NLA/Λ. Suppose we

are given an element ξ ∈ H1(K•⊗L
ANLA/Λ). Then (1) for any surjection A′ → A of

Λ-algebras with kernel I of square zero the canonical map NLA/Λ → NLA/A′ = I[1]
sends ξ to an element ξA′ ∈ H2(K• ⊗L

A I) and (2) the map NLA/Λ → ΩA/Λ sends
ξ to an element ξcan of H1(K• ⊗L

A ΩA/Λ).

Lemma 24.3.07YY In Situation 24.2. Assume furthermore that

https://stacks.math.columbia.edu/tag/07YW
https://stacks.math.columbia.edu/tag/07YX
https://stacks.math.columbia.edu/tag/07YY
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(iv) given a short exact sequence of deformation situations as in Remark 21.5
and a lift x′

2 ∈ Lift(x,A′
2) then ox(A′

3) ∈ H2(K• ⊗L
A I3) equals ∂θ where

θ ∈ H1(K•⊗L
AI1) is the element corresponding to x′

2|Spec(A′
1) via A′

1 = A[I1]
and the given map Tx(−)→ H1(K• ⊗L

A −).
In this case there exists an element ξ ∈ H1(K• ⊗L

A NLA/Λ) such that
(1) for every deformation situation (x,A′ → A) we have ξA′ = ox(A′), and
(2) ξcan matches the canonical element of Remark 21.8 via the given transfor-

mation Tx(−)→ H1(K• ⊗L
A −).

Proof. Choose a α : Λ[x1, . . . , xn] → A with kernel J . Write P = Λ[x1, . . . , xn].
In the rest of this proof we work with

NL(α) = (J/J2 −→
⊕

Adxi)

which is permissible by Algebra, Lemma 134.2 and More on Algebra, Lemma 58.2.
Consider the element ox(P/J2) ∈ H2(K• ⊗L

A J/J2) and consider the quotient

C = (P/J2 ×
⊕

Adxi)/(J/J2)

where J/J2 is embedded diagonally. Note that C → A is a surjection with kernel⊕
Adxi. Moreover there is a section A → C to C → A given by mapping the

class of f ∈ P to the class of (f, df) in the pushout. For later use, denote xC the
pullback of x along the corresponding morphism Spec(C)→ Spec(A). Thus we see
that ox(C) = 0. We conclude that ox(P/J2) maps to zero in H2(K•⊗L

A

⊕
Adxi). It

follows that there exists some element ξ ∈ H1(K•⊗L
ANL(α)) mapping to ox(P/J2).

Note that for any deformation situation (x,A′ → A) there exists a Λ-algebra map
P/J2 → A′ compatible with the augmentations to A. Hence the element ξ satisfies
the first property of the lemma by construction and property (ii) of Situation 24.2.

Note that our choice of ξ was well defined up to the choice of an element of
H1(K• ⊗L

A

⊕
Adxi). We will show that after modifying ξ by an element of the

aforementioned group we can arrange it so that the second assertion of the lemma
is true. Let C ′ ⊂ C be the image of P/J2 under the Λ-algebra map P/J2 → C
(inclusion of first factor). Observe that Ker(C ′ → A) = Im(J/J2 →

⊕
Adxi). Set

C = A[ΩA/Λ]. The map P/J2 ×
⊕
Adxi → C, (f,

∑
fidxi) 7→ (f mod J,

∑
fidxi)

factors through a surjective map C → C. Then

(x,C → A)→ (x,C → A)→ (x,C ′ → A)

is a short exact sequence of deformation situations. The associated splitting C =
A[ΩA/Λ] (from Remark 21.5) equals the given splitting above. Moreover, the section
A → C composed with the map C → C is the map (1,d) : A → A[ΩA/Λ] of
Remark 21.8. Thus xC restricts to the canonical element xcan of Tx(ΩA/Λ) =
Lift(x,A[ΩA/Λ]). By condition (iv) we conclude that ox(P/J2) maps to ∂xcan in

H1(K• ⊗L
A Im(J/J2 →

⊕
Adxi))

By construction ξ maps to ox(P/J2). It follows that xcan and ξcan map to the
same element in the displayed group which means (by the long exact cohomology
sequence) that they differ by an element of H1(K• ⊗L

A

⊕
Adxi) as desired. □
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Lemma 24.4.07YZ In Situation 24.2 assume that (iv) of Lemma 24.3 holds and that
K• is a perfect object of D(A). In this case, if x is versal at a closed point u0 ∈ U
then there exists an open neighbourhood u0 ∈ U ′ ⊂ U such that x is versal at every
finite type point of U ′.

Proof. We may assume that K• is a finite complex of finite projective A-modules.
Thus the derived tensor product with K• is the same as simply tensoring with K•.
Let E• be the dual perfect complex to K•, see More on Algebra, Lemma 74.15.
(So En = HomA(K−n, A) with differentials the transpose of the differentials of
K•.) Let E ∈ D−(A) denote the object represented by the complex E•[−1]. Let
ξ ∈ H1(Tot(K•⊗ANLA/Λ)) be the element constructed in Lemma 24.3 and denote
ξ : E = E•[−1]→ NLA/Λ the corresponding map (loc.cit.). We claim that the pair
(E, ξ) satisfies all the assumptions of Lemma 23.4 which finishes the proof.
Namely, assumption (i) of Lemma 23.4 follows from conclusion (1) of Lemma 24.3
and the fact that H2(K•⊗L

A−) = Ext1(E,−) by loc.cit. Assumption (ii) of Lemma
23.4 follows from conclusion (2) of Lemma 24.3 and the fact that H1(K• ⊗L

A −) =
Ext0(E,−) by loc.cit. Assumption (iii) of Lemma 23.4 is clear. □

25. Limit preserving functors on Noetherian schemes

0GE1 It is sometimes convenient to consider functors or stacks defined only on the full
subcategory of (locally) Noetherian schemes. In this section we discuss this in the
case of algebraic spaces.
Let S be a locally Noetherian scheme. Let us be a bit pedantic in order to line up our
categories correctly; people who are ignoring set theoretical issues can just replace
the sets of schemes we choose by the collection of all schemes in what follows. As in
Topologies, Remark 11.1 we choose a category Schα of schemes containing S such
that we obtain big sites (Sch/S)Zar, (Sch/S)étale, (Sch/S)smooth, (Sch/S)syntomic,
and (Sch/S)fppf all with the same underlying category Schα/S. Denote

Noetherianα ⊂ Schα

the full subcategory consisting of locally Noetherian schemes. This determines a
full subcategory

Noetherianα/S ⊂ Schα/S

For τ ∈ {Zariski, étale, smooth, syntomic, fppf} we have
(1) if f : X → Y is a morphism of Schα/S with Y in Noetherianα/S and f

locally of finite type, then X is in Noetherianα/S,
(2) for morphisms f : X → Y and g : Z → Y of Noetherianα/S with f locally

of finite type the fibre product X ×Y Z in Noetherianα/S exists and agrees
with the fibre product in Schα/S,

(3) if {Xi → X}i∈I is a covering of (Sch/S)τ and X is in Noetherianα/S, then
the objects Xi are in Noetherianα/S

(4) the category Noetherianα/S endowed with the set of coverings of (Sch/S)τ

whose objects are in Noetherianα/S is a site we will denote (Noetherian/S)τ ,
(5) the inclusion functor (Noetherian/S)τ → (Sch/S)τ is fully faithful, contin-

uous, and cocontinuous.
By Sites, Lemmas 21.1 and 21.5 we obtain a morphism of topoi

gτ : Sh((Noetherian/S)τ ) −→ Sh((Sch/S)τ )

https://stacks.math.columbia.edu/tag/07YZ
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whose pullback functor is the restriction of sheaves along the inclusion functor
(Noetherian/S)τ → (Sch/S)τ .

Remark 25.1 (Warning).0GE2 The site (Noetherian/S)τ does not have fibre products.
Hence we have to be careful in working with sheaves. For example, the continuous
inclusion functor (Noetherian/S)τ → (Sch/S)τ does not define a morphism of sites.
See Examples, Section 59 for an example in case τ = fppf .

Let F : (Noetherian/S)opp
τ → Sets be a functor. We say F is limit preserving if

for any directed limit of affine schemes X = limXi of (Noetherian/S)τ we have
F (X) = colimF (Xi).

Lemma 25.2.0GE3 Let τ ∈ {Zariski, étale, smooth, syntomic, fppf}. Restricting
along the inclusion functor (Noetherian/S)τ → (Sch/S)τ defines an equivalence
of categories between

(1) the category of limit preserving sheaves on (Sch/S)τ and
(2) the category of limit preserving sheaves on (Noetherian/S)τ

Proof. Let F : (Noetherian/S)opp
τ → Sets be a functor which is both limit pre-

serving and a sheaf. By Topologies, Lemmas 13.1 and 13.3 there exists a unique
functor F ′ : (Sch/S)opp

τ → Sets which is limit preserving, a sheaf, and restricts to
F . In fact, the construction of F ′ in Topologies, Lemma 13.1 is functorial in F and
this construction is a quasi-inverse to restriction. Some details omitted. □

Lemma 25.3.0GE4 Let X be an object of (Noetherian/S)τ . If the functor of points hX :
(Noetherian/S)opp

τ → Sets is limit preserving, then X is locally of finite presentation
over S.

Proof. Let V ⊂ X be an affine open subscheme which maps into an affine open
U ⊂ S. We may write V = limVi as a directed limit of affine schemes Vi of finite
presentation over U , see Algebra, Lemma 127.2. By assumption, the arrow V → X
factors as V → Vi → X for some i. After increasing i we may assume Vi → X
factors through V as the inverse image of V ⊂ X in Vi eventually becomes equal to
Vi by Limits, Lemma 4.11. Then the identity morphism V → V factors through Vi

for some i in the category of schemes over U . Thus V → U is of finite presentation;
the corresponding algebra fact is that if B is an A-algebra such that id : B → B
factors through a finitely presented A-algebra, then B is of finite presentation over
A (nice exercise). Hence X is locally of finite presentation over S. □

The following lemma has a variant for transformations representable by algebraic
spaces.

Lemma 25.4.0GE5 Let τ ∈ {Zariski, étale, smooth, syntomic, fppf}. Let F ′, G′ :
(Sch/S)opp

τ → Sets be limit preserving and sheaves. Let a′ : F ′ → G′ be a trans-
formation of functors. Denote a : F → G the restriction of a′ : F ′ → G′ to
(Noetherian/S)τ . The following are equivalent

(1) a′ is representable (as a transformation of functors, see Categories, Defini-
tion 6.4), and

(2) for every object V of (Noetherian/S)τ and every map V → G the fibre
product F ×G V : (Noetherian/S)opp

τ → Sets is a representable functor, and
(3) same as in (2) but only for V affine finite type over S mapping into an

affine open of S.

https://stacks.math.columbia.edu/tag/0GE2
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https://stacks.math.columbia.edu/tag/0GE5
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Proof. Assume (1). By Limits of Spaces, Lemma 3.4 the transformation a′ is limit
preserving10. Take ξ : V → G as in (2). Denote V ′ = V but viewed as an object of
(Sch/S)τ . Since G is the restriction of G′ to (Noetherian/S)τ we see that ξ ∈ G(V )
corresponds to ξ′ ∈ G′(V ′). By assumption V ′ ×ξ′,G′ F ′ is representable by a
scheme U ′. The morphism of schemes U ′ → V ′ corresponding to the projection
V ′ ×ξ′,G′ F ′ → V ′ is locally of finite presentation by Limits of Spaces, Lemma 3.5
and Limits, Proposition 6.1. Hence U ′ is a locally Noetherian scheme and therefore
U ′ is isomorphic to an object U of (Noetherian/S)τ . Then U represents F ×G V as
desired.

The implication (2) ⇒ (3) is immediate. Assume (3). We will prove (1). Let
T be an object of (Sch/S)τ and let T → G′ be a morphism. We have to show
the functor F ′ ×G′ T is representable by a scheme X over T . Let B be the set
of affine opens of T which map into an affine open of S. This is a basis for the
topology of T . Below we will show that for W ∈ B the fibre product F ′ ×G′ W
is representable by a scheme XW over W . If W1 ⊂ W2 in B, then we obtain an
isomorphism XW1 → XW2 ×W2 W1 because both XW1 and XW2 ×W2 W1 represent
the functor F ′ ×G′ W1. These isomorphisms are canonical and satisfy the cocycle
condition mentioned in Constructions, Lemma 2.1. Hence we can glue the schemes
XW to a scheme X over T . Compatibility of the glueing maps with the maps
XW → F ′ provide us with a map X → F ′. The resulting map X → F ′×G′ T is an
isomorphism as we may check this locally on T (as source and target of this arrow
are sheaves for the Zariski topology).

Let W be an affine scheme which maps into an affine open U ⊂ S. Let W → G′

be a map. Still assuming (3) we have to show that F ′ ×G′ W is representable by
a scheme. We may write W = limV ′

i as a directed limit of affine schemes V ′
i of

finite presentation over U , see Algebra, Lemma 127.2. Since V ′
i is of finite type

over an Noetherian scheme, we see that V ′
i is a Noetherian scheme. Denote Vi = V ′

i

but viewed as an object of (Noetherian/S)τ . As G′ is limit preserving can choose
an i and a map V ′

i → G′ such that W → G′ is the composition W → V ′
i →

G′. Since G is the restriction of G′ to (Noetherian/S)τ the morphism V ′
i → G′

is the same thing as a morphism Vi → G (see above). By assumption (3) the
functor F ×G Vi is representable by an object Xi of (Noetherian/S)τ . The functor
F ×G Vi is limit preserving as it is the restriction of F ′ ×G′ V ′

i and this functor
is limit preserving by Limits of Spaces, Lemma 3.6, the assumption that F ′ and
G′ are limit preserving, and Limits, Remark 6.2 which tells us that the functor of
points of V ′

i is limit preserving. By Lemma 25.3 we conclude that Xi is locally of
finite presentation over S. Denote X ′

i = Xi but viewed as an object of (Sch/S)τ .
Then we see that F ′ ×G′ V ′

i and the functors of points hX′
i

are both extensions of
hXi : (Noetherian/S)opp

τ → Sets to limit preserving sheaves on (Sch/S)τ . By the
equivalence of categories of Lemma 25.2 we deduce that X ′

i represents F ′ ×G′ V ′
i .

Then finally
F ′ ×G′ W = F ′ ×G′ V ′

i ×V ′
i
W = X ′

i ×V ′
i
W

is representable as desired. □

10This makes sense even if τ ̸= fppf as the underlying category of (Sch/S)τ equals the
underlying category of (Sch/S)fppf and the statement doesn’t refer to the topology.
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26. Algebraic spaces in the Noetherian setting

0GE6 Let S be a locally Noetherian scheme. Let (Noetherian/S)étale ⊂ (Sch/S)étale

denote the site studied in Section 25. Let F : (Noetherian/S)opp
étale → Sets be a

functor, i.e., F is a presheaf on (Noetherian/S)étale. In this setting all the axioms
[-1], [0], [1], [2], [3], [4], [5] of Section 15 make sense. We will review them one by
one and make sure the reader knows exactly what we mean.

Axiom [-1]. This is a set theoretic condition to be ignored by readers who are
not interested in set theoretic questions. It makes sense for F since it concerns
the evaluation of F on spectra of fields of finite type over S which are objects of
(Noetherian/S)étale.

Axiom [0]. This is the axiom that F is a sheaf on (Noetherian/S)opp
étale, i.e., satisfies

the sheaf condition for étale coverings.

Axiom [1]. This is the axiom that F is limit preserving as defined in Section 25:
for any directed limit of affine schemes X = limXi of (Noetherian/S)étale we have
F (X) = colimF (Xi).

Axiom [2]. This is the axiom that F satisfies the Rim-Schlessinger condition (RS).
Looking at the definition of condition (RS) in Definition 5.1 and the discussion in
Section 15 we see that this means: given any pushout Y ′ = Y ⨿X X ′ of schemes of
finite type over S where Y,X,X ′ are spectra of Artinian local rings, then

F (Y ⨿X X ′)→ F (Y )×F (X) F (X ′)

is a bijection. This condition makes sense as the schemes X, X ′, Y , and Y ′ are in
(Noetherian/S)étale since they are of finite type over S.

Axiom [3]. This is the axiom that every tangent space TFk,x0 is finite dimensional.
This makes sense as the tangent spaces TFk,x0 are constructed from evaluations
of F at Spec(k) and Spec(k[ϵ]) with k a field of finite type over S and hence are
obtained by evaluating at objects of the category (Noetherian/S)étale.

Axiom [4]. This is axiom that the every formal object is effective. Looking at the
discussion in Sections 9 and 15 we see that this involves evaluating our functor at
Noetherian schemes only and hence this condition makes sense for F .

Axiom [5]. This is the axiom stating that F satisfies openness of versality. Recall
that this means the following: Given a scheme U locally of finite type over S, given
x ∈ F (U), and given a finite type point u0 ∈ U such that x is versal at u0, then
there exists an open neighbourhood u0 ∈ U ′ ⊂ U such that x is versal at every
finite type point of U ′. As before, verifying this only involves evaluating our functor
at Noetherian schemes.

Proposition 26.1.0GE7 Let S be a locally Noetherian scheme. Let F : (Noetherian/S)opp
étale →

Sets be a functor. Assume that
(1) ∆ : F → F × F is representable (as a transformation of functors, see

Categories, Definition 6.4),
(2) F satisfies axioms [-1], [0], [1], [2], [3], [4], [5] (see above), and
(3) OS,s is a G-ring for all finite type points s of S.

Then there exists a unique algebraic space F ′ : (Sch/S)opp
fppf → Sets whose restric-

tion to (Noetherian/S)étale is F (see proof for elucidation).

https://stacks.math.columbia.edu/tag/0GE7
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Proof. Recall that the sites (Sch/S)fppf and (Sch/S)étale have the same under-
lying category, see discussion in Section 25. Similarly the sites (Noetherian/S)étale

and (Noetherian/S)fppf have the same underlying categories. By axioms [0] and
[1] the functor F is a sheaf and limit preserving. Let F ′ : (Sch/S)opp

étale → Sets
be the unique extension of F which is a sheaf (for the étale topology) and which
is limit preserving, see Lemma 25.2. Then F ′ satisfies axioms [0] and [1] as given
in Section 15. By Lemma 25.4 we see that ∆′ : F ′ → F ′ × F ′ is representable
(by schemes). On the other hand, it is immediately clear that F ′ satisfies axioms
[-1], [2], [3], [4], [5] of Section 15 as each of these involves only evaluating F ′ at
objects of (Noetherian/S)étale and we’ve assumed the corresponding conditions for
F . Whence F ′ is an algebraic space by Proposition 16.1. □

27. Artin’s theorem on contractions

0GH7 In this section we will freely use the language of formal algebraic spaces, see Formal
Spaces, Section 1. Artin’s theorem on contractions is one of the two main theorems
of Artin’s paper [Art70]; the first one is his theorem on dilatations which we stated
and proved in Algebraization of Formal Spaces, Section 29.

Situation 27.1.0GH8 Let S be a locally Noetherian scheme. Let X ′ be an algebraic
space locally of finite type over S. Let T ′ ⊂ |X ′| be a closed subset. Let U ′ ⊂ X ′

be the open subspace with |U ′| = |X ′| \ T ′. Let W be a locally Noetherian formal
algebraic space over S with Wred locally of finite type over S. Finally, we let

g : X ′
/T ′ −→W

be a formal modification, see Algebraization of Formal Spaces, Definition 24.1.
Recall that X ′

/T ′ denotes the formal completion of X ′ along T ′, see Formal Spaces,
Section 14.

In the situation above our goal is to prove that there exists a proper morphism
f : X ′ → X of algebraic spaces over S, a closed subset T ⊂ |X|, and an isomorphism
a : X/T →W of formal algebraic spaces such that

(1) T ′ is the inverse image of T by |f | : |X ′| → |X|,
(2) f : X ′ → X maps U ′ isomorphically to an open subspace U of X, and
(3) g = a ◦ f/T where f/T : X ′

/T ′ → X/T is the induced morphism.
Let us say that (f : X ′ → X,T, a) is a solution.
We will follow Artin’s strategy by constructing a functor F on the category of locally
Noetherian schemes over S, showing that F is an algebraic space using Proposition
26.1, and proving that setting X = F works.

Remark 27.2.0GH9 In particular, we cannot prove that the desired result is true for
every Situation 27.1 because we will need to assume the local rings of S are G-rings.
If you can prove the result in general or if you have a counter example, please let
us know at stacks.project@gmail.com.

In Situation 27.1 let V be a locally Noetherian scheme over S. The value of our
functor F on V will be all triples

(Z, u′ : V \ Z → U ′, x̂ : V/Z →W )
satisfying the following conditions

(1) Z ⊂ V is a closed subset,

https://stacks.math.columbia.edu/tag/0GH8
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(2) u′ : V \ Z → U ′ is a morphism over S,
(3) x̂ : V/Z →W is an adic morphism of formal algebraic spaces over S,
(4) u′ and x̂ are compatible (see below).

The compatibility condition is the following: pulling back the formal modification
g we obtain a formal modification

X ′
/T ′ ×g,W,x̂ V/Z −→ V/Z

See Algebraization of Formal Spaces, Lemma 24.4. By the main theorem on dilata-
tions (Algebraization of Formal Spaces, Theorem 29.1), there is a unique proper
morphism V ′ → V of algebraic spaces which is an isomorphism over V \ Z such
that V ′

/Z → V/Z is isomorphic to the displayed arrow. In other words, for some
morphism x̂′ : V ′

/Z → X ′
/T ′ we have a cartesian diagram

V ′
/Z

//

x̂′

��

V/Z

x̂

��
X ′

/T ′
g // W

of formal algebraic spaces. We will think of V \Z as an open subspace of V ′ without
further mention. The compatibility condition is that there should be a morphism
x′ : V ′ → X ′ restricting to u′ and x̂ over V \Z ⊂ V ′ and V ′

/Z . In other words, such
that the diagram

V \ Z //

u′

��

V ′

x′

��

V ′
/Z

oo

x̂′

��

// V/Z

x̂

��
U ′ // X ′ X ′

/T ′
g //oo W

is commutative. Observe that by Algebraization of Formal Spaces, Lemma 25.5
the morphism x′ is unique if it exists. We will indicate this situation by saying
“V ′ → V , x̂′, and x′ witness the compatibility between u′ and x̂”.

Remark 27.3.0GID In Situation 27.1 let V be a locally Noetherian scheme over S.
Let (Z, u′, x̂) be a triple satisfying (1), (2), and (3) above. We want to explain a
way to think about the compatibility condition (4). It will not be mathematically
precise as we are going use a fictitious category AnS of analytic spaces over S and
a fictitious analytification functor{

locally Noetherian formal
algebraic spaces over S

}
−→ AnS , Y 7−→ Y an

For example if Y = Spf(k[[t]]) over S = Spec(k), then Y an should be thought of as
an open unit disc. If Y = Spec(k), then Y an is a single point. The category AnS

should have open and closed immersions and we should be able to take the open
complement of a closed. Given Y the morphism Yred → Y should induces a closed
immersion Y an

red → Y an. We set Y rig = Y an \ Y an
red equal to its open complement.

If Y is an algebraic space and if Z ⊂ Y is closed, then the morphism Y/Z → Y
should induce an open immersion Y an

/Z → Y an which in turn should induce an open
immersion

can : (Y/Z)rig −→ (Y \ Z)an

https://stacks.math.columbia.edu/tag/0GID


ARTIN’S AXIOMS 54

Also, given a formal modification g : Y ′ → Y of locally Noetherian formal algebraic
spaces, the induced morphism grig : (Y ′)rig → Y rig should be an isomorphism.
Given AnS and the analytification functor, we can consider the requirement that

(V/Z)rig
can

//

(grig)−1◦x̂an

��

(V \ Z)an

(u′)an

��
(X ′

/T ′)rig can // (X ′ \ T ′)an

commutes. This makes sense as grig : (X ′
T ′)rig → W rig is an isomorphism and

U ′ = X ′ \T ′. Finally, under some assumptions of faithfulness of the analytification
functor, this requirement will be equivalent to the compatibility condition formu-
lated above. We hope this will motivate the reader to think of the compatibility of
u′ and x̂ as the requirement that some maps be equal, rather than asking for the
existence of a certain commutative diagram.

Lemma 27.4.0GHA In Situation 27.1 the rule F that sends a locally Noetherian scheme
V over S to the set of triples (Z, u′, x̂) satisfying the compatibility condition and
which sends a a morphism φ : V2 → V1 of locally Noetherian schemes over S to the
map

F (φ) : F (V1) −→ F (V2)
sending an element (Z1, u

′
1, x̂1) of F (V1) to (Z2, u

′
2, x̂2) in F (V2) given by

(1) Z2 ⊂ V2 is the inverse image of Z1 by φ,
(2) u′

2 is the composition of u′
1 and φ|V2\Z2 : V2 \ Z2 → V1 \ Z1,

(3) x̂2 is the composition of x̂1 and φ/Z2 : V2,/Z2 → V1,/Z1

is a contravariant functor.

Proof. To see the compatibility condition between u′
2 and x̂2, let V ′

1 → V1, x̂′
1, and

x′
1 witness the compatibility between u′

1 and x̂1. Set V ′
2 = V2 ×V1 V

′
1 , set x̂′

2 equal
to the composition of x̂′

1 and V ′
2,/Z2

→ V ′
1,/Z1

, and set x′
2 equal to the composition

of x′
1 and V ′

2 → V ′
1 . Then V ′

2 → V2, x̂′
2, and x′

2 witness the compatibility between
u′

2 and x̂2. We omit the detailed verification. □

Lemma 27.5.0GHB In Situation 27.1 if there exists a solution (f : X ′ → X,T, a)
then there is a functorial bijection F (V ) = MorS(V,X) on the category of locally
Noetherian schemes V over S.

Proof. Let V be a locally Noetherian scheme over S. Let x : V → X be a
morphism over S. Then we get an element (Z, u′, x̂) in F (V ) as follows

(1) Z ⊂ V is the inverse image of T by x,
(2) u′ : V \ Z → U ′ = U is the restriction of x to V \ Z,
(3) x̂ : V/Z →W is the composition of x/Z : V/Z → X/T with the isomorphism

a : X/T →W .
This triple satisfies the compatibility condition because we can take V ′ = V ×x,XX

′,
we can take x̂′ the completion of the projection x′ : V ′ → X ′.
Conversely, suppose given an element (Z, u′, x̂) of F (V ). We claim there is a unique
morphism x : V → X compatible with u′ and x̂. Namely, let V ′ → V , x̂′, and x′

witness the compatibility between u′ and x̂. Then Algebraization of Formal Spaces,
Proposition 26.1 is exactly the result we need to find a unique morphism x : V → X
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agreeing with x̂ over V/Z and with x′ over V ′ (and a fortiori agreeing with u′ over
V \ Z).

We omit the verification that the two constructions above define inverse bijections
between their respective domains. □

Lemma 27.6.0GHC In Situation 27.1 if there exists an algebraic space X locally of
finite type over S and a functorial bijection F (V ) = MorS(V,X) on the category of
locally Noetherian schemes V over S, then X is a solution.

Proof. We have to construct a proper morphism f : X ′ → X, a closed subset
T ⊂ |X|, and an isomorphism a : X/T →W with properties (1), (2), (3) listed just
below Situation 27.1.

The discussion in this proof is a bit pedantic because we want to carefully match the
underlying categories. In this paragraph we explain how the adventurous reader
can proceed less timidly. Namely, the reader may extend our definition of the
functor F to all locally Noetherian algebraic spaces over S. Doing so the reader
may then conclude that F and X agree as functors on the category of these algebraic
spaces, i.e., X represents F . Then one considers the universal object (T, u′, x̂) in
F (X). Then the reader will find that for the triple X ′′ → X, x̂′, x′ witnessing the
compatibility between u′ and x̂ the morphism x′ : X ′′ → X ′ is an isomorphism and
this will produce f : X ′ → X by inverting x′. Finally, we already have T ⊂ |X|
and the reader may show that x̂ is an isomorphism which can served as the last
ingredient namely a.

Denote hX(−) = MorS(−, X) the functor of points of X restricted to the category
(Noetherian/S)étale of Section 25. By Limits of Spaces, Remark 3.11 the algebraic
spaces X and X ′ are limit preserving. Hence so are the restrictions hX and hX′ .
To construct f it therefore suffices to construct a transformation hX′ → hX = F ,
see Lemma 25.2. Thus let V → S be an object of (Noetherian/S)étale and let
x̃ : V → X ′ be in hX′(V ). Then we get an element (Z, u′, x̂) in F (V ) as follows

(1) Z ⊂ V is the inverse image of T ′ by x̃,
(2) u′ : V \ Z → U ′ is the restriction of x̃ to V \ Z,
(3) x̂ : V/Z →W is the composition of x/Z : V/Z → X ′

/T ′ with g : X ′
/T ′ →W .

This triple satisfies the compatibility condition: first we always obtain V ′ → V
and x̂′ : V ′

/Z′ → X ′
/T ′ for free (see discussion preceding Lemma 27.4). Then we

just define x′ : V ′ → X ′ to be the composition of V ′ → V and the morphism
x̃ : V → X ′. We omit the verification that this works.

If ξ : V → X is an étale morphism where V is a scheme, then we obtain ξ =
(Z, u′, x̂) ∈ F (V ) = hX(V ) = X(V ). Of course, if φ : V ′ → V is a further étale
morphism of schemes, then (Z, u′, x̂) pulled back to F (V ′) corresponds to ξ ◦ φ.
The closed subset T ⊂ |X| is just defined as the closed subset such that ξ : V → X
for ξ = (Z, u′, x̂) pulls T back to Z

Consider Noetherian schemes V over S and a morphism ξ : V → X corresponding
to (Z, u′, x̂) as above. Then we see that ξ(V ) is set theoretically contained in T
if and only if V = Z (as topological spaces). Hence we see that X/T agrees with
W as a functor. This produces the isomorphism a : X/T → W . (We’ve omitted a
small detail here which is that for the locally Noetherian formal algebraic spaces
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X/T and W it suffices to check one gets an isomorphism after evaluating on locally
Noetherian schemes over S.)
We omit the proof of conditions (1), (2), and (3). □

Remark 27.7.0GHD In Situation 27.1. Let V be a locally Noetherian scheme over S.
Let (Zi, u

′
i, x̂i) ∈ F (V ) for i = 1, 2. Let V ′

i → V , x̂′
i and x′

i witness the compatibility
between u′

i and x̂i for i = 1, 2.
Set V ′ = V ′

1 ×V V ′
2 . Let E′ → V ′ denote the equalizer of the morphisms

V ′ → V ′
1

x′
1−→ X ′ and V ′ → V ′

2
x′

2−→ X ′

Set Z = Z1 ∩ Z2. Let EW → V/Z be the equalizer of the morphisms

V/Z → V/Z1
x̂1−→W and V/Z → V/Z2

x̂2−→W

Observe that E′ → V is separated and locally of finite type and that EW is a locally
Noetherian formal algebraic space separated over V . The compatibilities between
the various morphisms involved show that

(1) Im(E′ → V ) ∩ (Z1 ∪ Z2) is contained in Z = Z1 ∩ Z2,
(2) the morphism E′ ×V (V \ Z)→ V \ Z is a monomorphism and is equal to

the equalizer of the restrictions of u′
1 and u′

2 to V \ (Z1 ∪ Z2),
(3) the morphism E′

/Z → V/Z factors through EW and the diagram

E′
/Z

//

��

X ′
/T ′

g

��
EW

// W

is cartesian. In particular, the morphism E′
/Z → EW is a formal modifica-

tion as the base change of g,
(4) E′, (E′ → V )−1Z, and E′

/Z → EW is a triple as in Situation 27.1 with base
scheme the locally Noetherian scheme V ,

(5) given a morphism φ : A → V of locally Noetherian schemes, the following
are equivalent
(a) (Z1, u

′
1, x̂1) and (Z2, u

′
2, x̂2) restrict to the same element of F (A),

(b) A\φ−1(Z)→ V \Z factors through E′×V (V \Z) and A/φ−1(Z) → V/Z

factors through EW .
We conclude, using Lemmas 27.5 and 27.6, that if there is a solution E → V for the
triple in (4), then E represents F ×∆,F ×F V on the category of locally Noetherian
schemes over V .

Lemma 27.8.0GHE In Situation 27.1 assume given a closed subset Z ⊂ S such that
(1) the inverse image of Z in X ′ is T ′,
(2) U ′ → S \ Z is a closed immersion,
(3) W → S/Z is a closed immersion.

Then there exists a solution (f : X ′ → X,T, a) and moreover X → S is a closed
immersion.

Proof. Suppose we have a closed subscheme X ⊂ S such that X ∩ (S \ Z) = U ′

and X/Z = W . Then X represents the functor F (some details omitted) and hence
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is a solution. To find X is clearly a local question on S. In this way we reduce to
the case discussed in the next paragraph.

Assume S = Spec(A) is affine. Let I ⊂ A be the radical ideal cutting out Z. Write
I = (f1, . . . , fr). By assumption we are given

(1) the closed immersion U ′ → S \ Z determines ideals Ji ⊂ A[1/fi] such that
Ji and Jj generate the same ideal in A[1/fifj ],

(2) the closed immersion W → S/Z is the map Spf(A∧/J ′)→ Spf(A∧) for some
ideal J ′ ⊂ A∧ in the I-adic completion A∧ of A.

To finish the proof we need to find an ideal J ⊂ A such that Ji = J [1/fi] and
J ′ = JA∧. By More on Algebra, Proposition 89.15 it suffices to show that Ji and
J ′ generate the same ideal in A∧[1/fi] for all i.

Recall that A′ = H0(X ′,O) is a finite A-algebra whose formation commutes with
flat base change (Cohomology of Spaces, Lemmas 20.3 and 11.2). Denote J ′′ =
Ker(A → A′)11. We have Ji = J ′′A[1/fi] as follows from base change to the
spectrum of A[1/fi]. Observe that we have a commutative diagram

X ′

��

X ′
/T ′ ×S/Z

Spf(A∧)oo

��

X ′
/T ′ ×W Spf(A∧/J ′)

��
Spec(A) Spf(A∧)oo Spf(A∧/J ′)oo

The middle vertical arrow is the completion of the left vertical arrow along the
obvious closed subsets. By the theorem on formal functions we have

(A′)∧ = Γ(X ′ ×S Spec(A∧),O) = limH0(X ′ ×S Spec(A/In),O)

See Cohomology of Spaces, Theorem 22.5. From the diagram we conclude that J ′

maps to zero in (A′)∧. Hence J ′ ⊂ J ′′A∧. Consider the arrows

X ′
/T ′ → Spf(A∧/J ′′A∧)→ Spf(A∧/J ′) = W

We know the composition g is a formal modification (in particular rig-étale and
rig-surjective) and the second arrow is a closed immersion (in particular an adic
monomorphism). Hence X ′

/T ′ → Spf(A∧/J ′′A∧) is rig-surjective and rig-étale, see
Algebraization of Formal Spaces, Lemmas 21.5 and 20.8. Applying Algebraization
of Formal Spaces, Lemmas 21.14 and 21.6 we conclude that Spf(A∧/J ′′A∧) → W
is rig-étale and rig-surjective. By Algebraization of Formal Spaces, Lemma 21.13
we conclude that InJ ′′A∧ ⊂ J ′ for some n > 0. It follows that J ′′A∧[1/fi] =
J ′A∧[1/fi] and we deduce JiA

∧[1/fi] = J ′A∧[1/fi] for all i as desired. □

Lemma 27.9.0GHF In Situation 27.1 assume X ′ → S and W → S are separated. Then
the diagonal ∆ : F → F × F is representable by closed immersions.

Proof. Combine Lemma 27.8 with the discussion in Remark 27.7. □

Lemma 27.10.0GHG In Situation 27.1 the functor F satisfies the sheaf property for all
étale coverings of locally Noetherian schemes over S.

Proof. Omitted. Hint: morphisms may be defined étale locally. □

11Contrary to what the reader may expect, the ideals J and J ′′ won’t agreee in general.
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Lemma 27.11.0GI5 In Situation 27.1 the functor F is limit preserving: for any di-
rected limit V = limVλ of Noetherian affine schemes over S we have F (V ) =
colimF (Vλ).

Proof. This is an absurdly long proof. Much of it consists of standard arguments
on limits and étale localization. We urge the reader to skip ahead to the last part
of the proof where something interesting happens.

Let V = limλ∈Λ Vi be a directed limit of schemes over S with V and Vλ Noetherian
and with affine transition morphisms. See Limits, Section 2 for material on limits
of schemes. We will prove that colimF (Vλ)→ F (V ) is bijective.

Proof of injectivity: notation. Let λ ∈ Λ and ξλ,1, ξλ,2 ∈ F (Vλ) be elements
which restrict to the same element of F (V ). Write ξλ,1 = (Zλ,1, u

′
λ,1, x̂λ,1) and

ξλ,2 = (Zλ,2, u
′
λ,2, x̂λ,2).

Proof of injectivity: agreement of Zλ,i. Since Zλ,1 and Zλ,2 restrict to the same
closed subset of V , we may after increasing i assume Zλ,1 = Zλ,2, see Limits,
Lemma 4.2 and Topology, Lemma 14.2. Let us denote the common value Zλ ⊂ Vλ,
for µ ≥ λ denote Zµ ⊂ Vµ the inverse image in Vµ and and denote Z the inverse
image in V . We will use below that Z = limµ≥λ Zµ as schemes if we view Z and
Zµ as reduced closed subschemes.

Proof of injectivity: agreement of u′
λ,i. Since U ′ is locally of finite type over S and

since the restrictions of u′
λ,1 and u′

λ,2 to V \Z are the same, we may after increasing
λ assume u′

λ,1 = u′
λ,2, see Limits, Proposition 6.1. Let us denote the common value

u′
λ and denote u′ the restriction to V \ Z.

Proof of injectivity: restatement. At this point we have ξλ,1 = (Zλ, u
′
λ, x̂λ,1) and

ξλ,2 = (Zλ, u
′
λ, x̂λ,2). The main problem we face in this part of the proof is to show

that the morphisms x̂λ,1 and x̂λ,2 become the same after increasing λ.

Proof of injectivity: agreement of x̂λ,i|Zλ
. Consider the morpisms x̂λ,1|Zλ

, x̂λ,2|Zλ
:

Zλ → Wred. These morphisms restrict to the same morphism Z → Wred. Since
Wred is a scheme locally of finite type over S we see using Limits, Proposition 6.1
that after replacing λ by a bigger index we may assume x̂λ,1|Zλ

= x̂λ,2|Zλ
: Zλ →

Wred.

Proof of injectivity: end. Next, we are going to apply the discussion in Remark
27.7 to Vλ and the two elements ξλ,1, ξλ,2 ∈ F (Vλ). This gives us

(1) eλ : E′
λ → Vλ separated and locally of finite type,

(2) e−1
λ (Vλ \ Zλ)→ Vλ \ Zλ is an isomorphism,

(3) a monomorphism EW,λ → Vλ,/Zλ
which is the equalizer of x̂λ,1 and x̂λ,2,

(4) a formal modification E′
λ,/Zλ

→ EW,λ

Assertion (2) holds by assertion (2) in Remark 27.7 and the preparatory work
we did above getting u′

λ,1 = u′
λ,2 = u′

λ. Since Zλ = (Vλ,/Zλ
)red factors through

EW,λ because x̂λ,1|Zλ
= x̂λ,2|Zλ

we see from Formal Spaces, Lemma 27.7 that
EW,λ → Vλ,/Zλ

is a closed immersion. Then we see from assertion (4) in Remark
27.7 and Lemma 27.8 applied to the triple E′

λ, e−1
λ (Zλ), E′

λ,/Zλ
→ EW,λ over Vλ

that there exists a closed immersion Eλ → Vλ which is a solution for this triple.
Next we use assertion (5) in Remark 27.7 which combined with Lemma 27.5 says
that Eλ is the “equalizer” of ξλ,1 and ξλ,2. In particular, we see that V → Vλ
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factors through Eλ. Then using Limits, Proposition 6.1 once more we find µ ≥ λ
such that Vµ → Vλ factors through Eλ and hence the pullbacks of ξλ,1 and ξλ,2 to
Vµ are the same as desired.
Proof of surjectivity: statement. Let ξ = (Z, u′, x̂) be an element of F (V ). We
have to find a λ ∈ Λ and an element ξλ ∈ F (Vλ) restricting to ξ.
Proof of surjectivity: the question is étale local. By the unicity proved in the
previous part of the proof and by the sheaf property of F in Lemma 27.10, the
problem is local on V in the étale topology. More precisely, let v ∈ V . We claim
it suffices to find an étale morphism (Ṽ , ṽ) → (V, v) and some λ, some an étale
morphism Ṽλ → Vλ, and some element ξ̃λ ∈ F (Ṽλ) such that Ṽ = Ṽλ ×Vλ

V and
ξ|U = ξ̃λ|U . We omit a detailed proof of this claim12.
Proof of surjectivity: rephrasing the problem. Recall that any étale morphism
(Ṽ , ṽ) → (V, v) with Ṽ affine is the base change of an étale morphism Ṽλ → Vλ

with Ṽλ affine for some λ, see for example Topologies, Lemma 13.2. Given Ṽλ we
have Ṽ = limµ≥λ Ṽλ ×Vλ

Vµ. Hence given (Ṽ , ṽ) → (V, v) étale with Ṽ affine, we
may replace (V, v) by (Ṽ , ṽ) and ξ by the restriction of ξ to Ṽ .
Proof of surjectivity: reduce to base being affine. In particular, suppose S̃ ⊂ S is
an affine open subscheme such that v ∈ V maps to a point of S̃. Then we may
according to the previous paragraph, replace V by Ṽ = S̃×S V . Of course, if we do
this, it suffices to solve the problem for the functor F restricted to the category of
locally Noetherian schemes over S̃. This functor is of course the functor associated
to the whole situation base changed to S̃. Thus we may and do assume S = Spec(R)
is a Noetherian affine scheme for the rest of the proof.
Proof of surjectivity: easy case. If v ∈ V \ Z, then we can take Ṽ = V \ Z. This
descends to an open subscheme Ṽλ ⊂ Vλ for some λ by Limits, Lemma 4.11. Next,
after increasing λ we may assume there is a morphism u′

λ : Ṽλ → U ′ restricting to
u′. Taking ξ̃λ = (∅, u′

λ, ∅) gives the desired element of F (Ṽλ).
Proof of surjectivity: hard case and reduction to affine W . The most difficult case
comes from considering v ∈ Z ⊂ V . We claim that we can reduce this to the case
where W is an affine formal scheme; we urge the reader to skip this argument13.
Namely, we can choose an étale morphism W̃ → W where W̃ is an affine formal
algebraic space such that the image of v by x̂ : V/Z →W is in the image of W̃ →W
(on reductions). Then the morphisms

p : W̃ ×W,g X
′
/T ′ −→ X ′

/T ′

and
q : W̃ ×W,x̂ V/Z → V/Z

are étale morphisms of locally Noetherian formal algebraic spaces. By (an easy
case of) Algebraization of Formal Spaces, Theorem 27.4 there exists a morphism

12To prove this one assembles a collection of the morphisms Ṽ → V into a finite étale covering
and shows that the corresponding morphisms Ṽλ → Vλ form an étale covering as well (after
increasing λ). Next one uses the injectivity to see that the elements ξ̃λ glue (after increasing λ)
and one uses the sheaf property for F to descend these elements to an element of F (Vλ).

13Artin’s approach to the proof of this lemma is to work around this and consequently he
can avoid proving the injectivity first. Namely, Artin consistently works with a finite affine étale
coverings of all spaces in sight keeping track of the maps between them during the proof. In
hindsight that might be preferable to what we do here.
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X̃ ′ → X ′ of algebraic spaces which is locally of finite type, is an isomorphism
over U ′, and such that X̃ ′

/T ′ → X ′
/T ′ is isomorphic to p. By Algebraization of

Formal Spaces, Lemma 28.5 the morphism X̃ ′ → X ′ is étale. Denote T̃ ′ ⊂ |X̃ ′| the
inverse image of T ′. Denote Ũ ′ ⊂ X̃ ′ the complementary open subspace. Denote
g̃′ : X̃ ′

/T̃ ′ → W̃ the formal modification which is the base change of g by W̃ → W .
Then we see that

X̃ ′, T̃ ′, Ũ ′, W̃ , g̃ : X̃ ′
/T̃ ′ → W̃

is another example of Situation 27.1. Denote F̃ the functor constructed from this
triple. There is a transformation of functors

F̃ −→ F

constructed using the morphisms X̃ ′ → X ′ and W̃ → W in the obvious manner;
details omitted.

Proof of surjectivity: hard case and reduction to affine W , part 2. By the same
theorem as used above, there exists a morphism Ṽ → V of algebraic spaces which
is locally of finite type, is an isomorphism over V \ Z and such that Ṽ/Z → V/Z is
isomorphic to q. Denote Z̃ ⊂ Ṽ the inverse image of Z. By Algebraization of Formal
Spaces, Lemmas 28.5 and 28.3 the morphism Ṽ → V is étale and separated. In
particular Ṽ is a (locally Noetherian) scheme, see for example Morphisms of Spaces,
Proposition 50.2. We have the morphism u′ which we may view as a morphism

ũ′ : Ṽ \ Z̃ −→ Ũ ′

where Ũ ′ ⊂ X̃ ′ is the open mapping isomorphically to U ′. We have a morphism
˜̂x : Ṽ/Z̃ = W̃ ×W,x̂ V/Z −→ W̃

Namely, here we just use the projection. Thus we have the triple

ξ̃ = (Z̃, ũ′, ˜̂x) ∈ F̃ (Ṽ )

We omit proving the compatibility condition; hints: if V ′ → V , x̂′, and x′ witness
the compatibility between u′ and x̂, then one sets Ṽ ′ = V ′×V Ṽ which comes with
morphsms ˜̂x′ and x̃′ and show this works. The image of ξ̃ under the transformation
F̃ → F is the restriction of ξ to Ṽ .

Proof of surjectivity: hard case and reduction to affine W , part 3. By our choice of
W̃ → W , there is an affine open Ṽopen ⊂ Ṽ (we’re running out of notation) whose
image in V contains our chosen point v ∈ V . Now by the case studied in the next
paragraph and the remarks made earlier, we can descend ξ̃|Ṽopen

to some element
ξ̃λ of F̃ over Ṽλ,open for some étale morphism Ṽλ,open → Vλ whose base change to
V is Ṽopen. Applying the transformation of functors F̃ → F we obtain the element
of F (Ṽλ,open) we were looking for. This reduces us to the case discussed in the next
paragraph.

Proof of surjectivity: the case of an affine W . We have v ∈ Z ⊂ V and W is an
affine formal algebraic space. Recall that

ξ = (Z, u′, x̂) ∈ F (V )

We may still replace V by an étale neighbourhood of v. In particular we may and
do assume V and Vλ are affine.
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Proof of surjectivity: descending Z. We can find a λ and a closed subscheme
Zλ ⊂ Vλ such that Z is the base change of Zλ to V . See Limits, Lemma 10.1.
Warning: we don’t know (and in general it won’t be true) that Zλ is a reduced
closed subscheme of Vλ. For µ ≥ λ denote Zµ ⊂ Vµ the scheme theoretic inverse
image in Vµ. We will use below that Z = limµ≥λ Zµ as schemes.
Proof of surjectivity: descending u′. Since U ′ is locally of finite type over S we may
assume after increasing λ that there exists a morphism u′

λ : Vλ \ Zλ → U ′ whose
restriction to V \Z is u′. See Limits, Proposition 6.1. For µ ≥ λ we will denote u′

µ

the restriction of u′
λ to Vµ \ Zµ.

Proof of surjectivity: descending a witness. Let V ′ → V , x̂′, and x′ witness the
compatibility between u′ and x̂. Using the same references as above we may assume
(after increasing λ) that there exists a morphism V ′

λ → Vλ of finite type whose
base change to V is V ′ → V . After increasing λ we may assume V ′

λ → Vλ is
proper (Limits, Lemma 13.1). Next, we may assume V ′

λ → Vλ is an isomorphism
over Vλ \ Zλ (Limits, Lemma 8.11). Next, we may assume there is a morphism
x′

λ : V ′
λ → X ′ whose restriction to V ′ is x′. Increasing λ again we may assume x′

λ

agrees with u′
λ over Vλ \Zλ. For µ ≥ λ we denote V ′

µ and x′
µ the base change of V ′

λ

and the restriction of x′
λ.

Proof of surjectivity: algebra. Write W = Spf(B), V = Spec(A), and for µ ≥ λ
write Vµ = Spec(Aµ). Denote Iµ ⊂ Aµ and I ⊂ A the ideals cutting out Zµ and Z.
Then IλAµ = Iµ and IλA = I. The morphism x̂ determines and is determined by
a continuous ring map

(x̂)♯ : B −→ A∧

where A∧ is the I-adic completion of A. To finish the proof we have to show that
this map descends to a map into A∧

µ for some sufficiently large µ where A∧
µ is

the Iµ-adic completion of Aµ. This is a nontrivial fact; Artin writes in his paper
[Art70]: “Since the data (3.5) involve I-adic completions, which do not commute
with direct limits, the verification is somewhat delicate. It is an algebraic analogue
of a convergence proof in analysis.”
Proof of surjectivity: algebra, more rings. Let us denote

Cµ = Γ(V ′
µ,O) and C = Γ(V ′,O)

Observe that A → C and Aµ → Cµ are finite ring maps as V ′ → V and V ′
µ → Vµ

are proper morphisms, see Cohomology of Spaces, Lemma 20.3. Since V = limVµ

and V ′ = limV ′
µ we have

A = colimAµ and C = colimCµ

by Limits, Lemma 4.714. For an element a ∈ I, resp. a ∈ Iµ the maps Aa → Ca,
resp. (Aµ)a → (Cµ)a are isomorphisms by flat base change (Cohomology of Spaces,
Lemma 11.2). Hence the kernel and cokernel of A → C is supported on V (I)
and similarly for Aµ → Cµ. We conclude the kernel and cokernel of A → C are
annihilated by a power of I and the kernel and cokernel of Aµ → Cµ are annihilated
by a power of Iµ, see Algebra, Lemma 62.4.
Proof of surjectivity: algebra, more ring maps. Denote Zn ⊂ V the nth infinitesimal
neighbourhood of Z and denote Zµ,n ⊂ Vµ the nth infinitesimal neighbourhoof of

14We don’t know that Cµ = Cλ ⊗Aλ
Aµ as the various morphisms aren’t flat.
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Zµ. By the theorem on formal functions (Cohomology of Spaces, Theorem 22.5)
we have

C∧ = limn H
0(V ′ ×V Zn,O) and C∧

µ = limn H
0(V ′

µ ×Vµ
Zµ,n,O)

where C∧ and C∧
µ are the completion with respect to I and Iµ. Combining the

completion of the morphism x′
µ : V ′

µ → X ′ with the morphism g : X ′
/T ′ → W we

obtain
g ◦ x′

µ,/Zµ
: V ′

µ,/Zµ
= colimV ′

µ ×Vµ
Zµ,n −→W

and hence by the description of the completion C∧
µ above we obtain a continuous

ring homomorphism
(g ◦ x′

µ,/Zµ
)♯ : B −→ C∧

µ

The fact that V ′ → V , x̂′, x′ witnesses the compatibility between u′ and x̂ implies
the commutativity of the following diagram

C∧
µ

// C∧

B

(g◦x′
µ,/Zµ

)♯

OO

(x̂)♯

// A∧

OO

Proof of surjectivity: more algebra arguments. Recall that the finite A-modules
Ker(A→ C) and Coker(A→ C) are annihilated by a power of I and similarly the
finite Aµ-modules Ker(Aµ → Cµ) and Coker(Aµ → Cµ) are annihilated by a power
of Iµ. This implies that these modules are equal to their completions. Since I-adic
completion on the category of finite A-modules is exact (see Algebra, Section 97)
it follows that we have

Coker(A∧ → C∧) = Coker(A→ C)
and similarly for kernels and for the maps Aµ → Cµ. Of course we also have
Ker(A→ C) = colim Ker(Aµ → Cµ) and Coker(A→ C) = colim Coker(Aµ → Cµ)
Recall that S = Spec(R) is affine. All of the ring maps above are R-algebra ho-
momorphisms as all of the morphisms are morphisms over S. By Algebraization
of Formal Spaces, Lemma 12.5 we see that B is topologically of finite type over R.
Say B is topologically generated by b1, . . . , bn. Pick some µ (for example λ) and
consider the elements

images of (g ◦ x′
µ,/Zµ

)♯(b1), . . . , (g ◦ x′
µ,/Zµ

)♯(bn) in Coker(Aµ → Cµ)

The image of these elements in Coker(α) are zero by the commutativity of the
square above. Since Coker(A → C) = colim Coker(Aµ → Cµ) and these cokernels
are equal to their completions we see that after increasing µ we may assume these
images are all zero. This means that the continuous homomorphism (g ◦ x′

µ,/Zµ
)♯

has image contained in Im(Aµ → Cµ). Choose elements aµ,j ∈ (Aµ)∧ mapping to
(g ◦ x′

µ,/Zµ
)♯(b1) in (Cµ)∧. Then aµ,j ∈ A∧

µ and (x̂)♯(bj) ∈ A∧ map to the same
element of C∧ by the commutativity of the square above. Since Ker(A → C) =
colim Ker(Aµ → Cµ) and these kernels are equal to their completions, we may after
increasing µ adjust our choices of aµ,j such that the image of aµ,j in A∧ is equal to
(x̂)♯(bj).
Proof of surjectivity: final algebra arguments. Let b ⊂ B be the ideal of topolog-
ically nilpotent elements. Let J ⊂ R[x1, . . . , xn] be the ideal consisting of those
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h(x1, . . . , xn) such that h(b1, . . . , bn) ∈ b. Then we get a continuous surjection of
topological R-algebras

Φ : R[x1, . . . , xn]∧ −→ B, xj 7−→ bj

where the completion on the left hand side is with respect to J . Since R[x1, . . . , xn]
is Noetherian we can choose generators h1, . . . , hm for J . By the commutativity of
the square above we see that hj(aµ,1, . . . , aµ,n) is an element of A∧

µ whose image
in A∧ is contained in IA∧. Namely, the ring map (x̂)♯ is continuous and IA∧ is
the ideal of topological nilpotent elements of A∧ because A∧/IA∧ = A/I is re-
duced. (See Algebra, Section 97 for results on completion in Noetherian rings.)
Since A/I = colimAµ/Iµ we conclude that after increasing µ we may assume
hj(aµ,1, . . . , aµ,n) is in IµA

∧
µ . In particular the elements hj(aµ,1, . . . , aµ,n) of A∧

µ

are topologically nilpotent in A∧
µ . Thus we obtain a continuous R-algebra homo-

morphism
Ψ : R[x1, . . . , xn]∧ −→ A∧

µ , xj 7−→ aµ,j

In order to conclude what we want, we need to see if Ker(Φ) is annihilated by
Ψ. This may not be true, but we can achieve this after increasing µ. Indeed,
since R[x1, . . . , xn]∧ is Noetherian, we can choose generators g1, . . . , gl of the ideal
Ker(Φ). Then we see that

Ψ(g1), . . . ,Ψ(gl) ∈ Ker(A∧
µ → C∧

µ ) = Ker(Aµ → Cµ)

map to zero in Ker(A→ C) = colim Ker(Aµ → Cµ). Hence increasing µ as before
we get the desired result.
Proof of surjectivity: mopping up. The continuous ring homomorphism B → (Aµ)∧

constructed above determines a morphism x̂µ : Vµ,/Zµ
→ W . The compatibility of

x̂µ and u′
µ follows from the fact that the ring map B → (Aµ)∧ is by construction

compatible with the ring map Aµ → Cµ. In fact, the compatibility will be witnessed
by the proper morphism V ′

µ → Vµ and the morphisms x′
µ and x̂′

µ = x′
µ,/Zµ

we used
in the construction. This finishes the proof. □

Lemma 27.12.0GI6 In Situation 27.1 the functor F satisfies the Rim-Schlessinger
condition (RS).

Proof. Recall that the condition only involves the evaluation F (V ) of the functor
F on schemes V over S which are spectra of Artinian local rings and the restriction
maps F (V2)→ F (V1) for morphisms V1 → V2 of schemes over S which are spectra
of Artinian local rings. Thus let V/S be the spetruim of an Artinian local ring. If
ξ = (Z, u′, x̂) ∈ F (V ) then either Z = ∅ or Z = V (set theoretically). In the first
case we see that x̂ is a morphism from the empty formal algebraic space into W .
In the second case we see that u′ is a morphism from the empty scheme into X ′

and we see that x̂ : V →W is a morphism into W . We conclude that
F (V ) = U ′(V )⨿W (V )

and moreover for V1 → V2 as above the induced map F (V2)→ F (V1) is compatible
with this decomposition. Hence it suffices to prove that both U ′ and W satisfy the
Rim-Schlessinger condition. For U ′ this follows from Lemma 5.2. To see that it
is true for W , we write W = colimWn as in Formal Spaces, Lemma 20.11. Say
V = Spec(A) with (A,m) an Artinian local ring. Pick n ≥ 1 such that mn = 0.
Then we have W (V ) = Wn(V ). Hence we see that the Rim-Schlessinger condition

https://stacks.math.columbia.edu/tag/0GI6
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for W follows from the Rim-Schlessinger condition for Wn for all n (which in turn
follows from Lemma 5.2). □

Lemma 27.13.0GI7 In Situation 27.1 the tangent spaces of the functor F are finite
dimensional.

Proof. In the proof of Lemma 27.12 we have seen that F (V ) = U ′(V ) ⨿W (V )
if V is the spectrum of an Artinian local ring. The tangent spaces are computed
entirely from evaluations of F on such schemes over S. Hence it suffices to prove
that the tangent spaces of the functors U ′ and W are finite dimensional. For U ′

this follows from Lemma 8.1. Write W = colimWn as in the proof of Lemma 27.12.
Then we see that the tangent spaces of W are equal to the tangent spaces of W2,
as to get at the tangent space we only need to evaluate W on spectra of Artinian
local rings (A,m) with m2 = 0. Then again we see that the tangent spaces of W2
have finite dimension by Lemma 8.1. □

Lemma 27.14.0GI8 In Situation 27.1 assume X ′ → S is separated. Then every formal
object for F is effective.

Proof. A formal object ξ = (R, ξn) of F consists of a Noetherian complete local
S-algebra R whose residue field is of finite type over S, together with elements
ξn ∈ F (Spec(R/mn)) for all n such that ξn+1|Spec(R/mn) = ξn. By the discussion
in the proof of Lemma 27.12 we see that either ξ is a formal object of U ′ or a
formal object of W . In the first case we see that ξ is effective by Lemma 9.5. The
second case is the interesting case. Set V = Spec(R). We will construct an element
(Z, u′, x̂) ∈ F (V ) whose image in F (Spec(R/mn)) is ξn for all n ≥ 1.
We may view the collection of elements ξn as a morphism

ξ : Spf(R) −→W

of locally Noetherian formal algebraic spaces over S. Observe that ξ is not an adic
morphism in general. To fix this, let I ⊂ R be the ideal corresponding to the formal
closed subspace

Spf(R)×ξ,W Wred ⊂ Spf(R)
Note that I ⊂ mR. Set Z = V (I) ⊂ V = Spec(R). Since R is mR-adically complete
it is a fortiori I-adically complete (Algebra, Lemma 96.8). Moreover, we claim that
for each n ≥ 1 the morphism

ξ|Spf(R/In) : Spf(R/In) −→W

actually comes from a morphism
ξ′

n : Spec(R/In) −→W

Namely, this follows from writing W = colimWn as in the proof of Lemma 27.12,
noticing that ξ|Spf(R/In) maps into Wn, and applying Formal Spaces, Lemma 33.3
to algebraize this to a morphism Spec(R/In) → Wn as desired. Let us denote
Spf′(R) = V/Z the formal spectrum of R endowed with the I-adic topology –
equivalently the formal completion of V along Z. Using the morphisms ξ′

n we
obtain an adic morphism

x̂ = (ξ′
n) : Spf′(R) −→W

of locally Noetherian formal algebraic spaces over S. Consider the base change
Spf′(R)×x̂,W,g X

′
/T ′ −→ Spf′(R)

https://stacks.math.columbia.edu/tag/0GI7
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This is a formal modification by Algebraization of Formal Spaces, Lemma 24.4.
Hence by the main theorem on dilatations (Algebraization of Formal Spaces, The-
orem 29.1) we obtain a proper morphism

V ′ −→ V = Spec(R)
which is an isomorphism over Spec(R) \ V (I) and whose completion recovers the
formal modification above, in other words

V ′ ×Spec(R) Spec(R/In) = Spec(R/In)×ξ′
n,W,g X

′
/T ′

This in particular tells us we have a compatible system of morphisms
V ′ ×Spec(R) Spec(R/In) −→ X ′ ×S Spec(R/In)

Hence by Grothendieck’s algebraization theorem (in the form of More on Morphisms
of Spaces, Lemma 43.3) we obtain a morphism

x′ : V ′ → X ′

over S recovering the morphisms displayed above. Then finally setting u′ : V \Z →
X ′ the restriction of x′ to V \ Z ⊂ V ′ gives the third component of our desired
element (Z, u′, x̂) ∈ F (V ). □

Lemma 27.15.0GI9 Let S be a locally Noetherian scheme. Let V be a scheme locally
of finite type over S. Let Z ⊂ V be closed. Let W be a locally Noetherian formal
algebraic space over S such that Wred is locally of finite type over S. Let g : V/Z →
W be an adic morphism of formal algebraic spaces over S. Let v ∈ V be a closed
point such that g is versal at v (as in Section 15). Then after replacing V by an
open neighbourhood of v the morphism g is smooth (see proof).

Proof. Since g is adic it is representable by algebraic spaces (Formal Spaces, Sec-
tion 23). Thus by saying g is smooth we mean that g should be smooth in the sense
of Bootstrap, Definition 4.1.
Write W = colimWn as in Formal Spaces, Lemma 20.11. Set Vn = V/Z ×x̂,W Wn.
Then Vn is a closed subscheme with underlying set Z. Smoothness of V → W is
equivalent to the smoothness of all the morphisms Vn → Wn (this holds because
any morphism T → W with T a quasi-compact scheme factors through Wn for
some n). We know that the morphism Vn →Wn is smooth at v by Lemma 12.615.
Of course this means that given any n we can shrink V such that Vn → Wn is
smooth. The problem is to find an open which works for all n at the same time.
The question is local on V , hence we may assume S = Spec(R) and V = Spec(A)
are affine.
In this paragraph we reduce to the case where W is an affine formal algebraic space.
Choose an affine formal scheme W ′ and an étale morphism W ′ →W such that the
image of v in Wred is in the image of W ′

red →Wred. Then V/Z×g,W W ′ → V/Z is an
adic étale morphism of formal algebraic spaces over S and V/Z ×g,W W ′ is an affine
fromal algebraic space. By Algebraization of Formal Spaces, Lemma 25.1 there
exists an étale morphism φ : V ′ → V of affine schemes such that the completion
of V ′ along Z ′ = φ−1(Z) is isomorphic to V/Z ×g,W W ′ over V/Z . Observe that v

15The lemma applies since the diagonal of W is representable by algebraic spaces and locally
of finite type, see Formal Spaces, Lemma 15.5 and we have seen that W has (RS) in the proof of
Lemma 27.12.

https://stacks.math.columbia.edu/tag/0GI9
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is the image of some v′ ∈ V ′. Since smoothness is preserved under base change we
see that V ′

n → W ′
n is smooth for all n. In the next paragraph we show that after

replacing V ′ by an open neighbourhood of v′ the morphisms V ′
n →W ′

n are smooth
for all n. Then, after we replace V by the open image of V ′ → V , we obtain that
Vn →Wn is smooth by étale descent of smoothness. Some details omitted.
Assume S = Spec(R), V = Spec(A), Z = V (I), and W = Spf(B). Let v correspond
to the maximal ideal I ⊂ m ⊂ A. We are given an adic continuous R-algebra
homomorphism

B −→ A∧

Let b ⊂ B be the ideal of topologically nilpotent elements (this is the maximal
ideal of definition of the Noetherian adic topological ring B). Observe that bA∧

and IA∧ are both ideals of definition of the Noetherian adic ring A∧. Also, mA∧

is a maximal ideal of A∧ containing both bA∧ and IA∧. We are given that
Bn = B/bn → A∧/bnA∧ = An

is smooth at m for all n. By the discussion above we may and do assume that
B1 → A1 is a smooth ring map. Denote m1 ⊂ A1 the maximal ideal corresponing
to m. Since smoothness implies flatness, we see that: for all n ≥ 1 the map

bn/bn+1 ⊗B1 (A1)m1 −→
(
bnA∧/bn+1A∧)

m1

is an isomorphism (see Algebra, Lemma 99.9). Consider the Rees algebra

B′ =
⊕

n≥0
bn/bn+1

which is a finite type graded algebra over the Noetherian ring B1 and the Rees
algebra

A′ =
⊕

n≥0
bnA∧/bn+1A∧

which is a a finite type graded algebra over the Noetherian ring A1. Consider the
homomorphism of graded A1-algebras

Ψ : B′ ⊗B1 A1 −→ A′

By the above this map is an isomorphism after localizing at the maximal ideal m1 of
A1. Hence Ker(Ψ), resp. Coker(Ψ) is a finite module over B′⊗B1A1, resp. A′ whose
localization at m1 is zero. It follows that after replacing A1 (and correspondingly
A) by a principal localization we may assume Ψ is an isomorphism. (This is the
key step of the proof.) Then working backwards we see that Bn → An is flat, see
Algebra, Lemma 99.9. Hence An → Bn is smooth (as a flat ring map with smooth
fibres, see Algebra, Lemma 137.17) and the proof is complete. □

Lemma 27.16.0GIA In Situation 27.1 the functor F satisfies openness of versality.

Proof. We have to show the following. Given a scheme V locally of finite type
over S, given ξ ∈ F (V ), and given a finite type point v0 ∈ V such that ξ is versal
at v0, after replacing V by an open neighbourhood of v0 we have that ξ is versal at
every finite type point of V . Write ξ = (Z, u′, x̂).
First case: v0 ̸∈ Z. Then we can first replace V by V \ Z. Hence we see that
ξ = (∅, u′, ∅) and the morphism u′ : V → X ′ is versal at v0. By More on Morphisms
of Spaces, Lemma 20.1 this means that u′ : V → X ′ is smooth at v0. Since the set
of a points where a morphism is smooth is open, we can after shrinking V assume u′

is smooth. Then the same lemma tells us that ξ is versal at every point as desired.

https://stacks.math.columbia.edu/tag/0GIA
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Second case: v0 ∈ Z. Write W = colimWn as in Formal Spaces, Lemma 20.11.
By Lemma 27.15 we may assume x̂ : V/Z → W is a smooth morphism of formal
algebraic spaces. It follows immediately that ξ = (Z, u′, x̂) is versal at all finite
type points of Z. Let V ′ → V , x̂′, and x′ witness the compatibility between u′

and x̂. We see that x̂′ : V ′
/Z → X ′

/T ′ is smooth as a base change of x̂. Since x̂′

is the completion of x′ : V ′ → X ′ this implies that x′ : V ′ → X ′ is smooth at
all points of (V ′ → V )−1(Z) = |x′|−1(T ′) ⊂ |V ′| by the already used More on
Morphisms of Spaces, Lemma 20.1. Since the set of smooth points of a morphism
is open, we see that the closed set of points B ⊂ |V ′| where x′ is not smooth does
not meet (V ′ → V )−1(Z). Since V ′ → V is proper and hence closed, we see that
(V ′ → V )(B) ⊂ V is a closed subset not meeting Z. Hence after shrinking V we
may assume B = ∅, i.e., x′ is smooth. By the discussion in the previous paragraph
this exactly means that ξ is versal at all finite type points of V not contained in Z
and the proof is complete. □

Here is the final result.

Theorem 27.17.0GIB [Art70, Theorem
3.1]

Let S be a locally Noetherian scheme such that OS,s is a G-ring
for all finite type points s ∈ S. Let X ′ be an algebraic space locally of finite type
over S. Let T ′ ⊂ |X ′| be a closed subset. Let W be a locally Noetherian formal
algebraic space over S with Wred locally of finite type over S. Finally, we let

g : X ′
/T ′ −→W

be a formal modification, see Algebraization of Formal Spaces, Definition 24.1. If X ′

and W are separated16 over S, then there exists a proper morphism f : X ′ → X of
algebraic spaces over S, a closed subset T ⊂ |X|, and an isomorphism a : X/T →W
of formal algebraic spaces such that

(1) T ′ is the inverse image of T by |f | : |X ′| → |X|,
(2) f : X ′ → X maps X ′ \ T ′ isomorphically to X \ T , and
(3) g = a ◦ f/T where f/T : X ′

/T ′ → X/T is the induced morphism.
In other words, (f : X ′ → X,T, a) is a solution as defined earlier in this section.

Proof. Let F be the functor constructed using X ′, T ′, W , g in this section. By
Lemma 27.6 it suffices to show that F corresponds to an algebraic space X locally
of finite type over S. In order to do this, we will apply Proposition 26.1. Namely,
by Lemma 27.9 the diagonal of F is representable by closed immersions and by
Lemmas 27.10, 27.11, 27.12, 27.13, 27.14, and 27.16 we have axioms [0], [1], [2], [3],
[4], and [5]. □

Remark 27.18.0GIC The proof of Theorem 27.17 uses that X ′ and W are separated
over S in two places. First, the proof uses this in showing ∆ : F → F × F
is representable by algebraic spaces. This use of the assumption can be entirely
avoided by proving that ∆ is representable by applying the theorem in the separated
case to the triples E′, (E′ → V )−1Z, and E′

/Z → EW found in Remark 27.7 (this
is the usual bootstrap procedure for the diagonal). Thus the proof of Lemma 27.14
is the only place in our proof of Theorem 27.17 where we really need to use that
X ′ → S is separated. The reader checks that we use the assumption only to obtain
the morphism x′ : V ′ → X ′. The existence of x′ can be shown, using results in

16See Remark 27.18.

https://stacks.math.columbia.edu/tag/0GIB
https://stacks.math.columbia.edu/tag/0GIC
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the literature, if X ′ → S is quasi-separated, see More on Morphisms of Spaces,
Remark 43.4. We conclude the theorem holds as stated with “separated” replaced
by “quasi-separated”. If we ever need this we will precisely state and carefully prove
this here.
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