
LIMITS OF ALGEBRAIC SPACES

07SB

Contents

1. Introduction 1
2. Conventions 2
3. Morphisms of finite presentation 2
4. Limits of algebraic spaces 8
5. Descending properties 10
6. Descending properties of morphisms 16
7. Descending relative objects 21
8. Absolute Noetherian approximation 23
9. Applications 25
10. Relative approximation 28
11. Finite type closed in finite presentation 29
12. Approximating proper morphisms 31
13. Embedding into affine space 32
14. Sections with support in a closed subset 33
15. Characterizing affine spaces 35
16. Finite cover by a scheme 37
17. Obtaining schemes 39
18. Glueing in closed fibres 41
19. Application to modifications 42
20. Universally closed morphisms 44
21. Noetherian valuative criterion 47
22. Refined Noetherian valuative criteria 51
23. Descending finite type spaces 53
24. Other chapters 56
References 57

1. Introduction

07SC In this chapter we put material related to limits of algebraic spaces. A first topic is
the characterization of algebraic spaces F locally of finite presentation over the base
S as limit preserving functors. We continue with a study of limits of inverse systems
over directed sets (Categories, Definition 21.1) with affine transition maps. We
discuss absolute Noetherian approximation for quasi-compact and quasi-separated
algebraic spaces following [CLO12]. Another approach is due to David Rydh (see
[Ryd08]) whose results also cover absolute Noetherian approximation for certain
algebraic stacks.

This is a chapter of the Stacks Project, version 74af77a7, compiled on Jun 27, 2023.
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2. Conventions

07SD The standing assumption is that all schemes are contained in a big fppf site Schfppf .
And all rings A considered have the property that Spec(A) is (isomorphic) to an
object of this big site.
Let S be a scheme and let X be an algebraic space over S. In this chapter and the
following we will write X ×S X for the product of X with itself (in the category of
algebraic spaces over S), instead of X × X.

3. Morphisms of finite presentation

049I In this section we generalize Limits, Proposition 6.1 to morphisms of algebraic
spaces. The motivation for the following definition comes from the proposition just
cited.

Definition 3.1.049J Let S be a scheme.
(1) A functor F : (Sch/S)opp

fppf → Sets is said to be limit preserving or locally
of finite presentation if for every affine scheme T over S which is a limit
T = lim Ti of a directed inverse system of affine schemes Ti over S, we have

F (T ) = colim F (Ti).
We sometimes say that F is locally of finite presentation over S.

(2) Let F, G : (Sch/S)opp
fppf → Sets. A transformation of functors a : F → G is

limit preserving or locally of finite presentation if for every scheme T over
S and every y ∈ G(T ) the functor
Fy : (Sch/T )opp

fppf −→ Sets, T ′/T 7−→ {x ∈ F (T ′) | a(x) = y|T ′}

is locally of finite presentation over T 1. We sometimes say that F is rela-
tively limit preserving over G.

The functor Fy is in some sense the fiber of a : F → G over y, except that it is a
presheaf on the big fppf site of T . A formula for this functor is:
(3.1.1)049K Fy = F |(Sch/T )fppf

×G|(Sch/T )fppf
∗

Here ∗ is the final object in the category of (pre)sheaves on (Sch/T )fppf (see Sites,
Example 10.2) and the map ∗ → G|(Sch/T )fppf

is given by y. Note that if j :
(Sch/T )fppf → (Sch/S)fppf is the localization functor, then the formula above
becomes Fy = j−1F ×j−1G ∗ and j!Fy is just the fiber product F ×G,y T . (See Sites,
Section 25, for information on localization, and especially Sites, Remark 25.10 for
information on j! for presheaves.)
At this point we temporarily have two definitions of what it means for a morphism
X → Y of algebraic spaces over S to be locally of finite presentation. Namely,
one by Morphisms of Spaces, Definition 28.1 and one using that X → Y is a
transformation of functors so that Definition 3.1 applies (we will use the terminology
“limit preserving” for this notion as much as possible). We will show in Proposition
3.10 that these two definitions agree.

Lemma 3.2.06BC Let S be a scheme. Let a : F → G be a transformation of functors
(Sch/S)opp

fppf → Sets. The following are equivalent

1The characterization (2) in Lemma 3.2 may be easier to parse.

https://stacks.math.columbia.edu/tag/049J
https://stacks.math.columbia.edu/tag/06BC
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(1) a : F → G is limit preserving, and
(2) for every affine scheme T over S which is a limit T = lim Ti of a directed

inverse system of affine schemes Ti over S the diagram of sets

colimi F (Ti) //

a

��

F (T )

a

��
colimi G(Ti) // G(T )

is a fibre product diagram.

Proof. Assume (1). Consider T = limi∈I Ti as in (2). Let (y, xT ) be an element
of the fibre product colimi G(Ti) ×G(T ) F (T ). Then y comes from yi ∈ G(Ti) for
some i. Consider the functor Fyi

on (Sch/Ti)fppf as in Definition 3.1. We see that
xT ∈ Fyi

(T ). Moreover T = limi′≥i Ti′ is a directed system of affine schemes over
Ti. Hence (1) implies that xT the image of a unique element x of colimi′≥i Fyi

(Ti′).
Thus x is the unique element of colim F (Ti) which maps to the pair (y, xT ). This
proves that (2) holds.

Assume (2). Let T be a scheme and yT ∈ G(T ). We have to show that FyT
is limit

preserving. Let T ′ = limi∈I T ′
i be an affine scheme over T which is the directed

limit of affine scheme T ′
i over T . Let xT ′ ∈ FyT

. Pick i ∈ I which is possible as I
is a directed set. Denote yi ∈ F (T ′

i ) the image of yT ′ . Then we see that (yi, xT ′) is
an element of the fibre product colimi G(T ′

i ) ×G(T ′) F (T ′). Hence by (2) we get a
unique element x of colimi F (T ′

i ) mapping to (yi, xT ′). It is clear that x defines an
element of colimi Fy(T ′

i ) mapping to xT ′ and we win. □

Lemma 3.3.049L Let S be a scheme contained in Schfppf . Let F, G, H : (Sch/S)opp
fppf →

Sets. Let a : F → G, b : G → H be transformations of functors. If a and b are
limit preserving, then

b ◦ a : F −→ H

is limit preserving.

Proof. Let T = limi∈I Ti as in characterization (2) of Lemma 3.2. Consider the
diagram of sets

colimi F (Ti) //

a

��

F (T )

a

��
colimi G(Ti) //

b

��

G(T )

b

��
colimi H(Ti) // H(T )

By assumption the two squares are fibre product squares. Hence the outer rectangle
is a fibre product diagram too which proves the lemma. □

Lemma 3.4.0GDY Let S be a scheme contained in Schfppf . Let F, G, H : (Sch/S)opp
fppf →

Sets. Let a : F → G, b : G → H be transformations of functors. If b ◦ a and b are
limit preserving, then a is limit preserving.

https://stacks.math.columbia.edu/tag/049L
https://stacks.math.columbia.edu/tag/0GDY
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Proof. Let T = limi∈I Ti as in characterization (2) of Lemma 3.2. Consider the
diagram of sets

colimi F (Ti) //

a

��

F (T )

a

��
colimi G(Ti) //

b

��

G(T )

b

��
colimi H(Ti) // H(T )

By assumption the lower square and the outer rectangle are fibre products of sets.
Hence the upper square is a fibre product square too which proves the lemma. □

Lemma 3.5.049M Let S be a scheme contained in Schfppf . Let F, G, H : (Sch/S)opp
fppf →

Sets. Let a : F → G, b : H → G be transformations of functors. Consider the fibre
product diagram

H ×b,G,a F
b′
//

a′

��

F

a

��
H

b // G

If a is limit preserving, then the base change a′ is limit preserving.

Proof. Omitted. Hint: This is formal. □

Lemma 3.6.0GDZ Let S be a scheme contained in Schfppf . Let E, F, G, H : (Sch/S)opp
fppf →

Sets. Let a : F → G, b : H → G, and c : G → E be transformations of functors. If
c, c ◦ a, and c ◦ b are limit preserving, then F ×G H → E is too.

Proof. Let T = limi∈I Ti as in characterization (2) of Lemma 3.2. Then we have

colim(F ×G H)(Ti) = colim F (Ti) ×colim G(Ti) colim H(Ti)

as filtered colimits commute with finite products. Our goal is thus to show that

colim F (Ti) ×colim G(Ti) colim H(Ti) //

��

F (T ) ×G(T ) H(T )

��
colimi E(Ti) // E(T )

is a fibre product diagram. This follows from the observation that given maps of
sets E′ → E, F → G, H → G, and G → E we have

E′ ×E (F ×G H) = (E′ ×E F ) ×(E′×EG) (E′ ×E H)

Some details omitted. □

Lemma 3.7.049O Let S be a scheme contained in Schfppf . Let F : (Sch/S)opp
fppf → Sets

be a functor. If F is limit preserving then its sheafification F # is limit preserving.

Proof. Assume F is limit preserving. It suffices to show that F + is limit preserving,
since F # = (F +)+, see Sites, Theorem 10.10. Let T be an affine scheme over S,
and let T = lim Ti be written as the directed limit of an inverse system of affine S
schemes. Recall that F +(T ) is the colimit of Ȟ0(V, F ) where the limit is over all

https://stacks.math.columbia.edu/tag/049M
https://stacks.math.columbia.edu/tag/0GDZ
https://stacks.math.columbia.edu/tag/049O
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coverings of T in (Sch/S)fppf . Any fppf covering of an affine scheme can be refined
by a standard fppf covering, see Topologies, Lemma 7.4. Hence we can write

F +(T ) = colimV standard covering T Ȟ0(V, F ).
Any V = {Tk → T}k=1,...,n in the colimit may be written as Vi ×Ti T for some i and
some standard fppf covering Vi = {Ti,k → Ti}k=1,...,n of Ti. Denote Vi′ = {Ti′,k →
Ti′}k=1,...,n the base change for i′ ≥ i. Then we see that

colimi′≥i Ȟ0(Vi, F ) = colimi′≥i Equalizer(
∏

F (Ti′,k) //
//
∏

F (Ti′,k ×Ti′ Ti′,l)

= Equalizer( colimi′≥i

∏
F (Ti′,k) //

// colimk′≥k

∏
F (Ti′,k ×Ti′ Ti′,l)

= Equalizer(
∏

F (Tk) //
//
∏

F (Tk ×T Tl)

= Ȟ0(V, F )
Here the second equality holds because filtered colimits are exact. The third
equality holds because F is limit preserving and because limi′≥i Ti′,k = Tk and
limi′≥i Ti′,k ×Ti′ Ti′,l = Tk ×T Tl by Limits, Lemma 2.3. If we use this for all
coverings at the same time we obtain

F +(T ) = colimV standard covering T Ȟ0(V, F )

= colimi∈I colimVi standard covering Ti
Ȟ0(T ×Ti

Vi, F )
= colimi∈I F +(Ti)

The switch of the order of the colimits is allowed by Categories, Lemma 14.10. □

Lemma 3.8.049P Let S be a scheme. Let F : (Sch/S)opp
fppf → Sets be a functor.

Assume that
(1) F is a sheaf, and
(2) there exists an fppf covering {Uj → S}j∈J such that F |(Sch/Uj)fppf

is limit
preserving.

Then F is limit preserving.

Proof. Let T be an affine scheme over S. Let I be a directed set, and let Ti be
an inverse system of affine schemes over S such that T = lim Ti. We have to show
that the canonical map colim F (Ti) → F (T ) is bijective.
Choose some 0 ∈ I and choose a standard fppf covering {V0,k → T0}k=1,...,m which
refines the pullback {Uj ×S T0 → T0} of the given fppf covering of S. For each i ≥ 0
we set Vi,k = Ti ×T0 V0,k, and we set Vk = T ×T0 V0,k. Note that Vk = limi≥0 Vi,k,
see Limits, Lemma 2.3.
Suppose that x, x′ ∈ colim F (Ti) map to the same element of F (T ). Say x, x′ are
given by elements xi, x′

i ∈ F (Ti) for some i ∈ I (we may choose the same i for
both as I is directed). By assumption (2) and the fact that xi, x′

i map to the same
element of F (T ) this implies that

xi|Vi′,k
= x′

i|Vi′,k

for some suitably large i′ ∈ I. We can choose the same i′ for each k as k ∈
{1, . . . , m} ranges over a finite set. Since {Vi′,k → Ti′} is an fppf covering and F
is a sheaf this implies that xi|Ti′ = x′

i|Ti′ as desired. This proves that the map
colim F (Ti) → F (T ) is injective.

https://stacks.math.columbia.edu/tag/049P
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To show surjectivity we argue in a similar fashion. Let x ∈ F (T ). By assumption
(2) for each k we can choose a i such that x|Vk

comes from an element xi,k ∈ F (Vi,k).
As before we may choose a single i which works for all k. By the injectivity proved
above we see that

xi,k|Vi′,k×T
i′ Vi′,l

= xi,l|Vi′,k×T
i′ Vi′,l

for some large enough i′. Hence by the sheaf condition of F the elements xi,k|Vi′,k

glue to an element xi′ ∈ F (Ti′) as desired. □

Lemma 3.9.049Q Let S be a scheme contained in Schfppf . Let F, G : (Sch/S)opp
fppf →

Sets be functors. If a : F → G is a transformation which is limit preserving, then
the induced transformation of sheaves F # → G# is limit preserving.

Proof. Suppose that T is a scheme and y ∈ G#(T ). We have to show the functor
F #

y : (Sch/T )opp
fppf → Sets constructed from F # → G# and y as in Definition 3.1

is limit preserving. By Equation (3.1.1) we see that F #
y is a sheaf. Choose an fppf

covering {Vj → T}j∈J such that y|Vj
comes from an element yj ∈ F (Vj). Note

that the restriction of F # to (Sch/Vj)fppf is just F #
yj

. If we can show that F #
yj

is limit preserving then Lemma 3.8 guarantees that F #
y is limit preserving and we

win. This reduces us to the case y ∈ G(T ).
Let y ∈ G(T ). In this case we claim that F #

y = (Fy)#. This follows from Equation
(3.1.1). Thus this case follows from Lemma 3.7. □

Proposition 3.10.04AK Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The following are equivalent:

(1) The morphism f is a morphism of algebraic spaces which is locally of finite
presentation, see Morphisms of Spaces, Definition 28.1.

(2) The morphism f : X → Y is limit preserving as a transformation of func-
tors, see Definition 3.1.

Proof. Assume (1). Let T be a scheme and let y ∈ Y (T ). We have to show
that T ×Y X is limit preserving over T in the sense of Definition 3.1. Hence we
are reduced to proving that if X is an algebraic space which is locally of finite
presentation over S as an algebraic space, then it is limit preserving as a functor
X : (Sch/S)opp

fppf → Sets. To see this choose a presentation X = U/R, see Spaces,
Definition 9.3. It follows from Morphisms of Spaces, Definition 28.1 that both U
and R are schemes which are locally of finite presentation over S. Hence by Limits,
Proposition 6.1 we have

U(T ) = colim U(Ti), R(T ) = colim R(Ti)
whenever T = limi Ti in (Sch/S)fppf . It follows that the presheaf

(Sch/S)opp
fppf −→ Sets, W 7−→ U(W )/R(W )

is limit preserving. Hence by Lemma 3.7 its sheafification X = U/R is limit pre-
serving too.
Assume (2). Choose a scheme V and a surjective étale morphism V → Y . Next,
choose a scheme U and a surjective étale morphism U → V ×Y X. By Lemma 3.5
the transformation of functors V ×Y X → V is limit preserving. By Morphisms of
Spaces, Lemma 39.8 the morphism of algebraic spaces U → V ×Y X is locally of
finite presentation, hence limit preserving as a transformation of functors by the

https://stacks.math.columbia.edu/tag/049Q
https://stacks.math.columbia.edu/tag/04AK
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first part of the proof. By Lemma 3.3 the composition U → V ×Y X → V is limit
preserving as a transformation of functors. Hence the morphism of schemes U → V
is locally of finite presentation by Limits, Proposition 6.1 (modulo a set theoretic
remark, see last paragraph of the proof). This means, by definition, that (1) holds.
Set theoretic remark. Let U → V be a morphism of (Sch/S)fppf . In the state-
ment of Limits, Proposition 6.1 we characterize U → V as being locally of finite
presentation if for all directed inverse systems (Ti, fii′) of affine schemes over V we
have U(T ) = colim V (Ti), but in the current setting we may only consider affine
schemes Ti over V which are (isomorphic to) an object of (Sch/S)fppf . So we have
to make sure that there are enough affines in (Sch/S)fppf to make the proof work.
Inspecting the proof of (2) ⇒ (1) of Limits, Proposition 6.1 we see that the question
reduces to the case that U and V are affine. Say U = Spec(A) and V = Spec(B).
By construction of (Sch/S)fppf the spectrum of any ring of cardinality ≤ |B| is
isomorphic to an object of (Sch/S)fppf . Hence it suffices to observe that in the
"only if" part of the proof of Algebra, Lemma 127.3 only A-algebras of cardinality
≤ |B| are used. □

Remark 3.11.05N0 Here is an important special case of Proposition 3.10. Let S
be a scheme. Let X be an algebraic space over S. Then X is locally of finite
presentation over S if and only if X, as a functor (Sch/S)opp → Sets, is limit
preserving. Compare with Limits, Remark 6.2. In fact, we will see in Lemma 3.12
below that it suffices if the map

colim X(Ti) −→ X(T )
is surjective whenever T = lim Ti is a directed limit of affine schemes over S.

Lemma 3.12.0CM6 Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. If for every directed limit T = limi∈I Ti of affine schemes over S the
map

colim X(Ti) −→ X(T ) ×Y (T ) colim Y (Ti)
is surjective, then f is locally of finite presentation. In other words, in Proposition
3.10 part (2) it suffices to check surjectivity in the criterion of Lemma 3.2.

Proof. Choose a scheme V and a surjective étale morphism g : V → Y . Next,
choose a scheme U and a surjective étale morphism h : U → V ×Y X. It suffices to
show for T = lim Ti as in the lemma that the map

colim U(Ti) −→ U(T ) ×V (T ) colim V (Ti)
is surjective, because then U → V will be locally of finite presentation by Limits,
Lemma 6.3 (modulo a set theoretic remark exactly as in the proof of Proposition
3.10). Thus we take a : T → U and bi : Ti → V which determine the same
morphism T → V . Picture

T

a

��

pi

// Ti

bi

��{{
U

h // X ×Y V

��

// V

g

��
X

f // Y

https://stacks.math.columbia.edu/tag/05N0
https://stacks.math.columbia.edu/tag/0CM6
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By the assumption of the lemma after increasing i we can find a morphism ci : Ti →
X such that h ◦ a = (bi, ci) ◦ pi : Ti → V ×Y X and such that f ◦ ci = g ◦ bi. Since h
is an étale morphism of algebraic spaces (and hence locally of finite presentation),
we have the surjectivity of

colim U(Ti) −→ U(T ) ×(X×Y V )(T ) colim(X ×Y V )(Ti)

by Proposition 3.10. Hence after increasing i again we can find the desired mor-
phism ai : Ti → U with a = ai ◦ pi and bi = (U → V ) ◦ ai. □

4. Limits of algebraic spaces

07SE The following lemma explains how we think of limits of algebraic spaces in this
chapter. We will use (without further mention) that the base change of an affine
morphism of algebraic spaces is affine (see Morphisms of Spaces, Lemma 20.5).

Lemma 4.1.07SF Let S be a scheme. Let I be a directed set. Let (Xi, fii′) be an
inverse system over I in the category of algebraic spaces over S. If the morphisms
fii′ : Xi → Xi′ are affine, then the limit X = limi Xi (as an fppf sheaf) is an
algebraic space. Moreover,

(1) each of the morphisms fi : X → Xi is affine,
(2) for any i ∈ I and any morphism of algebraic spaces T → Xi we have

X ×Xi
T = limi′≥i Xi′ ×Xi

T.

as algebraic spaces over S.

Proof. Part (2) is a formal consequence of the existence of the limit X = lim Xi as
an algebraic space over S. Choose an element 0 ∈ I (this is possible as a directed
set is nonempty). Choose a scheme U0 and a surjective étale morphism U0 → X0.
Set R0 = U0 ×X0 U0 so that X0 = U0/R0. For i ≥ 0 set Ui = Xi ×X0 U0 and
Ri = Xi ×X0 R0 = Ui ×Xi

Ui. By Limits, Lemma 2.2 we see that U = limi≥0 Ui and
R = limi≥0 Ri are schemes. Moreover, the two morphisms s, t : R → U are the base
change of the two projections R0 → U0 by the morphism U → U0, in particular
étale. The morphism R → U ×S U defines an equivalence relation as directed
a limit of equivalence relations is an equivalence relation. Hence the morphism
R → U ×S U is an étale equivalence relation. We claim that the natural map

(4.1.1)07SG U/R −→ lim Xi

is an isomorphism of fppf sheaves on the category of schemes over S. The claim
implies X = lim Xi is an algebraic space by Spaces, Theorem 10.5.

Let Z be a scheme and let a : Z → lim Xi be a morphism. Then a = (ai) where
ai : Z → Xi. Set W0 = Z ×a0,X0 U0. Note that W0 = Z ×ai,Xi Ui for all i ≥ 0 by
our choice of Ui → Xi above. Hence we obtain a morphism W0 → limi≥0 Ui = U .
Since W0 → Z is surjective and étale, we conclude that (4.1.1) is a surjective
map of sheaves. Finally, suppose that Z is a scheme and that a, b : Z → U/R
are two morphisms which are equalized by (4.1.1). We have to show that a = b.
After replacing Z by the members of an fppf covering we may assume there exist
morphisms a′, b′ : Z → U which give rise to a and b. The condition that a, b are
equalized by (4.1.1) means that for each i ≥ 0 the compositions a′

i, b′
i : Z → U → Ui

are equal as morphisms into Ui/Ri = Xi. Hence (a′
i, b′

i) : Z → Ui ×S Ui factors
through Ri, say by some morphism ci : Z → Ri. Since R = limi≥0 Ri we see that

https://stacks.math.columbia.edu/tag/07SF
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c = lim ci : Z → R is a morphism which shows that a, b are equal as morphisms of
Z into U/R.

Part (1) follows as we have seen above that Ui ×Xi X = U and U → Ui is affine by
construction. □

Lemma 4.2.07SH Let S be a scheme. Let I be a directed set. Let (Xi, fii′) be an
inverse system over I of algebraic spaces over S with affine transition maps. Let
X = limi Xi. Let 0 ∈ I. Suppose that T → X0 is a morphism of algebraic spaces.
Then

T ×X0 X = limi≥0 T ×X0 Xi

as algebraic spaces over S.

Proof. The limit X is an algebraic space by Lemma 4.1. The equality is formal,
see Categories, Lemma 14.10. □

Lemma 4.3.0CUH Let S be a scheme. Let I be a directed set. Let (Xi, fi′i) → (Yi, gi′i)
be a morphism of inverse systems over I of algebraic spaces over S. Assume

(1) the morphisms fi′i : Xi′ → Xi are affine,
(2) the morphisms gi′i : Yi′ → Yi are affine,
(3) the morphisms Xi → Yi are closed immersions.

Then lim Xi → lim Yi is a closed immersion.

Proof. Observe that lim Xi and lim Yi exist by Lemma 4.1. Pick 0 ∈ I and choose
an affine scheme V0 and an étale morphism V0 → Y0. Then the morphisms Vi =
Yi ×Y0 V0 → Ui = Xi ×Y0 V0 are closed immersions of affine schemes. Hence the
morphism V = Y ×Y0 V0 → U = X ×Y0 V0 is a closed immersion because V = lim Vi,
U = lim Ui and because a limit of closed immersions of affine schemes is a closed
immersion: a filtered colimit of surjective ring maps is surjective. Since the étale
morphisms V → Y form an étale covering of Y as we vary our choice of V0 → Y0
we see that the lemma is true. □

Lemma 4.4.0CUI Let S be a scheme. Let I be a directed set. Let (Xi, fi′i) be an
inverse systems over I of algebraic spaces over S. If Xi is reduced for all i, then
X is reduced.

Proof. Observe that lim Xi exists by Lemma 4.1. Pick 0 ∈ I and choose an
affine scheme V0 and an étale morphism U0 → X0. Then the affine schemes Ui =
Xi ×X0 U0 are reduced. Hence U = X ×X0 U0 is a reduced affine scheme as a
limit of reduced affine schemes: a filtered colimit of reduced rings is reduced. Since
the étale morphisms U → X form an étale covering of X as we vary our choice of
U0 → X0 we see that the lemma is true. □

Lemma 4.5.0CP4 Let S be a scheme. Let X → Y be a morphism of algebraic spaces
over S. The equivalent conditions (1) and (2) of Proposition 3.10 are also equivalent
to

(3) for every directed limit T = lim Ti of quasi-compact and quasi-separated
algebraic spaces Ti over S with affine transition morphisms the diagram of

https://stacks.math.columbia.edu/tag/07SH
https://stacks.math.columbia.edu/tag/0CUH
https://stacks.math.columbia.edu/tag/0CUI
https://stacks.math.columbia.edu/tag/0CP4
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sets
colimi Mor(Ti, X) //

��

Mor(T, X)

��
colimi Mor(Ti, Y ) // Mor(T, Y )

is a fibre product diagram.

Proof. It is clear that (3) implies (2). We will assume (2) and prove (3). The
proof is rather formal and we encourage the reader to find their own proof.

Let us first prove that (3) holds when Ti is in addition assumed separated for all
i. Choose i ∈ I and choose a surjective étale morphism Ui → Ti where Ui is
affine. Using Lemma 4.2 we see that with U = Ui ×Ti

T and Ui′ = Ui ×Ti
Ti′ we

have U = limi′≥i Ui′ . Of course U and Ui′ are affine (see Lemma 4.1). Since Ti is
separated, the fibre product Vi = Ui ×Ti Ui is an affine scheme as well and we obtain
affine schemes V = Vi ×Ti T and Vi′ = Vi ×Ti Ti′ with V = limi′≥i Vi′ . Observe that
U → T and Ui → Ti are surjective étale and that V = U ×T U and Vi′ = Ui′ ×Ti′ Ui′ .
Note that Mor(T, X) is the equalizer of the two maps Mor(U, X) → Mor(V, X);
this is true for example because X as a sheaf on (Sch/S)fppf is the coequalizer of
the two maps hV → hu. Similarly Mor(Ti′ , X) is the equalizer of the two maps
Mor(Ui′ , X) → Mor(Vi′ , X). And of course the same thing is true with X replaced
with Y . Condition (2) says that the diagrams of in (3) are fibre products in the
case of U = lim Ui and V = lim Vi. It follows formally that the same thing is true
for T = lim Ti.

In the general case, choose an affine scheme U , an i ∈ I, and a surjective étale
morphism U → Ti. Repeating the argument of the previous paragraph we still
achieve the proof: the schemes Vi′ , V are no longer affine, but they are still quasi-
compact and separated and the result of the preceding paragraph applies. □

5. Descending properties

0826 This section is the analogue of Limits, Section 4.

Lemma 5.1.0CUJ Let S be a scheme. Let X = limi∈I Xi be the limit of a directed
inverse system of algebraic spaces over S with affine transition morphisms (Lemma
4.1). If each Xi is decent (for example quasi-separated or locally separated) then
|X| = limi |Xi| as sets.

Proof. There is a canonical map |X| → lim |Xi|. Choose 0 ∈ I. If W0 ⊂ X0 is an
open subspace, then we have f−1

0 W0 = limi≥0 f−1
i0 W0, see Lemma 4.1. Hence, if

we can prove the lemma for inverse systems where X0 is quasi-compact, then the
lemma follows in general. Thus we may and do assume X0 is quasi-compact.

Choose an affine scheme U0 and a surjective étale morphism U0 → X0. Set Ui =
Xi ×X0 U0 and U = X ×X0 U0. Set Ri = Ui ×Xi

Ui and R = U ×X U . Recall that
U = lim Ui and R = lim Ri, see proof of Lemma 4.1. Recall that |X| = |U |/|R| and
|Xi| = |Ui|/|Ri|. By Limits, Lemma 4.6 we have |U | = lim |Ui| and |R| = lim |Ri|.

Surjectivity of |X| → lim |Xi|. Let (xi) ∈ lim |Xi|. Denote Si ⊂ |Ui| the inverse
image of xi. This is a finite nonempty set by the definition of decent spaces (Decent
Spaces, Definition 6.1). Hence lim Si is nonempty, see Categories, Lemma 21.7. Let

https://stacks.math.columbia.edu/tag/0CUJ
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(ui) ∈ lim Si ⊂ lim |Ui|. By the above this determines a point u ∈ |U | which maps
to an x ∈ |X| mapping to the given element (xi) of lim |Xi|.

Injectivity of |X| → lim |Xi|. Suppose that x, x′ ∈ |X| map to the same point of
lim |Xi|. Choose lifts u, u′ ∈ |U | and denote ui, u′

i ∈ |Ui| the images. For each i
let Ti ⊂ |Ri| be the set of points mapping to (ui, u′

i) ∈ |Ui| × |Ui|. This is a finite
set by the definition of decent spaces (Decent Spaces, Definition 6.1). Moreover Ti

is nonempty as we’ve assumed that x and x′ map to the same point of Xi. Hence
lim Ti is nonempty, see Categories, Lemma 21.7. As before let r ∈ |R| = lim |Ri| be
a point corresponding to an element of lim Ti. Then r maps to (u, u′) in |U | × |U |
by construction and we see that x = x′ in |X| as desired.

Parenthetical statement: A quasi-separated algebraic space is decent, see Decent
Spaces, Section 6 (the key observation to this is Properties of Spaces, Lemma 6.7).
A locally separated algebraic space is decent by Decent Spaces, Lemma 15.2. □

Lemma 5.2.086V With same notation and assumptions as in Lemma 5.1 we have
|X| = limi |Xi| as topological spaces.

Proof. We will use the criterion of Topology, Lemma 14.3. We have seen that
|X| = limi |Xi| as sets in Lemma 5.1. The maps fi : X → Xi are morphisms of
algebraic spaces hence determine continuous maps |X| → |Xi|. Thus f−1

i (Ui) is
open for each open Ui ⊂ |Xi|. Finally, let x ∈ |X| and let x ∈ V ⊂ |X| be an open
neighbourhood. We have to find an i and an open neighbourhood Wi ⊂ |Xi| of the
image x with f−1

i (Wi) ⊂ V . Choose 0 ∈ I. Choose a scheme U0 and a surjective
étale morphism U0 → X0. Set U = X ×X0 U0 and Ui = Xi ×X0 U0 for i ≥ 0. Then
U = limi≥0 Ui in the category of schemes by Lemma 4.1. Choose u ∈ U mapping to
x. By the result for schemes (Limits, Lemma 4.2) we can find an i ≥ 0 and an open
neighbourhood Ei ⊂ Ui of the image of u whose inverse image in U is contained in
the inverse image of V in U . Then we can set Wi ⊂ |Xi| equal to the image of Ei.
This works because |Ui| → |Xi| is open. □

Lemma 5.3.086W Let S be a scheme. Let X = limi∈I Xi be the limit of a directed
inverse system of algebraic spaces over S with affine transition morphisms (Lemma
4.1). If each Xi is quasi-compact and nonempty, then |X| is nonempty.

Proof. Choose 0 ∈ I. Choose an affine scheme U0 and a surjective étale morphism
U0 → X0. Set Ui = Xi ×X0 U0 and U = X ×X0 U0. Then each Ui is a nonempty
affine scheme. Hence U = lim Ui is nonempty (Limits, Lemma 4.3) and thus X is
nonempty. □

Lemma 5.4.0CUK Let S be a scheme. Let X = limi∈I Xi be the limit of a directed
inverse system of algebraic spaces over S with affine transition morphisms (Lemma
4.1). Let x ∈ |X| with images xi ∈ |Xi|. If each Xi is decent, then {x} = limi {xi}
as sets and as algebraic spaces if endowed with reduced induced scheme structure.

Proof. Set Z = {x} ⊂ |X| and Zi = {xi} ⊂ |Xi|. Since |X| → |Xi| is continuous
we see that Z maps into Zi for each i. Hence we obtain an injective map Z → lim Zi

because |X| = lim |Xi| as sets (Lemma 5.1). Suppose that x′ ∈ |X| is not in Z.
Then there is an open subset U ⊂ |X| with x′ ∈ U and x ̸∈ U . Since |X| = lim |Xi|
as topological spaces (Lemma 5.2) we can write U =

⋃
j∈J f−1

j (Uj) for some subset
J ⊂ I and opens Uj ⊂ |Xj |, see Topology, Lemma 14.2. Then we see that for some

https://stacks.math.columbia.edu/tag/086V
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j ∈ J we have fj(x′) ∈ Uj and fj(x) ̸∈ Uj . In other words, we see that fj(x′) ̸∈ Zj .
Thus Z = lim Zi as sets.

Next, endow Z and Zi with their reduced induced scheme structures, see Proper-
ties of Spaces, Definition 12.5. The transition morphisms Xi′ → Xi induce affine
morphisms Zi′ → Zi and the projections X → Xi induce compatible morphisms
Z → Zi. Hence we obtain morphisms Z → lim Zi → X of algebraic spaces. By
Lemma 4.3 we see that lim Zi → X is a closed immersion. By Lemma 4.4 the
algebraic space lim Zi is reduced. By the above Z → lim Zi is bijective on points.
By uniqueness of the reduced induced closed subscheme structure we find that this
morphism is an isomorphism of algebraic spaces. □

Situation 5.5.084R Let S be a scheme. Let X = limi∈I Xi be the limit of a directed
inverse system of algebraic spaces over S with affine transition morphisms (Lemma
4.1). We assume that Xi is quasi-compact and quasi-separated for all i ∈ I. We
also choose an element 0 ∈ I.

Lemma 5.6.07SI Notation and assumptions as in Situation 5.5. Suppose that F0 is
a quasi-coherent sheaf on X0. Set Fi = f∗

0iF0 for i ≥ 0 and set F = f∗
0 F0. Then

Γ(X, F) = colimi≥0 Γ(Xi, Fi)

Proof. Choose a surjective étale morphism U0 → X0 where U0 is an affine scheme
(Properties of Spaces, Lemma 6.3). Set Ui = Xi ×X0 U0. Set R0 = U0 ×X0 U0
and Ri = R0 ×X0 Xi. In the proof of Lemma 4.1 we have seen that there exists
a presentation X = U/R with U = lim Ui and R = lim Ri. Note that Ui and
U are affine and that Ri and R are quasi-compact and separated (as Xi is quasi-
separated). Hence Limits, Lemma 4.7 implies that

F(U) = colim Fi(Ui) and F(R) = colim Fi(Ri).

The lemma follows as Γ(X, F) = Ker(F(U) → F(R)) and similarly Γ(Xi, Fi) =
Ker(Fi(Ui) → Fi(Ri)) □

Lemma 5.7.0827 Notation and assumptions as in Situation 5.5. For any quasi-
compact open subspace U ⊂ X there exists an i and a quasi-compact open Ui ⊂ Xi

whose inverse image in X is U .

Proof. Follows formally from the construction of limits in Lemma 4.1 and the
corresponding result for schemes: Limits, Lemma 4.11. □

The following lemma will be superseded by the stronger Lemma 6.10.

Lemma 5.8.084S Notation and assumptions as in Situation 5.5. Let f0 : Y0 → Z0 be
a morphism of algebraic spaces over X0. Assume (a) Y0 → X0 and Z0 → X0 are
representable, (b) Y0, Z0 quasi-compact and quasi-separated, (c) f0 locally of finite
presentation, and (d) Y0 ×X0 X → Z0 ×X0 X an isomorphism. Then there exists
an i ≥ 0 such that Y0 ×X0 Xi → Z0 ×X0 Xi is an isomorphism.

Proof. Choose an affine scheme U0 and a surjective étale morphism U0 → X0.
Set Ui = U0 ×X0 Xi and U = U0 ×X0 X. Apply Limits, Lemma 8.11 to see that
Y0 ×X0 Ui → Z0 ×X0 Ui is an isomorphism of schemes for some i ≥ 0 (details
omitted). As Ui → Xi is surjective étale, it follows that Y0 ×X0 Xi → Z0 ×X0 Xi is
an isomorphism (details omitted). □

https://stacks.math.columbia.edu/tag/084R
https://stacks.math.columbia.edu/tag/07SI
https://stacks.math.columbia.edu/tag/0827
https://stacks.math.columbia.edu/tag/084S
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Lemma 5.9.084T Notation and assumptions as in Situation 5.5. If X is separated,
then Xi is separated for some i ∈ I.

Proof. Choose an affine scheme U0 and a surjective étale morphism U0 → X0.
For i ≥ 0 set Ui = U0 ×X0 Xi and set U = U0 ×X0 X. Note that Ui and U are
affine schemes which come equipped with surjective étale morphisms Ui → Xi and
U → X. Set Ri = Ui ×Xi Ui and R = U ×X U with projections si, ti : Ri → Ui

and s, t : R → U . Note that Ri and R are quasi-compact separated schemes (as
the algebraic spaces Xi and X are quasi-separated). The maps si : Ri → Ui

and s : R → U are of finite type. By definition Xi is separated if and only
if (ti, si) : Ri → Ui × Ui is a closed immersion, and since X is separated by
assumption, the morphism (t, s) : R → U × U is a closed immersion. Since R → U
is of finite type, there exists an i such that the morphism R → Ui × U is a closed
immersion (Limits, Lemma 4.16). Fix such an i ∈ I. Apply Limits, Lemma 8.5 to
the system of morphisms Ri′ → Ui × Ui′ for i′ ≥ i (this is permissible as indeed
Ri′ = Ri ×Ui×Ui

Ui × Ui′) to see that Ri′ → Ui × Ui′ is a closed immersion for
i′ sufficiently large. This implies immediately that Ri′ → Ui′ × Ui′ is a closed
immersion finishing the proof of the lemma. □

Lemma 5.10.07SQ Notation and assumptions as in Situation 5.5. If X is affine, then
there exists an i such that Xi is affine.

Proof. Choose 0 ∈ I. Choose an affine scheme U0 and a surjective étale morphism
U0 → X0. Set U = U0 ×X0 X and Ui = U0 ×X0 Xi for i ≥ 0. Since the transition
morphisms are affine, the algebraic spaces Ui and U are affine. Thus U → X is an
étale morphism of affine schemes. Hence we can write X = Spec(A), U = Spec(B)
and

B = A[x1, . . . , xn]/(g1, . . . , gn)
such that ∆ = det(∂gλ/∂xµ) is invertible in B, see Algebra, Lemma 143.2. Set
Ai = OXi

(Xi). We have A = colim Ai by Lemma 5.6. After increasing 0 we may
assume we have g1,i, . . . , gn,i ∈ Ai[x1, . . . , xn] mapping to g1, . . . , gn. Set

Bi = Ai[x1, . . . , xn]/(g1,i, . . . , gn,i)
for all i ≥ 0. Increasing 0 if necessary we may assume that ∆i = det(∂gλ,i/∂xµ) is
invertible in Bi for all i ≥ 0. Thus Ai → Bi is an étale ring map. After increasing
0 we may assume also that Spec(Bi) → Spec(Ai) is surjective, see Limits, Lemma
8.15. Increasing 0 yet again we may choose elements h1,i, . . . , hn,i ∈ OUi

(Ui) which
map to the classes of x1, . . . , xn in B = OU (U) and such that gλ,i(hν,i) = 0 in
OUi

(Ui). Thus we obtain a commutative diagram

(5.10.1)084U

Xi

��

Ui
oo

��
Spec(Ai) Spec(Bi)oo

By construction Bi = B0 ⊗A0 Ai and B = B0 ⊗A0 A. Consider the morphism
f0 : U0 −→ X0 ×Spec(A0) Spec(B0)

This is a morphism of quasi-compact and quasi-separated algebraic spaces rep-
resentable, separated and étale over X0. The base change of f0 to X is an iso-
morphism by our choices. Hence Lemma 5.8 guarantees that there exists an i

https://stacks.math.columbia.edu/tag/084T
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such that the base change of f0 to Xi is an isomorphism, in other words the
diagram (5.10.1) is cartesian. Thus Descent, Lemma 39.1 applied to the fppf
covering {Spec(Bi) → Spec(Ai)} combined with Descent, Lemma 37.1 give that
Xi → Spec(Ai) is representable by a scheme affine over Spec(Ai) as desired. (Of
course it then also follows that Xi = Spec(Ai) but we don’t need this.) □

Lemma 5.11.07SR Notation and assumptions as in Situation 5.5. If X is a scheme,
then there exists an i such that Xi is a scheme.

Proof. Choose a finite affine open covering X =
⋃

Wj . By Lemma 5.7 we can find
an i ∈ I and open subspaces Wj,i ⊂ Xi whose base change to X is Wj → X. By
Lemma 5.10 we may assume that each Wj,i is an affine scheme. This means that
Xi is a scheme (see for example Properties of Spaces, Section 13). □

Lemma 5.12.0828 Let S be a scheme. Let B be an algebraic space over S. Let
X = lim Xi be a directed limit of algebraic spaces over B with affine transition
morphisms. Let Y → X be a morphism of algebraic spaces over B.

(1) If Y → X is a closed immersion, Xi quasi-compact, and Y → B locally of
finite type, then Y → Xi is a closed immersion for i large enough.

(2) If Y → X is an immersion, Xi quasi-separated, Y → B locally of finite type,
and Y quasi-compact, then Y → Xi is an immersion for i large enough.

(3) If Y → X is an isomorphism, Xi quasi-compact, Xi → B locally of finite
type, the transition morphisms Xi′ → Xi are closed immersions, and Y →
B is locally of finite presentation, then Y → Xi is an isomorphism for i
large enough.

(4) If Y → X is a monomorphism, Xi quasi-separated, Y → B locally of finite
type, and Y quasi-compact, then Y → Xi is a monomorphism for i large
enough.

Proof. Proof of (1). Choose 0 ∈ I. As X0 is quasi-compact, we can choose an
affine scheme W and an étale morphism W → B such that the image of |X0| → |B|
is contained in |W | → |B|. Choose an affine scheme U0 and an étale morphism
U0 → X0 ×B W such that U0 → X0 is surjective. (This is possible by our choice
of W and the fact that X0 is quasi-compact; details omitted.) Let V → Y , resp.
U → X, resp. Ui → Xi be the base change of U0 → X0 (for i ≥ 0). It suffices to
prove that V → Ui is a closed immersion for i sufficiently large. Thus we reduce
to proving the result for V → U = lim Ui over W . This follows from the case of
schemes, which is Limits, Lemma 4.16.
Proof of (2). Choose 0 ∈ I. Choose a quasi-compact open subspace X ′

0 ⊂ X0 such
that Y → X0 factors through X ′

0. After replacing Xi by the inverse image of X ′
0 for

i ≥ 0 we may assume all X ′
i are quasi-compact and quasi-separated. Let U ⊂ X be

a quasi-compact open such that Y → X factors through a closed immersion Y → U
(U exists as Y is quasi-compact). By Lemma 5.7 we may assume that U = lim Ui

with Ui ⊂ Xi quasi-compact open. By part (1) we see that Y → Ui is a closed
immersion for some i. Thus (2) holds.
Proof of (3). Choose 0 ∈ I. Choose an affine scheme U0 and a surjective étale
morphism U0 → X0. Set Ui = Xi ×X0 U0, U = X ×X0 U0 = Y ×X0 U0. Then
U = lim Ui is a limit of affine schemes, the transition maps of the system are closed
immersions, and U → U0 is of finite presentation (because U → B is locally of finite
presentation and U0 → B is locally of finite type and Morphisms of Spaces, Lemma

https://stacks.math.columbia.edu/tag/07SR
https://stacks.math.columbia.edu/tag/0828


LIMITS OF ALGEBRAIC SPACES 15

28.9). Thus we’ve reduced to the following algebra fact: If A = lim Ai is a directed
colimit of R-algebras with surjective transition maps and A of finite presentation
over A0, then A = Ai for some i. Namely, write A = A0/(f1, . . . , fn). Pick i such
that f1, . . . , fn map to zero under the surjective map A0 → Ai.
Proof of (4). Set Zi = Y ×Xi Y . As the transition morphisms Xi′ → Xi are affine
hence separated, the transition morphisms Zi′ → Zi are closed immersions, see
Morphisms of Spaces, Lemma 4.5. We have lim Zi = Y ×X Y = Y as Y → X is a
monomorphism. Choose 0 ∈ I. Since Y → X0 is locally of finite type (Morphisms
of Spaces, Lemma 23.6) the morphism Y → Z0 is locally of finite presentation
(Morphisms of Spaces, Lemma 28.10). The morphisms Zi → Z0 are locally of finite
type (they are closed immersions). Finally, Zi = Y ×Xi Y is quasi-compact as Xi

is quasi-separated and Y is quasi-compact. Thus part (3) applies to Y = limi≥0 Zi

over Z0 and we conclude Y = Zi for some i. This proves (4) and the lemma. □

Lemma 5.13.086X Let S be a scheme. Let Y be an algebraic space over S. Let
X = lim Xi be a directed limit of algebraic spaces over Y with affine transition
morphisms. Assume

(1) Y is quasi-separated,
(2) Xi is quasi-compact and quasi-separated,
(3) the morphism X → Y is separated.

Then Xi → Y is separated for all i large enough.

Proof. Let 0 ∈ I. Choose an affine scheme W and an étale morphism W → Y such
that the image of |W | → |Y | contains the image of |X0| → |Y |. This is possible
as X0 is quasi-compact. It suffices to check that W ×Y Xi → W is separated
for some i ≥ 0 because the diagonal of W ×Y Xi over W is the base change of
Xi → Xi ×Y Xi by the surjective étale morphism (Xi ×Y Xi) ×Y W → Xi ×Y Xi.
Since Y is quasi-separated the algebraic spaces W ×Y Xi are quasi-compact (as
well as quasi-separated). Thus we may base change to W and assume Y is an
affine scheme. When Y is an affine scheme, we have to show that Xi is a separated
algebraic space for i large enough and we are given that X is a separated algebraic
space. Thus this case follows from Lemma 5.9. □

Lemma 5.14.0A0R Let S be a scheme. Let Y be an algebraic space over S. Let
X = lim Xi be a directed limit of algebraic spaces over Y with affine transition
morphisms. Assume

(1) Y quasi-compact and quasi-separated,
(2) Xi quasi-compact and quasi-separated,
(3) X → Y affine.

Then Xi → Y is affine for i large enough.

Proof. Choose an affine scheme W and a surjective étale morphism W → Y .
Then X ×Y W is affine and it suffices to check that Xi ×Y W is affine for some i
(Morphisms of Spaces, Lemma 20.3). This follows from Lemma 5.10. □

Lemma 5.15.0A0S Let S be a scheme. Let Y be an algebraic space over S. Let
X = lim Xi be a directed limit of algebraic spaces over Y with affine transition
morphisms. Assume

(1) Y quasi-compact and quasi-separated,
(2) Xi quasi-compact and quasi-separated,

https://stacks.math.columbia.edu/tag/086X
https://stacks.math.columbia.edu/tag/0A0R
https://stacks.math.columbia.edu/tag/0A0S


LIMITS OF ALGEBRAIC SPACES 16

(3) the transition morphisms Xi′ → Xi are finite,
(4) Xi → Y locally of finite type
(5) X → Y integral.

Then Xi → Y is finite for i large enough.

Proof. Choose an affine scheme W and a surjective étale morphism W → Y . Then
X ×Y W is finite over W and it suffices to check that Xi ×Y W is finite over W for
some i (Morphisms of Spaces, Lemma 45.3). By Lemma 5.11 this reduces us to the
case of schemes. In the case of schemes it follows from Limits, Lemma 4.19. □

Lemma 5.16.0A0T Let S be a scheme. Let Y be an algebraic space over S. Let
X = lim Xi be a directed limit of algebraic spaces over Y with affine transition
morphisms. Assume

(1) Y quasi-compact and quasi-separated,
(2) Xi quasi-compact and quasi-separated,
(3) the transition morphisms Xi′ → Xi are closed immersions,
(4) Xi → Y locally of finite type
(5) X → Y is a closed immersion.

Then Xi → Y is a closed immersion for i large enough.

Proof. Choose an affine scheme W and a surjective étale morphism W → Y . Then
X ×Y W is a closed subspace of W and it suffices to check that Xi ×Y W is a closed
subspace W for some i (Morphisms of Spaces, Lemma 12.1). By Lemma 5.11 this
reduces us to the case of schemes. In the case of schemes it follows from Limits,
Lemma 4.20. □

6. Descending properties of morphisms

084V This section is the analogue of Section 5 for properties of morphisms. We will work
in the following situation.

Situation 6.1.084W Let S be a scheme. Let B = lim Bi be a limit of a directed inverse
system of algebraic spaces over S with affine transition morphisms (Lemma 4.1).
Let 0 ∈ I and let f0 : X0 → Y0 be a morphism of algebraic spaces over B0. Assume
B0, X0, Y0 are quasi-compact and quasi-separated. Let fi : Xi → Yi be the base
change of f0 to Bi and let f : X → Y be the base change of f0 to B.

Lemma 6.2.07SL With notation and assumptions as in Situation 6.1. If
(1) f is étale,
(2) f0 is locally of finite presentation,

then fi is étale for some i ≥ 0.

Proof. Choose an affine scheme V0 and a surjective étale morphism V0 → Y0.
Choose an affine scheme U0 and a surjective étale morphism U0 → V0 ×Y0 X0.
Diagram

U0

��

// V0

��
X0 // Y0

https://stacks.math.columbia.edu/tag/0A0T
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The vertical arrows are surjective and étale by construction. We can base change
this diagram to Bi or B to get

Ui

��

// Vi

��
Xi

// Yi

and

U

��

// V

��
X // Y

Note that Ui, Vi, U, V are affine schemes, the vertical morphisms are surjective étale,
and the limit of the morphisms Ui → Vi is U → V . Recall that Xi → Yi is étale if
and only if Ui → Vi is étale and similarly X → Y is étale if and only if U → V is étale
(Morphisms of Spaces, Lemma 39.2). Since f0 is locally of finite presentation, so is
the morphism U0 → V0. Hence the lemma follows from Limits, Lemma 8.10. □

Lemma 6.3.0CN2 With notation and assumptions as in Situation 6.1. If
(1) f is smooth,
(2) f0 is locally of finite presentation,

then fi is smooth for some i ≥ 0.

Proof. Choose an affine scheme V0 and a surjective étale morphism V0 → Y0.
Choose an affine scheme U0 and a surjective étale morphism U0 → V0 ×Y0 X0.
Diagram

U0

��

// V0

��
X0 // Y0

The vertical arrows are surjective and étale by construction. We can base change
this diagram to Bi or B to get

Ui

��

// Vi

��
Xi

// Yi

and

U

��

// V

��
X // Y

Note that Ui, Vi, U, V are affine schemes, the vertical morphisms are surjective étale,
and the limit of the morphisms Ui → Vi is U → V . Recall that Xi → Yi is smooth
if and only if Ui → Vi is smooth and similarly X → Y is smooth if and only if
U → V is smooth (Morphisms of Spaces, Definition 37.1). Since f0 is locally of
finite presentation, so is the morphism U0 → V0. Hence the lemma follows from
Limits, Lemma 8.9. □

Lemma 6.4.07SN With notation and assumptions as in Situation 6.1. If
(1) f is surjective,
(2) f0 is locally of finite presentation,

then fi is surjective for some i ≥ 0.

Proof. Choose an affine scheme V0 and a surjective étale morphism V0 → Y0.
Choose an affine scheme U0 and a surjective étale morphism U0 → V0 ×Y0 X0.

https://stacks.math.columbia.edu/tag/0CN2
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Diagram
U0

��

// V0

��
X0 // Y0

The vertical arrows are surjective and étale by construction. We can base change
this diagram to Bi or B to get

Ui

��

// Vi

��
Xi

// Yi

and

U

��

// V

��
X // Y

Note that Ui, Vi, U, V are affine schemes, the vertical morphisms are surjective étale,
the limit of the morphisms Ui → Vi is U → V , and the morphisms Ui → Xi ×Yi

Vi

and U → X ×Y V are surjective (as base changes of U0 → X0 ×Y0 V0). In particular,
we see that Xi → Yi is surjective if and only if Ui → Vi is surjective and similarly
X → Y is surjective if and only if U → V is surjective. Since f0 is locally of finite
presentation, so is the morphism U0 → V0. Hence the lemma follows from the case
of schemes (Limits, Lemma 8.15). □

Lemma 6.5.084X Notation and assumptions as in Situation 6.1. If
(1) f is universally injective,
(2) f0 is locally of finite type,

then fi is universally injective for some i ≥ 0.

Proof. Recall that a morphism X → Y is universally injective if and only if the
diagonal X → X ×Y X is surjective (Morphisms of Spaces, Definition 19.3 and
Lemma 19.2). Observe that X0 → X0 ×Y0 X0 is of locally of finite presentation
(Morphisms of Spaces, Lemma 28.10). Hence the lemma follows from Lemma 6.4
by considering the morphism X0 → X0 ×Y0 X0. □

Lemma 6.6.084Y Notation and assumptions as in Situation 6.1. If f is affine, then
fi is affine for some i ≥ 0.

Proof. Choose an affine scheme V0 and a surjective étale morphism V0 → Y0. Set
Vi = V0×Y0 Yi and V = V0×Y0 Y . Since f is affine we see that V ×Y X = lim Vi×Yi

Xi

is affine. By Lemma 5.10 we see that Vi ×Yi
Xi is affine for some i ≥ 0. For this i

the morphism fi is affine (Morphisms of Spaces, Lemma 20.3). □

Lemma 6.7.084Z Notation and assumptions as in Situation 6.1. If
(1) f is finite,
(2) f0 is locally of finite type,

then fi is finite for some i ≥ 0.

Proof. Choose an affine scheme V0 and a surjective étale morphism V0 → Y0. Set
Vi = V0×Y0 Yi and V = V0×Y0 Y . Since f is finite we see that V ×Y X = lim Vi×Yi

Xi

is a scheme finite over V . By Lemma 5.10 we see that Vi ×Yi Xi is affine for some
i ≥ 0. Increasing i if necessary we find that Vi ×Yi

Xi → Vi is finite by Limits,
Lemma 8.3. For this i the morphism fi is finite (Morphisms of Spaces, Lemma
45.3). □

https://stacks.math.columbia.edu/tag/084X
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Lemma 6.8.0850 Notation and assumptions as in Situation 6.1. If
(1) f is a closed immersion,
(2) f0 is locally of finite type,

then fi is a closed immersion for some i ≥ 0.

Proof. Choose an affine scheme V0 and a surjective étale morphism V0 → Y0. Set
Vi = V0 ×Y0 Yi and V = V0 ×Y0 Y . Since f is a closed immersion we see that
V ×Y X = lim Vi ×Yi

Xi is a closed subscheme of the affine scheme V . By Lemma
5.10 we see that Vi ×Yi

Xi is affine for some i ≥ 0. Increasing i if necessary we find
that Vi ×Yi

Xi → Vi is a closed immersion by Limits, Lemma 8.5. For this i the
morphism fi is a closed immersion (Morphisms of Spaces, Lemma 45.3). □

Lemma 6.9.0851 Notation and assumptions as in Situation 6.1. If f is separated,
then fi is separated for some i ≥ 0.

Proof. Apply Lemma 6.8 to the diagonal morphism ∆X0/Y0 : X0 → X0 ×Y0 X0.
(Diagonal morphisms are locally of finite type and the fibre product X0 ×Y0 X0 is
quasi-compact and quasi-separated. Some details omitted.) □

Lemma 6.10.0852 Notation and assumptions as in Situation 6.1. If
(1) f is a isomorphism,
(2) f0 is locally of finite presentation,

then fi is a isomorphism for some i ≥ 0.

Proof. Being an isomorphism is equivalent to being étale, universally injective,
and surjective, see Morphisms of Spaces, Lemma 51.2. Thus the lemma follows
from Lemmas 6.2, 6.4, and 6.5. □

Lemma 6.11.07SM Notation and assumptions as in Situation 6.1. If
(1) f is a monomorphism,
(2) f0 is locally of finite type,

then fi is a monomorphism for some i ≥ 0.

Proof. Recall that a morphism is a monomorphism if and only if the diagonal is
an isomorphism. The morphism X0 → X0 ×Y0 X0 is locally of finite presentation
by Morphisms of Spaces, Lemma 28.10. Since X0 ×Y0 X0 is quasi-compact and
quasi-separated we conclude from Lemma 6.10 that ∆i : Xi → Xi ×Yi

Xi is an
isomorphism for some i ≥ 0. For this i the morphism fi is a monomorphism. □

Lemma 6.12.08K0 Notation and assumptions as in Situation 6.1. Let F0 be a quasi-
coherent OX0-module and denote Fi the pullback to Xi and F the pullback to X.
If

(1) F is flat over Y ,
(2) F0 is of finite presentation, and
(3) f0 is locally of finite presentation,

then Fi is flat over Yi for some i ≥ 0. In particular, if f0 is locally of finite
presentation and f is flat, then fi is flat for some i ≥ 0.

Proof. Choose an affine scheme V0 and a surjective étale morphism V0 → Y0.
Choose an affine scheme U0 and a surjective étale morphism U0 → V0 ×Y0 X0.

https://stacks.math.columbia.edu/tag/0850
https://stacks.math.columbia.edu/tag/0851
https://stacks.math.columbia.edu/tag/0852
https://stacks.math.columbia.edu/tag/07SM
https://stacks.math.columbia.edu/tag/08K0
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Diagram
U0

��

// V0

��
X0 // Y0

The vertical arrows are surjective and étale by construction. We can base change
this diagram to Bi or B to get

Ui

��

// Vi

��
Xi

// Yi

and

U

��

// V

��
X // Y

Note that Ui, Vi, U, V are affine schemes, the vertical morphisms are surjective étale,
and the limit of the morphisms Ui → Vi is U → V . Recall that Fi is flat over Yi

if and only if Fi|Ui
is flat over Vi and similarly F is flat over Y if and only if F|U

is flat over V (Morphisms of Spaces, Definition 30.1). Since f0 is locally of finite
presentation, so is the morphism U0 → V0. Hence the lemma follows from Limits,
Lemma 10.4. □

Lemma 6.13.08K1 Assumptions and notation as in Situation 6.1. If
(1) f is proper, and
(2) f0 is locally of finite type,

then there exists an i such that fi is proper.

Proof. Choose an affine scheme V0 and a surjective étale morphism V0 → Y0. Set
Vi = Yi ×Y0 V0 and V = Y ×Y0 V0. It suffices to prove that the base change of fi

to Vi is proper, see Morphisms of Spaces, Lemma 40.2. Thus we may assume Y0 is
affine.
By Lemma 6.9 we see that fi is separated for some i ≥ 0. Replacing 0 by i we
may assume that f0 is separated. Observe that f0 is quasi-compact. Thus f0 is
separated and of finite type. By Cohomology of Spaces, Lemma 18.1 we can choose
a diagram

X0

  

X ′
0

��

π
oo // Pn

Y0

}}
Y0

where X ′
0 → Pn

Y0
is an immersion, and π : X ′

0 → X0 is proper and surjective.
Introduce X ′ = X ′

0 ×Y0 Y and X ′
i = X ′

0 ×Y0 Yi. By Morphisms of Spaces, Lemmas
40.4 and 40.3 we see that X ′ → Y is proper. Hence X ′ → Pn

Y is a closed immersion
(Morphisms of Spaces, Lemma 40.6). By Morphisms of Spaces, Lemma 40.7 it
suffices to prove that X ′

i → Yi is proper for some i. By Lemma 6.8 we find that
X ′

i → Pn
Yi

is a closed immersion for i large enough. Then X ′
i → Yi is proper and

we win. □

Lemma 6.14.0D4K Assumptions and notation as in Situation 6.1. Let d ≥ 0. If
(1) f has relative dimension ≤ d (Morphisms of Spaces, Definition 33.2), and
(2) f0 is locally of finite type,

then there exists an i such that fi has relative dimension ≤ d.

https://stacks.math.columbia.edu/tag/08K1
https://stacks.math.columbia.edu/tag/0D4K
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Proof. Choose an affine scheme V0 and a surjective étale morphism V0 → Y0.
Choose an affine scheme U0 and a surjective étale morphism U0 → V0 ×Y0 X0.
Diagram

U0

��

// V0

��
X0 // Y0

The vertical arrows are surjective and étale by construction. We can base change
this diagram to Bi or B to get

Ui

��

// Vi

��
Xi

// Yi

and

U

��

// V

��
X // Y

Note that Ui, Vi, U, V are affine schemes, the vertical morphisms are surjective étale,
and the limit of the morphisms Ui → Vi is U → V . In this situation Xi → Yi has
relative dimension ≤ d if and only if Ui → Vi has relative dimension ≤ d (as defined
in Morphisms, Definition 29.1). To see the equivalence, use that the definition for
morphisms of algebraic spaces involves Morphisms of Spaces, Definition 33.1 which
uses étale localization. The same is true for X → Y and U → V . Since f0 is locally
of finite type, so is the morphism U0 → V0. Hence the lemma follows from the more
general Limits, Lemma 18.1. □

7. Descending relative objects

07SJ The following lemma is typical of the type of results in this section.

Lemma 7.1.07SK Let S be a scheme. Let I be a directed set. Let (Xi, fii′) be an
inverse system over I of algebraic spaces over S. Assume

(1) the morphisms fii′ : Xi → Xi′ are affine,
(2) the spaces Xi are quasi-compact and quasi-separated.

Let X = limi Xi. Then the category of algebraic spaces of finite presentation over
X is the colimit over I of the categories of algebraic spaces of finite presentation
over Xi.

Proof. Pick 0 ∈ I. Choose a surjective étale morphism U0 → X0 where U0 is
an affine scheme (Properties of Spaces, Lemma 6.3). Set Ui = Xi ×X0 U0. Set
R0 = U0 ×X0 U0 and Ri = R0 ×X0 Xi. Denote si, ti : Ri → Ui and s, t : R → U
the two projections. In the proof of Lemma 4.1 we have seen that there exists a
presentation X = U/R with U = lim Ui and R = lim Ri. Note that Ui and U
are affine and that Ri and R are quasi-compact and separated (as Xi is quasi-
separated). Let Y be an algebraic space over S and let Y → X be a morphism
of finite presentation. Set V = U ×X Y . This is an algebraic space of finite
presentation over U . Choose an affine scheme W and a surjective étale morphism
W → V . Then W → Y is surjective étale as well. Set R′ = W ×Y W so that
Y = W/R′ (see Spaces, Section 9). Note that W is a scheme of finite presentation
over U and that R′ is a scheme of finite presentation over R (details omitted). By
Limits, Lemma 10.1 we can find an index i and a morphism of schemes Wi → Ui

of finite presentation whose base change to U gives W → U . Similarly we can find,

https://stacks.math.columbia.edu/tag/07SK
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after possibly increasing i, a scheme R′
i of finite presentation over Ri whose base

change to R is R′. The projection morphisms s′, t′ : R′ → W are morphisms over
the projection morphisms s, t : R → U . Hence we can view s′, resp. t′ as a morphism
between schemes of finite presentation over U (with structure morphism R′ → U
given by R′ → R followed by s, resp. t). Hence we can apply Limits, Lemma 10.1
again to see that, after possibly increasing i, there exist morphisms s′

i, t′
i : R′

i → Wi,
whose base change to U is S′, t′. By Limits, Lemmas 8.10 and 8.14 we may assume
that s′

i, t′
i are étale and that j′

i : R′
i → Wi ×Xi Wi is a monomorphism (here we view

j′
i as a morphism of schemes of finite presentation over Ui via one of the projections

– it doesn’t matter which one). Setting Yi = Wi/R′
i (see Spaces, Theorem 10.5) we

obtain an algebraic space of finite presentation over Xi whose base change to X is
isomorphic to Y .
This shows that every algebraic space of finite presentation over X comes from an
algebraic space of finite presentation over some Xi, i.e., it shows that the functor
of the lemma is essentially surjective. To show that it is fully faithful, consider
an index 0 ∈ I and two algebraic spaces Y0, Z0 of finite presentation over X0.
Set Yi = Xi ×X0 Y0, Y = X ×X0 Y0, Zi = Xi ×X0 Z0, and Z = X ×X0 Z0.
Let α : Y → Z be a morphism of algebraic spaces over X. Choose a surjective
étale morphism V0 → Y0 where V0 is an affine scheme. Set Vi = V0 ×Y0 Yi and
V = V0 ×Y0 Y which are affine schemes endowed with surjective étale morphisms to
Yi and Y . The composition V → Y → Z → Z0 comes from a (essentially unique)
morphism Vi → Z0 for some i ≥ 0 by Proposition 3.10 (applied to Z0 → X0 which
is of finite presentation by assumption). After increasing i the two compositions

Vi ×Yi
Vi → Vi → Z0

are equal as this is true in the limit. Hence we obtain a (essentially unique) mor-
phism Yi → Z0. Since this is a morphism over X0 it induces a morphism into
Zi = Z0 ×X0 Xi as desired. □

Lemma 7.2.07V7 With notation and assumptions as in Lemma 7.1. The category
of OX-modules of finite presentation is the colimit over I of the categories OXi

-
modules of finite presentation.

Proof. Choose 0 ∈ I. Choose an affine scheme U0 and a surjective étale morphism
U0 → X0. Set Ui = Xi ×X0 U0. Set R0 = U0 ×X0 U0 and Ri = R0 ×X0 Xi. Denote
si, ti : Ri → Ui and s, t : R → U the two projections. In the proof of Lemma
4.1 we have seen that there exists a presentation X = U/R with U = lim Ui and
R = lim Ri. Note that Ui and U are affine and that Ri and R are quasi-compact
and separated (as Xi is quasi-separated). Moreover, it is also true that R ×s,U,t

R = colim Ri ×si,Ui,ti
Ri. Thus we know that QCoh(OU ) = colim QCoh(OUi

),
QCoh(OR) = colim QCoh(ORi

), and QCoh(OR×s,U,tR) = colim QCoh(ORi×si,Ui,ti
Ri

)
by Limits, Lemma 10.2. We have QCoh(OX) = QCoh(U, R, s, t, c) and QCoh(OXi) =
QCoh(Ui, Ri, si, ti, ci), see Properties of Spaces, Proposition 32.1. Thus the result
follows formally. □

Lemma 7.3.0D2X With notation and assumptions as in Lemma 7.1. Then
(1) any finite locally free OX-module is the pullback of a finite locally free OXi

-
module for some i,

(2) any invertible OX-module is the pullback of an invertible OXi
-module for

some i.

https://stacks.math.columbia.edu/tag/07V7
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Proof. Proof of (2). Let L be an invertible OX -module. Since invertible modules
are of finite presentation we can find an i and modules Li and Ni of finite pre-
sentation over Xi such that f∗

i Li
∼= L and f∗

i Ni
∼= L⊗−1, see Lemma 7.2. Since

pullback commutes with tensor product we see that f∗
i (Li ⊗OXi

Ni) is isomorphic
to OX . Since the tensor product of finitely presented modules is finitely presented,
the same lemma implies that f∗

i′iLi ⊗OX
i′

f∗
i′iNi is isomorphic to OXi′ for some

i′ ≥ i. It follows that f∗
i′iLi is invertible (Modules on Sites, Lemma 32.2) and the

proof is complete.
Proof of (1). Omitted. Hint: argue as in the proof of (2) using that a module (on
a locally ringed site) is finite locally free if and only if it has a dual, see Modules
on Sites, Section 29. Alternatively, argue as in the proof for schemes, see Limits,
Lemma 10.3. □

8. Absolute Noetherian approximation

07SS The following result is [CLO12, Theorem 1.2.2]. A key ingredient in the proof is
Decent Spaces, Lemma 8.6.

Proposition 8.1.07SU Our proof follows
closely the proof
given in [CLO12,
Theorem 1.2.2].

Let X be a quasi-compact and quasi-separated algebraic space
over Spec(Z). There exist a directed set I and an inverse system of algebraic spaces
(Xi, fii′) over I such that

(1) the transition morphisms fii′ are affine
(2) each Xi is quasi-separated and of finite type over Z, and
(3) X = lim Xi.

Proof. We apply Decent Spaces, Lemma 8.6 to get open subspaces Up ⊂ X,
schemes Vp, and morphisms fp : Vp → Up with properties as stated. Note that
fn : Vn → Un is an étale morphism of algebraic spaces whose restriction to the
inverse image of Tn = (Vn)red is an isomorphism. Hence fn is an isomorphism,
for example by Morphisms of Spaces, Lemma 51.2. In particular Un is a quasi-
compact and separated scheme. Thus we can write Un = lim Un,i as a directed
limit of schemes of finite type over Z with affine transition morphisms, see Limits,
Proposition 5.4. Thus, applying descending induction on p, we see that we have
reduced to the problem posed in the following paragraph.
Here we have U ⊂ X, U = lim Ui, Z ⊂ X, and f : V → X with the following
properties

(1) X is a quasi-compact and quasi-separated algebraic space,
(2) V is a quasi-compact and separated scheme,
(3) U ⊂ X is a quasi-compact open subspace,
(4) (Ui, gii′) is a directed inverse system of quasi-separated algebraic spaces of

finite type over Z with affine transition morphisms whose limit is U ,
(5) Z ⊂ X is a closed subspace such that |X| = |U | ⨿ |Z|,
(6) f : V → X is a surjective étale morphism such that f−1(Z) → Z is an

isomorphism.
Problem: Show that the conclusion of the proposition holds for X.
Note that W = f−1(U) ⊂ V is a quasi-compact open subscheme étale over U .
Hence we may apply Lemmas 7.1 and 6.2 to find an index 0 ∈ I and an étale
morphism W0 → U0 of finite presentation whose base change to U produces W .
Setting Wi = W0 ×U0 Ui we see that W = limi≥0 Wi. After increasing 0 we may

https://stacks.math.columbia.edu/tag/07SU
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assume the Wi are schemes, see Lemma 5.11. Moreover, Wi is of finite type over
Z.
Apply Limits, Lemma 5.3 to W = limi≥0 Wi and the inclusion W ⊂ V . Replace I
by the directed set J found in that lemma. This allows us to write V as a directed
limit V = lim Vi of finite type schemes over Z with affine transition maps such that
each Vi contains Wi as an open subscheme (compatible with transition morphisms).
For each i we can form the push out

Wi
//

∆
��

Vi

��
Wi ×Ui

Wi
// Ri

in the category of schemes. Namely, the left vertical and upper horizontal arrows are
open immersions of schemes. In other words, we can construct Ri as the glueing of
Vi and Wi ×Ui Wi along the common open Wi (see Schemes, Section 14). Note that
the étale projection maps Wi ×Ui

Wi → Wi extend to étale morphisms si, ti : Ri →
Vi. It is clear that the morphism ji = (ti, si) : Ri → Vi × Vi is an étale equivalence
relation on Vi. Note that Wi ×Ui

Wi is quasi-compact (as Ui is quasi-separated and
Wi quasi-compact) and Vi is quasi-compact, hence Ri is quasi-compact. For i ≥ i′

the diagram

(8.1.1)07SV

Ri
//

si

��

Ri′

si′

��
Vi

// Vi′

is cartesian because
(Wi′ ×Ui′ Wi′) ×Ui′ Ui = Wi′ ×Ui′ Ui ×Ui

Ui ×Ui′ Wi′ = Wi ×Ui
Wi.

Consider the algebraic space Xi = Vi/Ri (see Spaces, Theorem 10.5). As Vi is
of finite type over Z and Ri is quasi-compact we see that Xi is quasi-separated
and of finite type over Z (see Properties of Spaces, Lemma 6.5 and Morphisms of
Spaces, Lemmas 8.6 and 23.4). As the construction of Ri above is compatible with
transition morphisms, we obtain morphisms of algebraic spaces Xi → Xi′ for i ≥ i′.
The commutative diagrams

Vi
//

��

Vi′

��
Xi

// Xi′

are cartesian as (8.1.1) is cartesian, see Groupoids, Lemma 20.7. Since Vi → Vi′ is
affine, this implies that Xi → Xi′ is affine, see Morphisms of Spaces, Lemma 20.3.
Thus we can form the limit X ′ = lim Xi by Lemma 4.1. We claim that X ∼= X ′

which finishes the proof of the proposition.
Proof of the claim. Set R = lim Ri. By construction the algebraic space X ′ comes
equipped with a surjective étale morphism V → X ′ such that

V ×X′ V ∼= R

(use Lemma 4.1). By construction lim Wi ×Ui
Wi = W ×U W and V = lim Vi so

that R is the union of W ×U W and V glued along W . Property (6) implies the
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projections V ×X V → V are isomorphisms over f−1(Z) ⊂ V . Hence the scheme
V ×X V is the union of the opens ∆V/X(V ) and W ×U W which intersect along
∆W/X(W ). We conclude that there exists a unique isomorphism R ∼= V ×X V
compatible with the projections to V . Since V → X and V → X ′ are surjective
étale we see that

X = V/V ×X V = V/R = V/V ×X′ V = X ′

by Spaces, Lemma 9.1 and we win. □

9. Applications

07V8 The following lemma can also be deduced directly from Decent Spaces, Lemma 8.6
without passing through absolute Noetherian approximation.

Lemma 9.1.07V9 Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Every quasi-coherent OX-module is a filtered colimit of
finitely presented OX-modules.

Proof. We may view X as an algebraic space over Spec(Z), see Spaces, Definition
16.2 and Properties of Spaces, Definition 3.1. Thus we may apply Proposition 8.1
and write X = lim Xi with Xi of finite presentation over Z. Thus Xi is a Noetherian
algebraic space, see Morphisms of Spaces, Lemma 28.6. The morphism X → Xi is
affine, see Lemma 4.1. Conclusion by Cohomology of Spaces, Lemma 15.2. □

The rest of this section consists of straightforward applications of Lemma 9.1.

Lemma 9.2.0829 Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Let F be a quasi-coherent OX-module. Then F is the
directed colimit of its finite type quasi-coherent submodules.

Proof. If G, H ⊂ F are finite type quasi-coherent OX -submodules then the image
of G ⊕ H → F is another finite type quasi-coherent OX -submodule which contains
both of them. In this way we see that the system is directed. To show that F is the
colimit of this system, write F = colimi Fi as a directed colimit of finitely presented
quasi-coherent sheaves as in Lemma 9.1. Then the images Gi = Im(Fi → F) are
finite type quasi-coherent subsheaves of F . Since F is the colimit of these the result
follows. □

Lemma 9.3.086Y Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Let F be a finite type quasi-coherent OX-module. Then we
can write F = lim Fi where each Fi is an OX-module of finite presentation and all
transition maps Fi → Fi′ surjective.

Proof. Write F = colim Gi as a filtered colimit of finitely presented OX -modules
(Lemma 9.1). We claim that Gi → F is surjective for some i. Namely, choose an
étale surjection U → X where U is an affine scheme. Choose finitely many sections
sk ∈ F(U) generating F|U . Since U is affine we see that sk is in the image of
Gi → F for i large enough. Hence Gi → F is surjective for i large enough. Choose
such an i and let K ⊂ Gi be the kernel of the map Gi → F . Write K = colim Ka as
the filtered colimit of its finite type quasi-coherent submodules (Lemma 9.2). Then
F = colim Gi/Ka is a solution to the problem posed by the lemma. □

https://stacks.math.columbia.edu/tag/07V9
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Let X be an algebraic space. In the following lemma we use the notion of a finitely
presented quasi-coherent OX-algebra A. This means that for every affine U =
Spec(R) étale over X we have A|U = Ã where A is a (commutative) R-algebra
which is of finite presentation as an R-algebra.

Lemma 9.4.082A Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Let A be a quasi-coherent OX-algebra. Then A is a directed
colimit of finitely presented quasi-coherent OX-algebras.

Proof. First we write A = colimi Fi as a directed colimit of finitely presented
quasi-coherent sheaves as in Lemma 9.1. For each i let Bi = Sym(Fi) be the
symmetric algebra on Fi over OX . Write Ii = Ker(Bi → A). Write Ii = colimj Fi,j

where Fi,j is a finite type quasi-coherent submodule of Ii, see Lemma 9.2. Set
Ii,j ⊂ Ii equal to the Bi-ideal generated by Fi,j . Set Ai,j = Bi/Ii,j . Then Ai,j is
a quasi-coherent finitely presented OX -algebra. Define (i, j) ≤ (i′, j′) if i ≤ i′ and
the map Bi → Bi′ maps the ideal Ii,j into the ideal Ii′,j′ . Then it is clear that
A = colimi,j Ai,j . □

Let X be an algebraic space. In the following lemma we use the notion of a quasi-
coherent OX-algebra A of finite type. This means that for every affine U = Spec(R)
étale over X we have A|U = Ã where A is a (commutative) R-algebra which is of
finite type as an R-algebra.

Lemma 9.5.082B Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Let A be a quasi-coherent OX-algebra. Then A is the
directed colimit of its finite type quasi-coherent OX-subalgebras.

Proof. Omitted. Hint: Compare with the proof of Lemma 9.2. □

Let X be an algebraic space. In the following lemma we use the notion of a finite
(resp. integral) quasi-coherent OX-algebra A. This means that for every affine
U = Spec(R) étale over X we have A|U = Ã where A is a (commutative) R-algebra
which is finite (resp. integral) as an R-algebra.

Lemma 9.6.086Z Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Let A be a finite quasi-coherent OX-algebra. Then A =
colim Ai is a directed colimit of finite and finitely presented quasi-coherent OX-
algebras with surjective transition maps.

Proof. By Lemma 9.3 there exists a finitely presented OX -module F and a sur-
jection F → A. Using the algebra structure we obtain a surjection

Sym∗
OX

(F) −→ A
Denote J the kernel. Write J = colim Ei as a filtered colimit of finite type OX -
submodules Ei (Lemma 9.2). Set

Ai = Sym∗
OX

(F)/(Ei)
where (Ei) indicates the ideal sheaf generated by the image of Ei → Sym∗

OX
(F).

Then each Ai is a finitely presented OX -algebra, the transition maps are surjective,
and A = colim Ai. To finish the proof we still have to show that Ai is a finite OX -
algebra for i sufficiently large. To do this we choose an étale surjective map U → X
where U is an affine scheme. Take generators f1, . . . , fm ∈ Γ(U, F). As A(U)
is a finite OX(U)-algebra we see that for each j there exists a monic polynomial

https://stacks.math.columbia.edu/tag/082A
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Pj ∈ O(U)[T ] such that Pj(fj) is zero in A(U). Since A = colim Ai by construction,
we have Pj(fj) = 0 in Ai(U) for all sufficiently large i. For such i the algebras Ai

are finite. □

Lemma 9.7.082C Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Let A be an integral quasi-coherent OX-algebra. Then

(1) A is the directed colimit of its finite quasi-coherent OX-subalgebras, and
(2) A is a directed colimit of finite and finitely presented OX-algebras.

Proof. By Lemma 9.5 we have A = colim Ai where Ai ⊂ A runs through the
quasi-coherent OX -sub algebras of finite type. Any finite type quasi-coherent OX -
subalgebra of A is finite (use Algebra, Lemma 36.5 on affine schemes étale over X).
This proves (1).

To prove (2), write A = colim Fi as a colimit of finitely presented OX -modules
using Lemma 9.1. For each i, let Ji be the kernel of the map

Sym∗
OX

(Fi) −→ A

For i′ ≥ i there is an induced map Ji → Ji′ and we have A = colim Sym∗
OX

(Fi)/Ji.
Moreover, the quasi-coherent OX -algebras Sym∗

OX
(Fi)/Ji are finite (see above).

Write Ji = colim Eik as a colimit of finitely presented OX -modules. Given i′ ≥ i
and k there exists a k′ such that we have a map Eik → Ei′k′ making

Ji
// Ji′

Eik

OO

// Ei′k′

OO

commute. This follows from Cohomology of Spaces, Lemma 5.3. This induces a
map

Aik = Sym∗
OX

(Fi)/(Eik) −→ Sym∗
OX

(Fi′)/(Ei′k′) = Ai′k′

where (Eik) denotes the ideal generated by Eik. The quasi-coherent OX -algebras
Aki are of finite presentation and finite for k large enough (see proof of Lemma
9.6). Finally, we have

colim Aik = colim Ai = A
Namely, the first equality was shown in the proof of Lemma 9.6 and the second
equality because A is the colimit of the modules Fi. □

Lemma 9.8.0853 Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Let U ⊂ X be a quasi-compact open. Let F be a quasi-
coherent OX-module. Let G ⊂ F|U be a quasi-coherent OU -submodule which is of
finite type. Then there exists a quasi-coherent submodule G′ ⊂ F which is of finite
type such that G′|U = G.

Proof. Denote j : U → X the inclusion morphism. As X is quasi-separated and
U quasi-compact, the morphism j is quasi-compact. Hence j∗G ⊂ j∗F|U are quasi-
coherent modules on X (Morphisms of Spaces, Lemma 11.2). Let H = Ker(j∗G ⊕
F → j∗F|U ). Then H|U = G. By Lemma 9.2 we can find a finite type quasi-
coherent submodule H′ ⊂ H such that H′|U = H|U = G. Set G′ = Im(H′ → F) to
conclude. □
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10. Relative approximation

09NR We discuss variants of Proposition 8.1 over a base.

Lemma 10.1.0GS3 Let f : X → Y be a morphism of quasi-compact and quasi-separated
algebraic spaces over Z. Then there exists a direct set I and an inverse system
(fi : Xi → Yi) of morphisms algebraic spaces over I, such that the transition
morphisms Xi → Xi′ and Yi → Yi′ are affine, such that Xi and Yi are quasi-
separated and of finite type over Z, and such that (X → Y ) = lim(Xi → Yi).

Proof. Write X = lima∈A Xa and Y = limb∈B Yb as in Proposition 8.1, i.e., with
Xa and Yb quasi-separated and of finite type over Z and with affine transition
morphisms.

Fix b ∈ B. By Lemma 4.5 applied to Yb and X = lim Xa over Z we find there exists
an a ∈ A and a morphism fa,b : Xa → Yb making the diagram

X

��

// Y

��
Xa

// Yb

commute. Let I be the set of triples (a, b, fa,b) we obtain in this manner.

Let (a, b, fa,b) and (a′, b′, fa′,b′) be in I. Let b′′ ≤ min(b, b′). By Lemma 4.5 again,
there exists an a′′ ≥ max(a, a′) such that the compositions Xa′′ → Xa → Yb → Yb′′

and Xa′′ → Xa′ → Yb′ → Yb′′ are equal. We endow I with the preorder

(a, b, fa,b) ≥ (a′, b′, fa′,b′) ⇔ a ≥ a′, b ≥ b′, and gb,b′ ◦ fa,b = fa′,b′ ◦ ha,a′

where ha,a′ : Xa → Xa′ and gb,b′ : Yb → Yb′ are the transition morphisms. The
remarks above show that I is directed and that the maps I → A, (a, b, fa,b) 7→ a
and I → B, (a, b, fa,b) are cofinal. If for i = (a, b, fa,b) we set Xi = Xa, Yi = Yb,
and fi = fa,b, then we get an inverse system of morphisms over I and we have

limi∈I Xi = lima∈A Xa = X and limi∈I Si = limb∈B Yb = Y

by Categories, Lemma 17.4 (recall that limits over I are really limits over the
opposite category associated to I and hence cofinal turns into initial). This finishes
the proof. □

Lemma 10.2.09NS Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume that

(1) X is quasi-compact and quasi-separated, and
(2) Y is quasi-separated.

Then X = lim Xi is a limit of a directed inverse system of algebraic spaces Xi of
finite presentation over Y with affine transition morphisms over Y .

Proof. Since |f |(|X|) is quasi-compact we may replace Y by a quasi-compact open
subspace whose set of points contains |f |(|X|). Hence we may assume Y is quasi-
compact as well. By Lemma 10.1 we can write (X → Y ) = lim(Xi → Yi) for
some directed inverse system of morphisms of finite type schemes over Z with affine
transition morphisms. Since limits commute with limits (Categories, Lemma 14.10)
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we have X = lim Xi×Yi
Y . For i ≥ i′ the transition morphism Xi×Yi

Y → Xi′ ×Yi′ Y
is affine as the composition

Xi ×Yi
Y → Xi ×Yi′ Y → Xi′ ×Yi′ Y

where the first morphism is a closed immersion (by Morphisms of Spaces, Lemma
4.5) and the second is a base change of an affine morphism (Morphisms of Spaces,
Lemma 20.5) and the composition of affine morphisms is affine (Morphisms of
Spaces, Lemma 20.4). The morphisms fi are of finite presentation (Morphisms of
Spaces, Lemmas 28.7 and 28.9) and hence the base changes Xi ×fi,Yi

Y → Y are
of finite presentation (Morphisms of Spaces, Lemma 28.3). □

11. Finite type closed in finite presentation

07SP This section is the analogue of Limits, Section 9.

Lemma 11.1.0870 Let S be a scheme. Let f : X → Y be an affine morphism of alge-
braic spaces over S. If Y quasi-compact and quasi-separated, then X is a directed
limit X = lim Xi with each Xi affine and of finite presentation over Y .

Proof. Consider the quasi-coherent OY -module A = f∗OX . By Lemma 9.4 we
can write A = colim Ai as a directed colimit of finitely presented OY -algebras Ai.
Set Xi = Spec

Y
(Ai), see Morphisms of Spaces, Definition 20.8. By construction

Xi → Y is affine and of finite presentation and X = lim Xi. □

Lemma 11.2.09YA Let S be a scheme. Let f : X → Y be an integral morphism of
algebraic spaces over S. Assume Y quasi-compact and quasi-separated. Then X
can be written as a directed limit X = lim Xi where Xi are finite and of finite
presentation over Y .

Proof. Consider the quasi-coherent OY -module A = f∗OX . By Lemma 9.7 we
can write A = colim Ai as a directed colimit of finite and finitely presented OY -
algebras Ai. Set Xi = Spec

Y
(Ai), see Morphisms of Spaces, Definition 20.8. By

construction Xi → Y is finite and of finite presentation and X = lim Xi. □

Lemma 11.3.07VR Let S be a scheme. Let f : X → Y be a finite morphism of
algebraic spaces over S. Assume Y quasi-compact and quasi-separated. Then X
can be written as a directed limit X = lim Xi where the transition maps are closed
immersions and the objects Xi are finite and of finite presentation over Y .

Proof. Consider the finite quasi-coherent OY -module A = f∗OX . By Lemma 9.6
we can write A = colim Ai as a directed colimit of finite and finitely presented OY -
algebras Ai with surjective transition maps. Set Xi = Spec

Y
(Ai), see Morphisms of

Spaces, Definition 20.8. By construction Xi → Y is finite and of finite presentation,
the transition maps are closed immersions, and X = lim Xi. □

Lemma 11.4.0A0U Let S be a scheme. Let f : X → Y be a closed immersion of
algebraic spaces over S. Assume Y quasi-compact and quasi-separated. Then X
can be written as a directed limit X = lim Xi where the transition maps are closed
immersions and the morphisms Xi → Y are closed immersions of finite presenta-
tion.

Proof. Let I ⊂ OY be the quasi-coherent sheaf of ideals defining X as a closed
subspace of Y . By Lemma 9.2 we can write I = colim Ii as the filtered colimit of its
finite type quasi-coherent submodules. Let Xi be the closed subspace of X cut out
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by Ii. Then Xi → Y is a closed immersion of finite presentation, and X = lim Xi.
Some details omitted. □

Lemma 11.5.0871 Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume

(1) f is locally of finite type and quasi-affine, and
(2) Y is quasi-compact and quasi-separated.

Then there exists a morphism of finite presentation f ′ : X ′ → Y and a closed
immersion X → X ′ over Y .

Proof. By Morphisms of Spaces, Lemma 21.6 we can find a factorization X →
Z → Y where X → Z is a quasi-compact open immersion and Z → Y is affine.
Write Z = lim Zi with Zi affine and of finite presentation over Y (Lemma 11.1). For
some 0 ∈ I we can find a quasi-compact open U0 ⊂ Z0 such that X is isomorphic
to the inverse image of U0 in Z (Lemma 5.7). Let Ui be the inverse image of U0 in
Zi, so U = lim Ui. By Lemma 5.12 we see that X → Ui is a closed immersion for
some i large enough. Setting X ′ = Ui finishes the proof. □

Lemma 11.6.0872 Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume:

(1) f is of locally of finite type.
(2) X is quasi-compact and quasi-separated, and
(3) Y is quasi-compact and quasi-separated.

Then there exists a morphism of finite presentation f ′ : X ′ → Y and a closed
immersion X → X ′ of algebraic spaces over Y .

Proof. By Proposition 8.1 we can write X = limi Xi with Xi quasi-separated of
finite type over Z and with transition morphisms fii′ : Xi → Xi′ affine. Consider
the commutative diagram

X //

!!

Xi,Y
//

��

Xi

��
Y // Spec(Z)

Note that Xi is of finite presentation over Spec(Z), see Morphisms of Spaces, Lemma
28.7. Hence the base change Xi,Y → Y is of finite presentation by Morphisms of
Spaces, Lemma 28.3. Observe that lim Xi,Y = X × Y and that X → X × Y is
a monomorphism. By Lemma 5.12 we see that X → Xi,Y is a monomorphism
for i large enough. Fix such an i. Note that X → Xi,Y is locally of finite type
(Morphisms of Spaces, Lemma 23.6) and a monomorphism, hence separated and
locally quasi-finite (Morphisms of Spaces, Lemma 27.10). Hence X → Xi,Y is
representable. Hence X → Xi,Y is quasi-affine because we can use the principle
Spaces, Lemma 5.8 and the result for morphisms of schemes More on Morphisms,
Lemma 43.2. Thus Lemma 11.5 gives a factorization X → X ′ → Xi,Y with X → X ′

a closed immersion and X ′ → Xi,Y of finite presentation. Finally, X ′ → Y is of
finite presentation as a composition of morphisms of finite presentation (Morphisms
of Spaces, Lemma 28.2). □

Proposition 11.7.0873 Let S be a scheme. f : X → Y be a morphism of algebraic
spaces over S. Assume

https://stacks.math.columbia.edu/tag/0871
https://stacks.math.columbia.edu/tag/0872
https://stacks.math.columbia.edu/tag/0873


LIMITS OF ALGEBRAIC SPACES 31

(1) f is of finite type and separated, and
(2) Y is quasi-compact and quasi-separated.

Then there exists a separated morphism of finite presentation f ′ : X ′ → Y and a
closed immersion X → X ′ over Y .

Proof. By Lemma 11.6 there is a closed immersion X → Z with Z/Y of finite
presentation. Let I ⊂ OZ be the quasi-coherent sheaf of ideals defining X as
a closed subscheme of Y . By Lemma 9.2 we can write I as a directed colimit
I = colima∈A Ia of its quasi-coherent sheaves of ideals of finite type. Let Xa ⊂
Z be the closed subspace defined by Ia. These form an inverse system indexed
by A. The transition morphisms Xa → Xa′ are affine because they are closed
immersions. Each Xa is quasi-compact and quasi-separated since it is a closed
subspace of Z and Z is quasi-compact and quasi-separated by our assumptions.
We have X = lima Xa as follows directly from the fact that I = colima∈A Ia. Each
of the morphisms Xa → Z is of finite presentation, see Morphisms, Lemma 21.7.
Hence the morphisms Xa → Y are of finite presentation. Thus it suffices to show
that Xa → Y is separated for some a ∈ A. This follows from Lemma 5.13 as we
have assumed that X → Y is separated. □

12. Approximating proper morphisms

0A0V
Lemma 12.1.0A0W Let S be a scheme. Let f : X → Y be a proper morphism of
algebraic spaces over S with Y quasi-compact and quasi-separated. Then X =
lim Xi is a directed limit of algebraic spaces Xi proper and of finite presentation
over Y and with transition morphisms and morphisms X → Xi closed immersions.

Proof. By Proposition 11.7 we can find a closed immersion X → X ′ with X ′

separated and of finite presentation over Y . By Lemma 11.4 we can write X =
lim Xi with Xi → X ′ a closed immersion of finite presentation. We claim that for
all i large enough the morphism Xi → Y is proper which finishes the proof.
To prove this we may assume that Y is an affine scheme, see Morphisms of Spaces,
Lemma 40.2. Next, we use the weak version of Chow’s lemma, see Cohomology of
Spaces, Lemma 18.1, to find a diagram

X ′

!!

X ′′

��

π
oo // Pn

Y

}}
Y

where X ′′ → Pn
Y is an immersion, and π : X ′′ → X ′ is proper and surjective.

Denote X ′
i ⊂ X ′′, resp. π−1(X) the scheme theoretic inverse image of Xi ⊂ X ′,

resp. X ⊂ X ′. Then lim X ′
i = π−1(X). Since π−1(X) → Y is proper (Morphisms of

Spaces, Lemmas 40.4), we see that π−1(X) → Pn
Y is a closed immersion (Morphisms

of Spaces, Lemmas 40.6 and 12.3). Hence for i large enough we find that X ′
i → Pn

Y

is a closed immersion by Lemma 5.16. Thus X ′
i is proper over Y . For such i the

morphism Xi → Y is proper by Morphisms of Spaces, Lemma 40.7. □

Lemma 12.2.0A0X Let f : X → Y be a proper morphism of algebraic spaces over Z
with Y quasi-compact and quasi-separated. Then there exists a directed set I, an
inverse system (fi : Xi → Yi) of morphisms of algebraic spaces over I, such that
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the transition morphisms Xi → Xi′ and Yi → Yi′ are affine, such that fi is proper
and of finite presentation, such that Yi is of finite presentation over Z, and such
that (X → Y ) = lim(Xi → Yi).

Proof. By Lemma 12.1 we can write X = limk∈K Xk with Xk → Y proper and of
finite presentation. Next, by absolute Noetherian approximation (Proposition 8.1)
we can write Y = limj∈J Yj with Yj of finite presentation over Z. For each k there
exists a j and a morphism Xk,j → Yj of finite presentation with Xk

∼= Y ×Yj
Xk,j

as algebraic spaces over Y , see Lemma 7.1. After increasing j we may assume
Xk,j → Yj is proper, see Lemma 6.13. The set I will be consist of these pairs (k, j)
and the corresponding morphism is Xk,j → Yj . For every k′ ≥ k we can find a
j′ ≥ j and a morphism Xj′,k′ → Xj,k over Yj′ → Yj whose base change to Y gives
the morphism Xk′ → Xk (follows again from Lemma 7.1). These morphisms form
the transition morphisms of the system. Some details omitted. □

Recall the scheme theoretic support of a finite type quasi-coherent module, see
Morphisms of Spaces, Definition 15.4.

Lemma 12.3.08K2 Assumptions and notation as in Situation 6.1. Let F0 be a quasi-
coherent OX0-module. Denote F and Fi the pullbacks of F0 to X and Xi. Assume

(1) f0 is locally of finite type,
(2) F0 is of finite type,
(3) the scheme theoretic support of F is proper over Y .

Then the scheme theoretic support of Fi is proper over Yi for some i.

Proof. We may replace X0 by the scheme theoretic support of F0. By Morphisms
of Spaces, Lemma 15.2 this guarantees that Xi is the support of Fi and X is the
support of F . Then, if Z ⊂ X denotes the scheme theoretic support of F , we see
that Z → X is a universal homeomorphism. We conclude that X → Y is proper
as this is true for Z → Y by assumption, see Morphisms, Lemma 41.9. By Lemma
6.13 we see that Xi → Y is proper for some i. Then it follows that the scheme
theoretic support Zi of Fi is proper over Y by Morphisms of Spaces, Lemmas 40.5
and 40.4. □

13. Embedding into affine space

088K Some technical lemmas to be used in the proof of Chow’s lemma later.

Lemma 13.1.088L Let S be a scheme. Let f : U → X be a morphism of algebraic
spaces over S. Assume U is an affine scheme, f is locally of finite type, and X
quasi-separated and locally separated. Then there exists an immersion U → An

X

over X.

Proof. Say U = Spec(A). Write A = colim Ai as a filtered colimit of finite type
Z-subalgebras. For each i the morphism U → Ui = Spec(Ai) induces a morphism

U −→ X × Ui

over X. In the limit the morphism U → X × U is an immersion as X is locally
separated, see Morphisms of Spaces, Lemma 4.6. By Lemma 5.12 we see that
U → X × Ui is an immersion for some i. Since Ui is isomorphic to a closed
subscheme of An

Z the lemma follows. □
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Remark 13.2.088M We have seen in Examples, Section 28 that Lemma 13.1 does not
hold if we drop the assumption that X be locally separated. This raises the question:
Does Lemma 13.1 hold if we drop the assumption that X be quasi-separated? If
you know the answer, please email stacks.project@gmail.com.

Lemma 13.3.088N Let S be a scheme. Let f : Y → X be a morphism of algebraic
spaces over S. Assume X Noetherian and f of finite presentation. Then there
exists a dense open V ⊂ Y and an immersion V → An

X .

Proof. The assumptions imply that Y is Noetherian (Morphisms of Spaces, Lemma
28.6). Then Y is quasi-separated, hence has a dense open subscheme (Properties of
Spaces, Proposition 13.3). Thus we may assume that Y is a Noetherian scheme. By
removing intersections of irreducible components of Y (use Topology, Lemma 9.2
and Properties, Lemma 5.5) we may assume that Y is a disjoint union of irreducible
Noetherian schemes. Since there is an immersion

An
X ⨿ Am

X −→ Amax(n,m)+1
X

(details omitted) we see that it suffices to prove the result in case Y is irreducible.
Assume Y is an irreducible scheme. Let T ⊂ |X| be the closure of the image of
f : Y → X. Note that since |Y | and |X| are sober topological spaces (Properties
of Spaces, Lemma 15.1) T is irreducible with a unique generic point ξ which is
the image of the generic point η of Y . Let I ⊂ X be a quasi-coherent sheaf of
ideals cutting out the reduced induced space structure on T (Properties of Spaces,
Definition 12.5). Since OY,η is an Artinian local ring we see that for some n > 0 we
have f−1InOY,η = 0. As f−1IOY is a finite type quasi-coherent ideal we conclude
that f−1InOV = 0 for some nonempty open V ⊂ Y . Let Z ⊂ X be the closed
subspace cut out by In. By construction V → Y → X factors through Z. Because
An

Z → An
X is an immersion, we may replace X by Z and Y by V . Hence we reach

the situation where Y and X are irreducible and Y → X maps the generic point of
Y onto the generic point of X.
Assume Y and X are irreducible, Y is a scheme, and Y → X maps the generic
point of Y onto the generic point of X. By Properties of Spaces, Proposition 13.3
X has a dense open subscheme U ⊂ X. Choose a nonempty affine open V ⊂ Y
whose image in X is contained in U . By Morphisms, Lemma 39.2 we may factor
V → U as V → An

U → U . Composing with An
U → An

X we obtain the desired
immersion. □

14. Sections with support in a closed subset

0854 This section is the analogue of Properties, Section 24.

Lemma 14.1.0855 Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space. Let U ⊂ X be an open subspace. The following are equivalent:

(1) U → X is quasi-compact,
(2) U is quasi-compact, and
(3) there exists a finite type quasi-coherent sheaf of ideals I ⊂ OX such that

|X| \ |U | = |V (I)|.

Proof. Let W be an affine scheme and let φ : W → X be a surjective étale
morphism, see Properties of Spaces, Lemma 6.3. If (1) holds, then φ−1(U) → W
is quasi-compact, hence φ−1(U) is quasi-compact, hence U is quasi-compact (as
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|φ−1(U)| → |U | is surjective). If (2) holds, then φ−1(U) is quasi-compact because
φ is quasi-compact since X is quasi-separated (Morphisms of Spaces, Lemma 8.10).
Hence φ−1(U) → W is a quasi-compact morphism of schemes by Properties, Lemma
24.1. It follows that U → X is quasi-compact by Morphisms of Spaces, Lemma 8.8.
Thus (1) and (2) are equivalent.

Assume (1) and (2). By Properties of Spaces, Lemma 12.3 there exists a unique
quasi-coherent sheaf of ideals J cutting out the reduced induced closed subspace
structure on |X| \ |U |. Note that J |U = OU which is an OU -modules of finite type.
As U is quasi-compact it follows from Lemma 9.2 that there exists a quasi-coherent
subsheaf I ⊂ J which is of finite type and has the property that I|U = J |U . Then
|X|\|U | = |V (I)| and we obtain (3). Conversely, if I is as in (3), then φ−1(U) ⊂ W
is a quasi-compact open by the lemma for schemes (Properties, Lemma 24.1) applied
to φ−1I on W . Thus (2) holds. □

Lemma 14.2.0856 Let S be a scheme. Let X be an algebraic space over S. Let
I ⊂ OX be a quasi-coherent sheaf of ideals. Let F be a quasi-coherent OX-module.
Consider the sheaf of OX-modules F ′ which associates to every object U of Xétale

the module
F ′(U) = {s ∈ F(U) | Is = 0}

Assume I is of finite type. Then
(1) F ′ is a quasi-coherent sheaf of OX-modules,
(2) for affine U in Xétale we have F ′(U) = {s ∈ F(U) | I(U)s = 0}, and
(3) F ′

x = {s ∈ Fx | Ixs = 0}.

Proof. It is clear that the rule defining F ′ gives a subsheaf of F . Hence we may
work étale locally on X to verify the other statements. Thus the lemma reduces to
the case of schemes which is Properties, Lemma 24.2. □

Definition 14.3.0857 Let S be a scheme. Let X be an algebraic space over S. Let
I ⊂ OX be a quasi-coherent sheaf of ideals of finite type. Let F be a quasi-
coherent OX -module. The subsheaf F ′ ⊂ F defined in Lemma 14.2 above is called
the subsheaf of sections annihilated by I.

Lemma 14.4.0858 Let S be a scheme. Let f : X → Y be a quasi-compact and quasi-
separated morphism of algebraic spaces over S. Let I ⊂ OY be a quasi-coherent
sheaf of ideals of finite type. Let F be a quasi-coherent OX-module. Let F ′ ⊂ F be
the subsheaf of sections annihilated by f−1IOX . Then f∗F ′ ⊂ f∗F is the subsheaf
of sections annihilated by I.

Proof. Omitted. Hint: The assumption that f is quasi-compact and quasi-separated
implies that f∗F is quasi-coherent (Morphisms of Spaces, Lemma 11.2) so that
Lemma 14.2 applies to I and f∗F . □

Next we come to the sheaf of sections supported in a closed subset. Again this isn’t
always a quasi-coherent sheaf, but if the complement of the closed is “retrocompact”
in the given algebraic space, then it is.

Lemma 14.5.0859 Let S be a scheme. Let X be an algebraic space over S. Let T ⊂ |X|
be a closed subset and let U ⊂ X be the open subspace such that T ⨿ |U | = |X|.
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Let F be a quasi-coherent OX-module. Consider the sheaf of OX-modules F ′ which
associates to every object φ : W → X of Xétale the module

F ′(W ) = {s ∈ F(W ) | the support of s is contained in |φ|−1(T )}
If U → X is quasi-compact, then

(1) for W affine there exist a finitely generated ideal I ⊂ OX(W ) such that
|φ|−1(T ) = V (I),

(2) for W and I as in (1) we have F ′(W ) = {x ∈ F(W ) | Inx = 0 for some n},
(3) F ′ is a quasi-coherent sheaf of OX-modules.

Proof. It is clear that the rule defining F ′ gives a subsheaf of F . Hence we may
work étale locally on X to verify the other statements. Thus the lemma reduces to
the case of schemes which is Properties, Lemma 24.5. □

Definition 14.6.085A Let S be a scheme. Let X be an algebraic space over S. Let
T ⊂ |X| be a closed subset whose complement corresponds to an open subspace
U ⊂ X with quasi-compact inclusion morphism U → X. Let F be a quasi-coherent
OX -module. The quasi-coherent subsheaf F ′ ⊂ F defined in Lemma 14.5 above is
called the subsheaf of sections supported on T .

Lemma 14.7.085B Let S be a scheme. Let f : X → Y be a quasi-compact and quasi-
separated morphism of algebraic spaces over S. Let T ⊂ |Y | be a closed subset.
Assume |Y | \ T corresponds to an open subspace V ⊂ Y such that V → Y is
quasi-compact. Let F be a quasi-coherent OX-module. Let F ′ ⊂ F be the subsheaf
of sections supported on |f |−1T . Then f∗F ′ ⊂ f∗F is the subsheaf of sections
supported on T .

Proof. Omitted. Hints: |X| \ |f |−1T is the support of the open subspace U =
f−1V ⊂ X. Since V → Y is quasi-compact, so is U → X (by base change). The
assumption that f is quasi-compact and quasi-separated implies that f∗F is quasi-
coherent. Hence Lemma 14.5 applies to T and f∗F as well as to |f |−1T and F . The
equality of the given quasi-coherent modules is immediate from the definitions. □

15. Characterizing affine spaces

07VQ This section is the analogue of Limits, Section 11.

Lemma 15.1.07VS Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume that f is surjective and finite, and assume that X is affine.
Then Y is affine.

Proof. We may and do view f : X → Y as a morphism of algebraic space over
Spec(Z) (see Spaces, Definition 16.2). Note that a finite morphism is affine and
universally closed, see Morphisms of Spaces, Lemma 45.7. By Morphisms of Spaces,
Lemma 9.8 we see that Y is a separated algebraic space. As f is surjective and X
is quasi-compact we see that Y is quasi-compact.
By Lemma 11.3 we can write X = lim Xa with each Xa → Y finite and of finite
presentation. By Lemma 5.10 we see that Xa is affine for a large enough. Hence we
may and do assume that f : X → Y is finite, surjective, and of finite presentation.
By Proposition 8.1 we may write Y = lim Yi as a directed limit of algebraic spaces
of finite presentation over Z. By Lemma 7.1 we can find 0 ∈ I and a morphism
X0 → Y0 of finite presentation such that Xi = X0 ×Y0 Yi for i ≥ 0 and such that
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X = limi Xi. By Lemma 6.7 we see that Xi → Yi is finite for i large enough. By
Lemma 6.4 we see that Xi → Yi is surjective for i large enough. By Lemma 5.10
we see that Xi is affine for i large enough. Hence for i large enough we can apply
Cohomology of Spaces, Lemma 17.3 to conclude that Yi is affine. This implies that
Y is affine and we conclude. □

Proposition 15.2.07VT Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume that X is affine and f is surjective and universally closed2.
Then Y is affine.
Proof. We may and do view f : X → Y as a morphism of algebraic spaces over
Spec(Z) (see Spaces, Definition 16.2). By Morphisms of Spaces, Lemma 9.8 we see
that Y is a separated algebraic space. Then by Morphisms of Spaces, Lemma 20.11
we find that f is affine. Whereupon by Morphisms of Spaces, Lemma 45.7 we see
that f is integral.
By the preceding paragraph, we may assume f : X → Y is surjective and integral,
X is affine, and Y is separated. Since f is surjective and X is quasi-compact we
also deduce that Y is quasi-compact.
Consider the sheaf A = f∗OX . This is a quasi-coherent sheaf of OY -algebras, see
Morphisms of Spaces, Lemma 11.2. By Lemma 9.1 we can write A = colimi Fi as
a filtered colimit of finite type OY -modules. Let Ai ⊂ A be the OY -subalgebra
generated by Fi. Since the map of algebras OY → A is integral, we see that each
Ai is a finite quasi-coherent OY -algebra. Hence

Xi = Spec
Y

(Ai) −→ Y

is a finite morphism of algebraic spaces. Here Spec is the construction of Morphisms
of Spaces, Lemma 20.7. It is clear that X = limi Xi. Hence by Lemma 5.10 we see
that for i sufficiently large the scheme Xi is affine. Moreover, since X → Y factors
through each Xi we see that Xi → Y is surjective. Hence we conclude that Y is
affine by Lemma 15.1. □

The following corollary of the result above can be found in [CLO12].
Lemma 15.3.07VU [CLO12, 3.1.12]Let S be a scheme. Let X be an algebraic space over S. If Xred is
a scheme, then X is a scheme.
Proof. Let U ′ ⊂ Xred be an open affine subscheme. Let U ⊂ X be the open
subspace corresponding to the open |U ′| ⊂ |Xred| = |X|. Then U ′ → U is surjective
and integral. Hence U is affine by Proposition 15.2. Thus every point is contained
in an open subscheme of X, i.e., X is a scheme. □

Lemma 15.4.07VV Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume f is integral and induces a bijection |X| → |Y |. Then X is
a scheme if and only if Y is a scheme.
Proof. An integral morphism is representable by definition, hence if Y is a scheme,
so is X. Conversely, assume that X is a scheme. Let U ⊂ X be an affine open. An
integral morphism is closed and |f | is bijective, hence |f |(|U |) ⊂ |Y | is open as the
complement of |f |(|X| \ |U |). Let V ⊂ Y be the open subspace with |V | = |f |(|U |),
see Properties of Spaces, Lemma 4.8. Then U → V is integral and surjective, hence
V is an affine scheme by Proposition 15.2. This concludes the proof. □

2An integral morphism is universally closed, see Morphisms of Spaces, Lemma 45.7.
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Lemma 15.5.08B2 Let S be a scheme. Let f : X → B and B′ → B be morphisms of
algebraic spaces over S. Assume

(1) B′ → B is a closed immersion,
(2) |B′| → |B| is bijective,
(3) X ×B B′ → B′ is a closed immersion, and
(4) X → B is of finite type or B′ → B is of finite presentation.

Then f : X → B is a closed immersion.

Proof. Assumptions (1) and (2) imply that Bred = B′
red. Set X ′ = X ×B B′. Then

X ′ → X is closed immersion and X ′
red = Xred. Let U → B be an étale morphism

with U affine. Then X ′ ×B U → X ×B U is a closed immersion of algebraic spaces
inducing an isomorphism on underlying reduced spaces. Since X ′ ×B U is a scheme
(as B′ → B and X ′ → B′ are representable) so is X ×B U by Lemma 15.3. Hence
X → B is representable too. Thus we reduce to the case of schemes, see Morphisms,
Lemma 45.7. □

16. Finite cover by a scheme

0ACX As an application of the limit results of this chapter, we prove that given any
quasi-compact and quasi-separated algebraic space X, there is a scheme Y and a
surjective, finite morphism Y → X. We will rely on the already proven result that
we can find a finite integral cover by a scheme, which was proved in Decent Spaces,
Section 9.

Proposition 16.1.09YC Let S be a scheme. Let X be a quasi-compact and quasi-
separated algebraic space over S.

(1) There exists a surjective finite morphism Y → X of finite presentation
where Y is a scheme,

(2) given a surjective étale morphism U → X we may choose Y → X such that
for every y ∈ Y there is an open neighbourhood V ⊂ Y such that V → X
factors through U .

Proof. Part (1) is the special case of (2) with U = X. Let Y → X be as in
Decent Spaces, Lemma 9.2. Choose a finite affine open covering Y =

⋃
Vj such

that Vj → X factors through U . We can write Y = lim Yi with Yi → X finite and of
finite presentation, see Lemma 11.2. For large enough i the algebraic space Yi is a
scheme, see Lemma 5.11. For large enough i we can find affine opens Vi,j ⊂ Yi whose
inverse image in Y recovers Vj , see Lemma 5.7. For even larger i the morphisms
Vj → U over X come from morphisms Vi,j → U over X, see Proposition 3.10. This
finishes the proof. □

Lemma 16.2.0GUM Let S be a scheme. Let f : X → Y be an integral morphism
of algebraic spaces over S. Assume Y quasi-compact and quasi-separated. Let
V ⊂ Y be a quasi-compact open subspace such that f−1(V ) → V is finite and of
finite presentation. Then X can be written as a directed limit X = lim Xi where
fi : Xi → Y are finite and of finite presentation such that f−1(V ) → f−1

i (V ) is an
isomorphism for all i.

Proof. This lemma is a slight refinement of Proposition 16.1. Consider the integral
quasi-coherent OY -algebra A = f∗OX . In the next paragraph, we will write A =
colim Ai as a directed colimit of finite and finitely presented OY -algebras Ai such
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that Ai|V = A|V . Having done this we set Xi = Spec
Y

(Ai), see Morphisms of
Spaces, Definition 20.8. By construction Xi → Y is finite and of finite presentation,
X = lim Xi, and f−1

i (V ) = f−1(V ).
The proof of the assertion on algebras is similar to the proof of part (2) of Lemma
9.7. First, write A = colim Fi as a colimit of finitely presented OY -modules using
Lemma 9.1. Since A|V is a finite type OV -module we may and do assume that
Fi|V → A|V is surjective for all i. For each i, let Ji be the kernel of the map

Sym∗
OX

(Fi) −→ A
For i′ ≥ i there is an induced map Ji → Ji′ . We have A = colim Sym∗

OX
(Fi)/Ji.

Moreover, the quasi-coherent OX -algebras Sym∗
OX

(Fi)/Ji are finite (as finite type
quasi-coherent subalgebras of the integral quasi-coherent OY -algebra A over OX).
The restriction of Sym∗

OX
(Fi)/Ji to V is A|V by the surjectivity above. Hence

Ji|V is finitely generated as an ideal sheaf of Sym∗
OX

(Fi)|V due to the fact that
A|V is finitely presented as an OY -algebra. Write Ji = colim Eik as a colimit of
finitely presented OX -modules. We may and do assume that Eik|V generates Ji|V
as a sheaf of ideal of Sym∗

OX
(Fi)|V by the statement on finite generation above.

Given i′ ≥ i and k there exists a k′ such that we have a map Eik → Ei′k′ making

Ji
// Ji′

Eik

OO

// Ei′k′

OO

commute. This follows from Cohomology of Spaces, Lemma 5.3. This induces a
map

Aik = Sym∗
OX

(Fi)/(Eik) −→ Sym∗
OX

(Fi′)/(Ei′k′) = Ai′k′

where (Eik) denotes the ideal generated by Eik. The quasi-coherent OX -algebras
Aki are of finite presentation and finite for k large enough (see proof of Lemma
9.6). Moreover we have Aik|V = A|V by construction. Finally, we have

colim Aik = colim Ai = A
Namely, the first equality was shown in the proof of Lemma 9.6 and the second
equality because A is the colimit of the modules Fi. □

Lemma 16.3.0GUN Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S such that |X| has finitely many irreducible components.

(1) There exists a surjective finite morphism f : Y → X of finite presentation
where Y is a scheme such that f is finite étale over a quasi-compact dense
open U ⊂ X,

(2) given a surjective étale morphism V → X we may choose Y → X such that
for every y ∈ Y there is an open neighbourhood W ⊂ Y such that W → X
factors through V .

Proof. Part (1) is the special case of (2) with V = X.
Proof of (2). Let π : Y → X be as in Decent Spaces, Lemma 9.3 and let U ⊂ X
be a quasi-compact dense open such that π−1(U) → U is finite étale. Choose a
finite affine open covering Y =

⋃
Wj such that Wj → X factors through V . We

can write Y = lim Yi with πi : Yi → X finite and of finite presentation such that
π−1(U) → π−1

i (U) is an isomorphism, see Lemma 16.2. For large enough i the
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algebraic space Yi is a scheme, see Lemma 5.11. For large enough i we can find
affine opens Wi,j ⊂ Yi whose inverse image in Y recovers Wj , see Lemma 5.7. For
even larger i the morphisms Wj → V over X come from morphisms Wi,j → U over
X, see Proposition 3.10. This finishes the proof. □

Lemma 16.4.0GUP Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. There exists a t ≥ 0 and closed subspaces

X ⊃ Z0 ⊃ Z1 ⊃ . . . ⊃ Zt = ∅
such that Zi → X is of finite presentation, Z0 ⊂ X is a thickening, and for each
i = 0, . . . t − 1 there exists a scheme Yi, a surjective, finite, and finitely presented
morphism Yi → Zi which is finite étale over Zi \ Zi+1.
Proof. We may view X as an algebraic space over Spec(Z), see Spaces, Definition
16.2 and Properties of Spaces, Definition 3.1. Thus we may apply Proposition
8.1. It follows that we can find an affine morphism X → X0 with X0 of finite
presentation over Z. If we can prove the lemma for X0, then we can pull back
the stratification and the morphisms to X and get the result for X; some details
omitted. This reduces us to the case discussed in the next paragraph.
Assume X is of finite presentation over Z. Then X is Noetherian and |X| is a
Noetherian topological space (with finitely many irreducible components) of finite
dimension. Hence we may use induction on dim(|X|). Any finite morphism towards
X is of finite presentation, so we can ignore that requirement in the rest of the proof.
By Lemma 16.3 there exists a surjective finite morphism Y → X which is finite
étale over a dense open U ⊂ X. Set Z0 = X and let Z1 ⊂ X be the reduced
closed subspace with |Z1| = |X| \ |U |. By induction we find an integer t ≥ 0 and a
filtration

Z1 ⊃ Z1,0 ⊃ Z1,1 ⊃ . . . ⊃ Z1,t = ∅
by closed subspaces, where Z1,0 → Z1 is a thickening and there exist finite surjective
morphisms Y1,i → Z1,i which are finite étale over Z1,i \ Z1,i+1. Since Z1 is reduced,
we have Z1 = Z1,0. Hence we can set Zi = Z1,i−1 and Yi = Y1,i−1 for i ≥ 1 and the
lemma is proved. □

17. Obtaining schemes

0B7X A few more techniques to show an algebraic space is a scheme. The first is that we
can show there is a minimal closed subspace which is not a scheme.
Lemma 17.1.0B7Y Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. If X is not a scheme, then there exists a closed subspace
Z ⊂ X such that Z is not a scheme, but every proper closed subspace Z ′ ⊂ Z is a
scheme.
Proof. We prove this by Zorn’s lemma. Let Z be the set of closed subspaces Z
which are not schemes ordered by inclusion. By assumption Z contains X, hence is
nonempty. If Zα is a totally ordered subset of Z, then Z =

⋂
Zα is in Z. Namely,

Z = lim Zα

and the transition morphisms are affine. Thus we may apply Lemma 5.11 to see
that if Z were a scheme, then so would one of the Zα. (This works even if Z = ∅,
but note that by Lemma 5.3 this cannot happen.) Thus Z has minimal elements
by Zorn’s lemma. □
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Now we can prove a little bit about these minimal non-schemes.

Lemma 17.2.0B7Z Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Assume that every proper closed subspace Z ⊂ X is a
scheme, but X is not a scheme. Then X is reduced and irreducible.

Proof. We see that X is reduced by Lemma 15.3. Choose closed subsets T1 ⊂ |X|
and T2 ⊂ |X| such that |X| = T1 ∪ T2. If T1 and T2 are proper closed subsets,
then the corresponding reduced induced closed subspaces Z1, Z2 ⊂ X (Properties
of Spaces, Definition 12.5) are schemes and so is Z = Z1 ×X Z2 = Z1 ∩ Z2 as a
closed subscheme of either Z1 or Z2. Observe that the coproduct Z1 ⨿Z Z2 exists
in the category of schemes, see More on Morphisms, Lemma 67.8. One way to
proceed, is to show that Z1 ⨿Z Z2 is isomorphic to X, but we cannot use this here
as the material on pushouts of algebraic spaces comes later in the theory. Instead
we will use Lemma 15.1 to find an affine neighbourhood of every point. Namely,
let x ∈ |X|. If x ̸∈ Z1, then x has a neighbourhood which is a scheme, namely,
X \ Z1. Similarly if x ̸∈ Z2. If x ∈ Z = Z1 ∩ Z2, then we choose an affine open
U ⊂ Z1 ⨿Z Z2 containing z. Then U1 = Z1 ∩ U and U2 = Z2 ∩ U are affine opens
whose intersections with Z agree. Since |Z1| = T1 and |Z2| = T2 are closed subsets
of |X| which intersect in |Z|, we find an open W ⊂ |X| with W ∩ T1 = |U1| and
W ∩T2 = |U2|. Let W denote the corresponding open subspace of X. Then x ∈ |W |
and the morphism U1 ⨿ U2 → W is a surjective finite morphism whose source is an
affine scheme. Thus W is an affine scheme by Lemma 15.1. □

A key point in the following lemma is that we only need to check the condition in
the images of points of X.

Lemma 17.3.0B80 Let f : X → S be a quasi-compact and quasi-separated morphism
from an algebraic space to a scheme S. If for every x ∈ |X| with image s = f(x) ∈ S
the algebraic space X ×S Spec(OS,s) is a scheme, then X is a scheme.

Proof. Let x ∈ |X|. It suffices to find an open neighbourhood U of s = f(x)
such that X ×S U is a scheme. As X ×S Spec(OS,s) is a scheme, then, since
OS,s = colim OS(U) where the colimit is over affine open neighbourhoods of s in S
we see that

X ×S Spec(OS,s) = lim X ×S U

By Lemma 5.11 we see that X ×S U is a scheme for some U . □

Instead of restricting to local rings as in Lemma 17.3, we can restrict to closed
subschemes of the base.

Lemma 17.4.0B81 Let φ : X → Spec(A) be a quasi-compact and quasi-separated
morphism from an algebraic space to an affine scheme. If X is not a scheme, then
there exists an ideal I ⊂ A such that the base change XA/I is not a scheme, but for
every I ⊂ I ′, I ̸= I ′ the base change XA/I′ is a scheme.

Proof. We prove this by Zorn’s lemma. Let I be the set of ideals I such that XA/I

is not a scheme. By assumption I contains (0). If Iα is a chain of ideals in I, then
I =

⋃
Iα is in I. Namely, A/I = colim A/Iα, hence

XA/I = lim XA/Iα

Thus we may apply Lemma 5.11 to see that if XA/I were a scheme, then so would
be one of the XA/Iα

. Thus I has maximal elements by Zorn’s lemma. □
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18. Glueing in closed fibres

0E8Y Applying our theory above to the spectrum of a local ring we obtain a few pleasing
glueing results for relative algebraic spaces. We first prove a helper lemma (which
will be vastly generalized in Bootstrap, Section 11).

Lemma 18.1.0E8Z Let S = U ∪ W be an open covering of a scheme. Then the functor

FPS −→ FPU ×F PU∩W
FPW

given by base change is an equivalence where FPT is the category of algebraic spaces
of finite presentation over the scheme T .

Proof. First, since S = U ∪ W is a Zariski covering, we see that the category of
sheaves on (Sch/S)fppf is equivalent to the category of triples (FU , FW , φ) where
FU is a sheaf on (Sch/U)fppf , FW is a sheaf on (Sch/W )fppf , and

φ : FU |(Sch/U∩W )fppf
−→ FW |(Sch/U∩W )fppf

is an isomorphism. See Sites, Lemma 26.5 (note that no other gluing data are
necessary because U ×S U = U , W ×S W = W and that the cocycle condition
is automatic for the same reason). Now, if the sheaf F on (Sch/S)fppf maps to
(FU , FW , φ) via this equivalence, then F is an algebraic space if and only if FU and
FW are algebraic spaces. This follows immediately from Algebraic Spaces, Lemma
8.5 as FU → F and FW → F are representable by open immersions and cover F .
Finally, in this case the algebraic space F is of finite presentation over S if and only
if FU is of finite presentation over U and FW is of finite presentation over W by
Morphisms of Spaces, Lemmas 8.8, 4.12, and 28.4. □

Lemma 18.2.0E90 Let S be a scheme. Let s ∈ S be a closed point such that U =
S \ {s} → S is quasi-compact. With V = Spec(OS,s) \ {s} there is an equivalence
of categories

FPS −→ FPU ×F PV
FPSpec(OS,s)

where FPT is the category of algebraic spaces of finite presentation over T .

Proof. Let W ⊂ S be an open neighbourhood of s. The functor

FPS → FPU ×F PW \{s} FPW

is an equivalence of categories by Lemma 18.1. We have OS,s = colim OW (W )
where W runs over the affine open neighbourhoods of s. Hence Spec(OS,s) = lim W
where W runs over the affine open neighbourhoods of s. Thus the category of
algebraic spaces of finite presentation over Spec(OS,s) is the limit of the category
of algebraic spaces of finite presentation over W where W runs over the affine open
neighbourhoods of s, see Lemma 7.1. For every affine open s ∈ W we see that U ∩W
is quasi-compact as U → S is quasi-compact. Hence V = lim W ∩ U = lim W \ {s}
is a limit of quasi-compact and quasi-separated schemes (see Limits, Lemma 2.2).
Thus also the category of algebraic spaces of finite presentation over V is the limit
of the categories of algebraic spaces of finite presentation over W ∩ U where W
runs over the affine open neighbourhoods of s. The lemma follows formally from a
combination of these results. □
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Lemma 18.3.0E91 Let S be a scheme. Let U ⊂ S be a retrocompact open. Let s ∈ S be
a point in the complement of U . With V = Spec(OS,s) ∩ U there is an equivalence
of categories

colims∈U ′⊃U open FPU ′ −→ FPU ×F PV
FPSpec(OS,s)

where FPT is the category of algebraic spaces of finite presentation over T .

Proof. Let W ⊂ S be an open neighbourhood of s. By Lemma 18.1 the functor
FPU∪W −→ FPU ×F PU∩W

FPW

is an equivalence of categories. We have OS,s = colim OW (W ) where W runs over
the affine open neighbourhoods of s. Hence Spec(OS,s) = lim W where W runs
over the affine open neighbourhoods of s. Thus the category of algebraic spaces of
finite presentation over Spec(OS,s) is the limit of the category of algebraic spaces
of finite presentation over W where W runs over the affine open neighbourhoods of
s, see Lemma 7.1. For every affine open s ∈ W we see that U ∩W is quasi-compact
as U → S is quasi-compact. Hence V = lim W ∩ U is a limit of quasi-compact
and quasi-separated schemes (see Limits, Lemma 2.2). Thus also the category
of algebraic spaces of finite presentation over V is the limit of the categories of
algebraic spaces of finite presentation over W ∩ U where W runs over the affine
open neighbourhoods of s. The lemma follows formally from a combination of these
results. □

Lemma 18.4.0E92 Let S be a scheme. Let s1, . . . , sn ∈ S be pairwise distinct closed
points such that U = S \{s1, . . . , sn} → S is quasi-compact. With Si = Spec(OS,si

)
and Ui = Si \ {si} there is an equivalence of categories

FPS −→ FPU ×(F PU1 ×...×F PUn ) (FPS1 × . . . × FPSn)
where FPT is the category of algebraic spaces of finite presentation over T .

Proof. For n = 1 this is Lemma 18.2. For n > 1 the lemma can be proved in
exactly the same way or it can be deduced from it. For example, suppose that
fi : Xi → Si are objects of FPSi and f : X → U is an object of FPU and
we’re given isomorphisms Xi ×Si

Ui = X ×U Ui. By Lemma 18.2 we can find a
morphism f ′ : X ′ → U ′ = S \{s1, . . . , sn−1} which is of finite presentation, which is
isomorphic to Xi over Si, which is isomorphic to X over U , and these isomorphisms
are compatible with the given isomorphism Xi ×Sn

Un = X ×U Un. Then we can
apply induction to fi : Xi → Si, i ≤ n − 1, f ′ : X ′ → U ′, and the induced
isomorphisms Xi ×Si Ui = X ′ ×U ′ Ui, i ≤ n − 1. This shows essential surjectivity.
We omit the proof of fully faithfulness. □

19. Application to modifications

0BGX Using limits we can describe the category of modifications of a decent algebraic
space over a closed point in terms of the henselian local ring.

Lemma 19.1.0BGY Let S be a scheme. Consider a separated étale morphism f : V →
W of algebraic spaces over S. Assume there exists a closed subspace T ⊂ W such
that f−1T → T is an isomorphism. Then, with W 0 = W \ T and V 0 = f−1W 0 the
base change functor{

g : X → W morphism of algebraic spaces
g−1(W 0) → W 0 is an isomorphism

}
−→

{
h : Y → V morphism of algebraic spaces

h−1(V 0) → V 0 is an isomorphism

}
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is an equivalence of categories.

Proof. Since V → W is separated we see that V ×W V = ∆(V ) ⨿ U for some
open and closed subspace U of V ×W V . By the assumption that f−1T → T is an
isomorphism we see that U ×W T = ∅, i.e., the two projections U → V maps into
V 0.

Given h : Y → V in the right hand category, consider the contravariant functor X
on (Sch/S)fppf defined by the rule

X(T ) = {(w, y) | w : T → W, y : T ×w,W V → Y morphism over V }

Denote g : X → W the map sending (w, y) ∈ X(T ) to w ∈ W (T ). Since h−1V 0 →
V 0 is an isomorphism, we see that if w : T → W maps into W 0, then there is a
unique choice for h. In other words X ×g,W W 0 = W 0. On the other hand, consider
a T -valued point (w, y, v) of X ×g,W,f V . Then w = f ◦ v and

y : T ×f◦v,W V −→ V

is a morphism over V . Consider the morphism

T ×f◦v,W V
(v,idV )−−−−→ V ×W V = V ⨿ U

The inverse image of V is T embedded via (idT , v) : T → T ×f◦v,W V . The
composition y′ = y ◦ (idT , v) : T → Y is a morphism with v = h ◦ y′ which
determines y because the restriction of y to the other part is uniquely determined
as U maps into V 0 by the second projection. It follows that X ×g,W,f V → Y ,
(w, y, v) 7→ y′ is an isomorphism.

Thus if we can show that X is an algebraic space, then we are done. Since V → W
is separated and étale it is representable by Morphisms of Spaces, Lemma 51.1 (and
Morphisms of Spaces, Lemma 39.5). Of course W 0 → W is representable and étale
as it is an open immersion. Thus

W 0 ⨿ Y = X ×g,W W 0 ⨿ X ×g,W,f V = X ×g,W (W 0 ⨿ V ) −→ X

is representable, surjective, and étale by Spaces, Lemmas 3.3 and 5.5. Thus X is
an algebraic space by Spaces, Lemma 11.2. □

Lemma 19.2.0BGZ Notation and assumptions as in Lemma 19.1. Let g : X → W
correspond to h : Y → V via the equivalence. Then g is quasi-compact, quasi-
separated, separated, locally of finite presentation, of finite presentation, locally of
finite type, of finite type, proper, integral, finite, and add more here if and only if
h is so.

Proof. If g is quasi-compact, quasi-separated, separated, locally of finite presen-
tation, of finite presentation, locally of finite type, of finite type, proper, finite, so
is h as a base change of g by Morphisms of Spaces, Lemmas 8.4, 4.4, 28.3, 23.3,
40.3, 45.5. Conversely, let P be a property of morphisms of algebraic spaces which
is étale local on the base and which holds for the identity morphism of any alge-
braic space. Since {W 0 → W, V → W} is an étale covering, to prove that g has
P it suffices to show that h has P . Thus we conclude using Morphisms of Spaces,
Lemmas 8.8, 4.12, 28.4, 23.4, 40.2, 45.3. □

https://stacks.math.columbia.edu/tag/0BGZ
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Lemma 19.3.0BH0 Let S be a scheme. Let X be a decent algebraic space over S. Let
x ∈ |X| be a closed point such that U = X \ {x} → X is quasi-compact. With
V = Spec(Oh

X,x) \ {mh
x} the base change functor{

f : Y → X of finite presentation
f−1(U) → U is an isomorphism

}
−→

{
g : Y → Spec(Oh

X,x) of finite presentation
g−1(V ) → V is an isomorphism

}
is an equivalence of categories.

Proof. Let a : (W, w) → (X, x) be an elementary étale neighbourhood of x with W
affine as in Decent Spaces, Lemma 11.4. Since x is a closed point of X and w is the
unique point of W lying over x, we see that w is a closed point of W . Since a is étale
and identifies residue fields at x and w, it follows that a induces an isomorphism
a−1x → x (as closed subspaces of X and W ). Thus we may apply Lemma 19.1 and
19.2 to reduce the problem to the case where X is an affine scheme.
Assume X is an affine scheme. Recall that Oh

X,x is the colimit of Γ(U, OU ) over
affine elementary étale neighbourhoods (U, u) → (X, x). Recall that the category
of these neighbourhoods is cofiltered, see Decent Spaces, Lemma 11.6 or More on
Morphisms, Lemma 35.4. Then Spec(Oh

X,x) = lim U and V = lim U \ {u} (Lemma
4.1) where the limits are taken over the same category. Thus by Lemma 7.1 The
category on the right is the colimit of the categories for the pairs (U, u). And by
the material in the first paragraph, each of these categories is equivalent to the
category for the pair (X, x). This finishes the proof. □

20. Universally closed morphisms

0CM7 In this section we discuss when a quasi-compact (but not necessarily separated)
morphism is universally closed. We first prove a lemma which will allow us to check
universal closedness after a base change which is locally of finite presentation.

Lemma 20.1.0CM8 Let S be a scheme. Let f : X → Y and g : Z → Y be morphisms
of algebraic spaces over S. Let z ∈ |Z| and let T ⊂ |X ×Y Z| be a closed subset with
z ̸∈ Im(T → |Z|). If f is quasi-compact, then there exists an étale neighbourhood
(V, v) → (Z, z), a commutative diagram

V

��

a
// Z ′

b

��
Z

g // Y,

and a closed subset T ′ ⊂ |X ×Y Z ′| such that
(1) the morphism b : Z ′ → Y is locally of finite presentation,
(2) with z′ = a(v) we have z′ ̸∈ Im(T ′ → |Z ′|), and
(3) the inverse image of T in |X ×Y V | maps into T ′ via |X ×Y V | → |X ×Y Z ′|.

Moreover, we may assume V and Z ′ are affine schemes and if Z is a scheme we
may assume V is an affine open neighbourhood of z.

Proof. We will deduce this from the corresponding result for morphisms of schemes.
Let y ∈ |Y | be the image of z. First we choose an affine étale neighbourhood
(U, u) → (Y, y) and then we choose an affine étale neighbourhood (V, v) → (Z, z)
such that the morphism V → Y factors through U . Then we may replace

(1) X → Y by X ×Y U → U ,

https://stacks.math.columbia.edu/tag/0BH0
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(2) Z → Y by V → U ,
(3) z by v, and
(4) T by its inverse image in |(X ×Y U) ×U V | = |X ×Y V |.

In fact, below we will show that after replacing V by an affine open neighbourhood
of v there will be a morphism a : V → Z ′ for some Z ′ → U of finite presentation
and a closed subset T ′ of |(X ×Y U) ×U Z ′| = |X ×Y Z ′| such that T maps into
T ′ and a(v) ̸∈ Im(T ′ → |Z ′|). Thus we may and do assume that Z and Y are
affine schemes with the proviso that we need to find a solution where V is an open
neighbourhood of z.

Since f is quasi-compact and Y is affine, the algebraic space X is quasi-compact.
Choose an affine scheme W and a surjective étale morphism W → X. Let TW ⊂
|W ×Y Z| be the inverse image of T . Then z is not in the image of TW . By the
schemes case (Limits, Lemma 14.1) we can find an open neighbourhood V ⊂ Z of
z a commutative diagram of schemes

V

��

a
// Z ′

b

��
Z

g // Y,

and a closed subset T ′ ⊂ |W ×Y Z ′| such that
(1) the morphism b : Z ′ → Y is locally of finite presentation,
(2) with z′ = a(z) we have z′ ̸∈ Im(T ′ → Z ′), and
(3) T1 = TW ∩ |W ×Y V | maps into T ′ via |W ×Y V | → |W ×Y Z ′|.

The commutative diagram

W ×Y Z

��

W ×Y Voo
a1

//

c

��

W ×Y Z ′

q

��
X ×Y Z X ×Y Voo a2 // X ×Y Z ′

has cartesian squares and the vertical maps are, surjective, étale and a fortiori open.
Looking at the left hand square we see that T1 = TW ∩ |W ×Y V | is the inverse
image of T2 = T ∩ |X ×Y V | by c. By Properties of Spaces, Lemma 4.3 we get
a1(T1) = q−1(a2(T2)). By Topology, Lemma 6.4 we get

q−1
(

a2(T2)
)

= q−1(a2(T2)) = a1(T1) ⊂ T ′

As q is surjective the image of a2(T2) → |Z ′| does not contain z′ since the same
is true for T ′. Thus we can take the diagram with Z ′, V, a, b above and the closed
subset a2(T2) ⊂ |X ×Y Z ′| as a solution to the problem posed by the lemma. □

Lemma 20.2.0CM9 Let S be a scheme. Let f : X → Y be a quasi-compact morphism
of algebraic spaces over S. The following are equivalent

(1) f is universally closed,
(2) for every morphism Z → Y which is locally of finite presentation the map

|X ×Y Z| → |Z| is closed, and
(3) there exists a scheme V and a surjective étale morphism V → Y such that

|An × (X ×Y V )| → |An × V | is closed for all n ≥ 0.

https://stacks.math.columbia.edu/tag/0CM9
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Proof. It is clear that (1) implies (2). Suppose that |X ×Y Z| → |Z| is not closed
for some morphism of algebraic spaces Z → Y over S. This means that there exists
some closed subset T ⊂ |X ×Y Z| such that Im(T → |Z|) is not closed. Pick z ∈ |Z|
in the closure of the image of T but not in the image. Apply Lemma 20.1. We find
an étale neighbourhood (V, v) → (Z, z), a commutative diagram

V

��

a
// Z ′

b

��
Z

g // Y,

and a closed subset T ′ ⊂ |X ×Y Z ′| such that
(1) the morphism b : Z ′ → Y is locally of finite presentation,
(2) with z′ = a(v) we have z′ ̸∈ Im(T ′ → |Z ′|), and
(3) the inverse image of T in |X ×Y V | maps into T ′ via |X ×Y V | → |X ×Y Z ′|.

We claim that z′ is in the closure of Im(T ′ → |Z ′|) which implies that |X ×Y Z ′| →
|Z ′| is not closed. The claim shows that (2) implies (1). To see the claim is true
we contemplate following commutative diagram

X ×Y Z

��

X ×Y Voo

��

// X ×Y Z ′

��
Z Voo a // Z ′

Let TV ⊂ |X ×Y V | be the inverse image of T . By Properties of Spaces, Lemma 4.3
the image of TV in |V | is the inverse image of the image of T in |Z|. Then since z
is in the closure of the image of T → |Z| and since |V | → |Z| is open, we see that
v is in the closure of the image of TV → |V |. Since the image of TV in |X ×Y Z ′|
is contained in |T ′| it follows immediately that z′ = a(v) is in the closure of the
image of T ′.

It is clear that (1) implies (3). Let V → Y be as in (3). If we can show that
X ×Y V → V is universally closed, then f is universally closed by Morphisms of
Spaces, Lemma 9.5. Thus it suffices to show that f : X → Y satisfies (2) if f is
a quasi-compact morphism of algebraic spaces, Y is a scheme, and |An × X| →
|An × Y | is closed for all n. Let Z → Y be locally of finite presentation. We have
to show the map |X ×Y Z| → |Z| is closed. This question is étale local on Z hence
we may assume Z is affine (some details omitted). Since Y is a scheme, Z is affine,
and Z → Y is locally of finite presentation we can find an immersion Z → An × Y ,
see Morphisms, Lemma 39.2. Consider the cartesian diagram

X ×Y Z

��

// An × X

��
Z // An × Y

inducing the
cartesian square

|X ×Y Z|

��

// |An × X|

��
|Z| // |An × Y |

of topological spaces whose horizontal arrows are homeomorphisms onto locally
closed subsets (Properties of Spaces, Lemma 12.1). Thus every closed subset T of
|X ×Y Z| is the pullback of a closed subset T ′ of |An × Y |. Since the assumption is
that the image of T ′ in |An × X| is closed we conclude that the image of T in |Z|
is closed as desired. □
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Lemma 20.3.0CMA Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume f separated and of finite type. The following are equivalent

(1) The morphism f is proper.
(2) For any morphism Y → Z which is locally of finite presentation the map

|X ×Y Z| → |Z| is closed, and
(3) there exists a scheme V and a surjective étale morphism V → Y such that

|An × (X ×Y V )| → |An × V | is closed for all n ≥ 0.

Proof. In view of the fact that a proper morphism is the same thing as a separated,
finite type, and universally closed morphism, this lemma is a special case of Lemma
20.2. □

21. Noetherian valuative criterion

0CMB We have already proved some results in Cohomology of Spaces, Section 19. The
corresponding section for schemes is Limits, Section 15.

Many of the results in this section can (and perhaps should) be proved by appealing
to the following lemma, although we have not always done so.

Lemma 21.1.0CMC Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume f finite type and Y locally Noetherian. Let y ∈ |Y | be a
point in the closure of the image of |f |. Then there exists a commutative diagram

Spec(K) //

��

X

f

��
Spec(A) // Y

where A is a discrete valuation ring and K is its field of fractions mapping the
closed point of Spec(A) to y. Moreover, we can assume that the point x ∈ |X|
corresponding to Spec(K) → X is a codimension 0 point3 and that K is the residue
field of a point on a scheme étale over X.

Proof. Choose an affine scheme V , a point v ∈ V and an étale morphism V → Y
mapping v to y. The map |V | → |Y | is open and by Properties of Spaces, Lemma
4.3 the image of |X ×Y V | → |V | is the inverse image of the image of |f |. We
conclude that the point v is in the closure of the image of |X ×Y V | → |V |. If we
prove the lemma for X ×Y V → V and the point v, then the lemma follows for f
and y. In this way we reduce to the situation described in the next paragraph.

Assume we have f : X → Y and y ∈ |Y | as in the lemma where Y is an affine
scheme. Since f is quasi-compact, we conclude that X is quasi-compact. Hence we
can choose an affine scheme W and a surjective étale morphism W → X. Then the
image of |f | is the same as the image of W → Y . In this way we reduce to the case
of schemes which is Limits, Lemma 15.1. □

First we state the result concerning separation. We will often use solid commutative
diagrams of morphisms of algebraic spaces over a base scheme S having the following

3See discussion in Properties of Spaces, Section 11.
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shape

(21.1.1)0H1V

Spec(K) //

��

X

��
Spec(A) //

;;

Y

with A a valuation ring and K its field of fractions.

Lemma 21.2.0H1W Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume f is quasi-separated and locally of finite type and Y is locally
Noetherian. The following are equivalent:

(1) The morphism f is separated.
(2) For any diagram (21.1.1) there is at most one dotted arrow.
(3) For all diagrams (21.1.1) with A a discrete valuation ring there is at most

one dotted arrow.
(4) For all diagrams (21.1.1) where A is a discrete valuation ring and where

the image of Spec(K) → X is a point of codimension 0 on X there is at
most one dotted arrow.

Proof. We have (1) ⇒ (2) by Morphisms of Spaces, Lemma 43.1. The implications
(2) ⇒ (3) and (3) ⇒ (4) are immediate. It remains to show (4) implies (1).

Assume (4). We have to show that the diagonal ∆ : X → X ×Y X is a closed
immersion. We already know ∆ is representable, separated, a monomorphism, and
locally of finite type, see Morphisms of Spaces, Lemma 4.1. Choose an affine scheme
U and an étale morphism U → X ×Y X. Set V = X ×∆,X×Y X U . It suffices to
show that V → U is a closed immersion (Morphisms of Spaces, Lemma 12.1).
Since X ×Y X is locally of finite type over Y we see that U is Noetherian (use
Morphisms of Spaces, Lemmas 23.2, 23.3, and 23.5). Note that V is a scheme as
∆ is representable. Also, V is quasi-compact because f is quasi-separated. Hence
V → U is separated and of finite type. Consider a commutative diagram

Spec(K) //

��

V

��
Spec(A) //

;;

U

of morphisms of schemes where A is a discrete valuation ring with fraction field K
and where K is the residue field of a generic point of the Noetherian scheme V .
Since V → X is étale (as a base change of the étale morphism U → X ×Y X) we see
that the image of Spec(K) → V → X is a point of codimension 0, see Properties
of Spaces, Section 10. We can interpret the composition Spec(A) → U → X ×Y X
as a pair of morphisms a, b : Spec(A) → X agreeing as morphisms into Y and
equal when restricted to Spec(K) and that this restriction maps to a point of
codimension 0. Hence our assumption (4) guarantees a = b and we find the dotted
arrow in the diagram. By Limits, Lemma 15.3 we conclude that V → U is proper.
In other words, ∆ is proper. Since ∆ is a monomorphism, we find that ∆ is a closed
immersion (Étale Morphisms, Lemma 7.2) as desired. □

https://stacks.math.columbia.edu/tag/0H1W
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Lemma 21.3.0H1X Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume f is quasi-separated and of finite type and Y is locally
Noetherian. The following are equivalent:

(1) f is proper,
(2) f satisfies the valuative criterion, see Morphisms of Spaces, Definition 41.1,
(3) for any diagram (21.1.1) there exists exactly one dotted arrow,
(4) for all diagrams (21.1.1) with A a discrete valuation ring there exists exactly

one dotted arrow, and
(5) for all diagrams (21.1.1) where A is a discrete valuation ring and where

the image of Spec(K) → X is a point of codimension 0 on X there exists
exactly one dotted arrow4.

Proof. We have (1) ⇔ (2) ⇔ (3) by Morphisms of Spaces, Lemma 44.1. It is clear
that (3) ⇒ (4) ⇒ (5). To finish the proof we will now show (5) implies (1).

Assume (5). By Lemma 21.2 we see that f is separated. To finish the proof it
suffices to show that f is universally closed. Let V → Y be an étale morphism
where V is an affine scheme. It suffices to show that the base change V ×Y X → V
is universally closed, see Morphisms of Spaces, Lemma 9.5. Let

Spec(K) //

��

V ×Y X

��

// X

��
Spec(A) //

99 44

V // Y

of algebraic spaces over S be a commutative diagram where A is a discrete valuation
ring with fraction field K and where Spec(K) → V ×Y X maps to a point of
codimension 0 of the algebraic space V ×Y X. Since V ×Y X → X is étale it follows
that the image of Spec(K) → X is a point of codimension 0 of X. Thus by (5) we
obtain the longer of the two dotted arrows fitting into the diagram. Then of course
we obtain the shorter one as well. It follows that our assumptions hold for the
morphism V ×Y X → V and we reduce to the case discussed in the next paragraph.

Aassume Y is a Noetherian affine scheme. In this case X is a separated Noether-
ian algebraic space (we already know f is separated) of finite type over Y . (In
particular, the algebraic space X has a dense open subspace which is a scheme
by Properties of Spaces, Proposition 13.3 although strictly speaking we will not
need this.) Choose a quasi-projective scheme X ′ over Y and a proper surjective
morphism X ′ → X as in the weak form of Chow’s lemma (Cohomology of Spaces,
Lemma 18.1). We may replace X ′ by the disjoint union of the irreducible compo-
nents which dominate an irreducible component of X; details omitted. In particular,
we may assume that generic points of the scheme X ′ map to points of codimension
0 of X (in this case these are exactly the generic points of X). We claim that
X ′ → Y is proper. The claim implies X is proper over Y by Morphisms of Spaces,
Lemma 40.7. To prove this, according to Limits, Lemma 15.3 it suffices to prove

4There is a sharper formulation where in the existence part one only requires the dotted arrow
exists after an extension of discrete valuation rings.
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that in every solid commutative diagram

Spec(K) //

��

X ′ // X

��
Spec(A) //

a

;;

b

66

Y

where A is a dvr with fraction field K and where K is the residue field of a generic
point of X ′ we can find the dotted arrow a (we already know uniqueness as X ′ is
separated). By assumption (5) we can find the dotted arrow b. Then the morphism
X ′ ×X,b Spec(A) → Spec(A) is a proper morphism of schemes and by the valuative
criterion for morphisms of schemes we can lift b to the desired morphism a. □

Lemma 21.4.0H1Y Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume Y is locally Noetherian and f is of finite type. Then the
following are equivalent

(1) f is universally closed,
(2) f satisfies the existence part of the valuative criterion,
(3) there exists a scheme V and a surjective étale morphism V → Y such that

|An × X ×Y V | → |An × V | is closed for all n ≥ 0,
(4) for all diagrams (21.1.1) with A a discrete valuation ring there there exists a

finite separable extension K ′/K of fields, a discrete valuation ring A′ ⊂ K ′

dominating A, and a morphism Spec(A′) → X such that the following
diagram commutes

Spec(K ′) //

��

Spec(K) // X

��
Spec(A′) //

44

Spec(A) // Y

(5) for all diagrams (21.1.1) with A a discrete valuation ring there there exists
a field extension K ′/K, a valuation ring A′ ⊂ K ′ dominating A, and a
morphism Spec(A′) → X such that the following diagram commutes

Spec(K ′) //

��

Spec(K) // X

��
Spec(A′) //

44

Spec(A) // Y

Proof. Parts (1), (2), and (3) are equivalent by Lemma 20.2 and Morphisms of
Spaces, Lemma 42.1. These equivalent conditions imply part (4) as Morphisms of
Spaces, Lemma 41.3 tells us that we may always choose K ′/K finite separable in
the existence part of the valuative criterion and this automatically forces A′ to be a
discrete valuation ring by Krull-Akizuki (Algebra, Lemma 119.12). The implication
(4) ⇒ (5) is immediate. In the rest of the proof we show that (5) implies (1).
Assume (5). Chose an affine scheme V and an étale morphism V → Y . It suffices
to show that the base change of f to V is universally closed, see Morphisms of
Spaces, Lemma 9.5. Exactly as in the proof of Lemma 21.3 we see that assumption
(5) is inherited by this base change; details omitted. This reduces us to the case
discussed in the next paragraph.
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Assume Y is a Noetherian affine scheme and we have (5). To prove that f is
universally closed it suffices to show that |X ×An| → |Y ×An| is closed for all n (by
the discussion above). Since assumption (5) is inherited by the product morphism
X ×An → Y ×An (details omitted) we reduce to proving that |X| → |Y | is closed.
Assume Y is a Noetherian affine scheme and we have (5). Let T ⊂ |X| be a closed
subset. We have to show that the image of T in |Y | is closed. We may replace X
by the reduced induced closed subspace structure on T ; we omit the verification
that property (5) is preserved by this replacement. Thus we reduce to proving that
the image of |X| → |Y | is closed.
Let y ∈ |Y | be a point in the closure of the image of |X| → |Y |. By Lemma 21.1
we may choose a commutative diagram

Spec(K) //

��

X

f

��
Spec(A) // Y

where A is a discrete valuation ring and K is its field of fractions mapping the
closed point of Spec(A) to y. It follows immediately from property (5) that y is in
the image of |X| → |Y | and the proof is complete. □

22. Refined Noetherian valuative criteria

0H1Z This section is the analogue of Limits, Section 16. One usually does not have to
consider all possible diagrams with valuation rings when checking valuative criteria.

Lemma 22.1.0CMD Let S be a scheme. Let f : X → Y and h : U → X be morphisms
of algebraic spaces over S. Assume that Y is locally Noetherian, that f and h are
of finite type, that f is separated, and that the image of |h| : |U | → |X| is dense in
|X|. If given any commutative solid diagram

Spec(K) //

��

U
h // X

f

��
Spec(A) //

66

Y

where A is a discrete valuation ring with field of fractions K, there exists a dotted
arrow making the diagram commute, then f is proper.

Proof. It suffices to prove that f is universally closed. Let V → Y be an étale
morphism where V is an affine scheme. By Morphisms of Spaces, Lemma 9.5
it suffices to prove that the base change X ×Y V → V is universally closed. By
Properties of Spaces, Lemma 4.3 the image I of |U ×Y V | → |X ×Y V | is the inverse
image of the image of |h|. Since |X ×Y V | → |X| is open (Properties of Spaces,
Lemma 16.7) we conclude that I is dense in |X ×Y V |. Therefore the assumptions
of the lemma are satisfied for the morphisms U ×Y V → X ×Y V → V . Hence we
may assume Y is an affine scheme.
Assume Y is an affine scheme. Then U is quasi-compact. Choose an affine scheme
and a surjective étale morphism W → U . Then we may and do replace U by W
and assume that U is affine. By the weak version of Chow’s lemma (Cohomology of

https://stacks.math.columbia.edu/tag/0CMD
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Spaces, Lemma 18.1) we can choose a surjective proper morphism X ′ → X where
X ′ is a scheme. Then U ′ = X ′ ×X U is a scheme and U ′ → X ′ is of finite type. We
may replace X ′ by the scheme theoretic image of h′ : U ′ → X ′ and hence h′(U ′) is
dense in X ′. We claim that for every diagram

Spec(K) //

��

U ′ h // X ′

f ′

��
Spec(A) //

66

Y

where A is a discrete valuation ring with field of fractions K, there exists a dotted
arrow making the diagram commute. Namely, we first get an arrow Spec(A) → X
by the assumption of the lemma and then we lift this to an arrow Spec(A) → X ′

using the valuative criterion for properness (Morphisms of Spaces, Lemma 44.1).
The morphism X ′ → Y is separated as a composition of a proper and a separated
morphism. Thus by the case of schemes the morphism X ′ → Y is proper (Limits,
Lemma 16.1). By Morphisms of Spaces, Lemma 40.7 we conclude that X → Y is
proper. □

Lemma 22.2.0CME Let S be a scheme. Let f : X → Y and h : U → X be morphisms
of algebraic spaces over S. Assume that Y is locally Noetherian, that f is locally
of finite type and quasi-separated, that h is of finite type, and that the image of
|h| : |U | → |X| is dense in |X|. If given any commutative solid diagram

Spec(K) //

��

U
h // X

f

��
Spec(A) //

66

Y

where A is a discrete valuation ring with field of fractions K, there exists at most
one dotted arrow making the diagram commute, then f is separated.

Proof. We will apply Lemma 22.1 to the morphisms U → X and ∆ : X → X×Y X.
We check the conditions. Observe that ∆ is quasi-compact because f is quasi-
separated. Of course ∆ is locally of finite type and separated (true for any diagonal
morphism). Finally, suppose given a commutative solid diagram

Spec(K) //

��

U
h // X

∆
��

Spec(A)
(a,b) //

55

X ×Y X

where A is a discrete valuation ring with field of fractions K. Then a and b give
two dotted arrows in the diagram of the lemma and have to be equal. Hence as
dotted arrow we can use a = b which gives existence. This finishes the proof. □

Lemma 22.3.0CMF Let S be a scheme. Let f : X → Y and h : U → X be morphisms
of algebraic spaces over S. Assume that Y is locally Noetherian, that f and h are
of finite type, that f is quasi-separated, and that h(U) is dense in X. If given any
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commutative solid diagram

Spec(K) //

��

U
h // X

f

��
Spec(A) //

66

Y

where A is a discrete valuation ring with field of fractions K, there exists a unique
dotted arrow making the diagram commute, then f is proper.
Proof. Combine Lemmas 22.2 and 22.1. □

23. Descending finite type spaces

0CP5 This section continues the theme of Section 11 in the spirit of the results discussed
in Section 7. It is also the analogue of Limits, Section 22 for algebraic spaces.
Situation 23.1.0CP6 Let S be a scheme, for example Spec(Z). Let B = limi∈I Bi

be the limit of a directed inverse system of Noetherian spaces over S with affine
transition morphisms Bi′ → Bi for i′ ≥ i.
Lemma 23.2.0CP7 In Situation 23.1. Let X → B be a quasi-separated and finite type
morphism of algebraic spaces. Then there exists an i ∈ I and a diagram

(23.2.1)0CP8

X //

��

W

��
B // Bi

such that W → Bi is of finite type and such that the induced morphism X →
B ×Bi

W is a closed immersion.
Proof. By Lemma 11.6 we can find a closed immersion X → X ′ over B where
X ′ is an algebraic space of finite presentation over B. By Lemma 7.1 we can find
an i and a morphism of finite presentation X ′

i → Bi whose pull back is X ′. Set
W = X ′

i. □

Lemma 23.3.0CP9 In Situation 23.1. Let X → B be a quasi-separated and finite type
morphism of algebraic spaces. Given i ∈ I and a diagram

X //

��

W

��
B // Bi

as in (23.2.1) for i′ ≥ i let Xi′ be the scheme theoretic image of X → Bi′ ×Bi
W .

Then X = limi′≥i Xi′ .
Proof. Since X is quasi-compact and quasi-separated formation of the scheme
theoretic image of X → Bi′ ×Bi W commutes with étale localization (Morphisms
of Spaces, Lemma 16.3). Hence we may and do assume W is affine and maps into
an affine Ui étale over Bi. Then

Bi′ ×Bi
W = Bi′ ×Bi

Ui ×Ui
W = Ui′ ×Ui

W

where Ui′ = Bi′ ×Bi
Ui is affine as the transition morphisms are affine. Thus the

lemma follows from the case of schemes which is Limits, Lemma 22.3. □

https://stacks.math.columbia.edu/tag/0CP6
https://stacks.math.columbia.edu/tag/0CP7
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Lemma 23.4.0CPA In Situation 23.1. Let f : X → Y be a morphism of algebraic
spaces quasi-separated and of finite type over B. Let

X //

��

W

��
B // Bi1

and

Y //

��

V

��
B // Bi2

be diagrams as in (23.2.1). Let X = limi≥i1 Xi and Y = limi≥i2 Yi be the corre-
sponding limit descriptions as in Lemma 23.3. Then there exists an i0 ≥ max(i1, i2)
and a morphism

(fi)i≥i0 : (Xi)i≥i0 → (Yi)i≥i0

of inverse systems over (Bi)i≥i0 such that such that f = limi≥i0 fi. If (gi)i≥i0 :
(Xi)i≥i0 → (Yi)i≥i0 is a second morphism of inverse systems over (Bi)i≥i0 such
that such that f = limi≥i0 gi then fi = gi for all i ≫ i0.

Proof. Since V → Bi2 is of finite presentation and X = limi≥i1 Xi we can appeal
to Proposition 3.10 as improved by Lemma 4.5 to find an i0 ≥ max(i1, i2) and a
morphism h : Xi0 → V over Bi2 such that X → Xi0 → V is equal to X → Y → V .
For i ≥ i0 we get a commutative solid diagram

X

��

// Xi
//

��

��

Xi0

h

��
Y //

��

Yi
//

��

V

��
B // Bi

// Bi0

Since X → Xi has scheme theoretically dense image and since Yi is the scheme
theoretic image of Y → Bi ×Bi2

V we find that the morphism Xi → Bi ×Bi2
V

induced by the diagram factors through Yi (Morphisms of Spaces, Lemma 16.6).
This proves existence.
Uniqueness. Let Ei → Xi be the equalizer of fi and gi for i ≥ i0. We have Ei =
Yi ×∆,Yi×Bi

Yi,(fi,gi) Xi. Hence Ei → Xi is a monomorphism of finite presentation
as a base change of the diagonal of Yi over Bi, see Morphisms of Spaces, Lemmas
4.1 and 28.10. Since Xi is a closed subspace of Bi ×Bi0

Xi0 and similarly for Yi we
see that

Ei = Xi ×(Bi×Bi0
Xi0 ) (Bi ×Bi0

Ei0) = Xi ×Xi0
Ei0

Similarly, we have X = X ×Xi0
Ei0 . Hence we conclude that Ei = Xi for i large

enough by Lemma 6.10. □

Remark 23.5.0CPB In Situation 23.1 Lemmas 23.2, 23.3, and 23.4 tell us that the
category of algebraic spaces quasi-separated and of finite type over B is equivalent
to certain types of inverse systems of algebraic spaces over (Bi)i∈I , namely the ones
produced by applying Lemma 23.3 to a diagram of the form (23.2.1). For example,
given X → B finite type and quasi-separated if we choose two different diagrams
X → V1 → Bi1 and X → V2 → Bi2 as in (23.2.1), then applying Lemma 23.4 to
idX (in two directions) we see that the corresponding limit descriptions of X are
canonically isomorphic (up to shrinking the directed set I). And so on and so forth.

https://stacks.math.columbia.edu/tag/0CPA
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Lemma 23.6.0CPC Notation and assumptions as in Lemma 23.4. If f is flat and of
finite presentation, then there exists an i3 > i0 such that for i ≥ i3 we have fi is
flat, Xi = Yi ×Yi3

Xi3 , and X = Y ×Yi3
Xi3 .

Proof. By Lemma 7.1 we can choose an i ≥ i2 and a morphism U → Yi of finite
presentation such that X = Y ×Yi U (this is where we use that f is of finite
presentation). After increasing i we may assume that U → Yi is flat, see Lemma
6.12. As discussed in Remark 23.5 we may and do replace the initial diagram used
to define the system (Xi)i≥i1 by the system corresponding to X → U → Bi. Thus
Xi′ for i′ ≥ i is defined as the scheme theoretic image of X → Bi′ ×Bi

U .

Because U → Yi is flat (this is where we use that f is flat), because X = Y ×Yi U ,
and because the scheme theoretic image of Y → Yi is Yi, we see that the scheme
theoretic image of X → U is U (Morphisms of Spaces, Lemma 30.12). Observe
that Yi′ → Bi′ ×Bi

Yi is a closed immersion for i′ ≥ i by construction of the system
of Yj . Then the same argument as above shows that the scheme theoretic image
of X → Bi′ ×Bi U is equal to the closed subspace Yi′ ×Yi U . Thus we see that
Xi′ = Yi′ ×Yi

U for all i′ ≥ i and hence the lemma holds with i3 = i. □

Lemma 23.7.0CPD Notation and assumptions as in Lemma 23.4. If f is smooth, then
there exists an i3 > i0 such that for i ≥ i3 we have fi is smooth.

Proof. Combine Lemmas 23.6 and 6.3. □

Lemma 23.8.0CPE Notation and assumptions as in Lemma 23.4. If f is proper, then
there exists an i3 ≥ i0 such that for i ≥ i3 we have fi is proper.

Proof. By the discussion in Remark 23.5 the choice of i1 and W fitting into a
diagram as in (23.2.1) is immaterial for the truth of the lemma. Thus we choose
W as follows. First we choose a closed immersion X → X ′ with X ′ → Y proper
and of finite presentation, see Lemma 12.1. Then we choose an i3 ≥ i2 and a
proper morphism W → Yi3 such that X ′ = Y ×Yi3

W . This is possible because
Y = limi≥i2 Yi and Lemmas 10.2 and 6.13. With this choice of W it is immediate
from the construction that for i ≥ i3 the algebraic space Xi is a closed subspace of
Yi ×Yi3

W ⊂ Bi ×Bi3
W and hence proper over Yi. □

Lemma 23.9.0CPF In Situation 23.1 suppose that we have a cartesian diagram

X1
p
//

q

��

X3

a

��
X2 b // X4

of algebraic spaces quasi-separated and of finite type over B. For each j = 1, 2, 3, 4
choose ij ∈ I and a diagram

Xj //

��

W j

��
B // Bij

as in (23.2.1). Let Xj = limi≥ij Xj
i be the corresponding limit descriptions as

in Lemma 23.4. Let (ai)i≥i5 , (bi)i≥i6 , (pi)i≥i7 , and (qi)i≥i8 be the corresponding

https://stacks.math.columbia.edu/tag/0CPC
https://stacks.math.columbia.edu/tag/0CPD
https://stacks.math.columbia.edu/tag/0CPE
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morphisms of inverse systems contructed in Lemma 23.4. Then there exists an
i9 ≥ max(i5, i6, i7, i8) such that for i ≥ i9 we have ai ◦ pi = bi ◦ qi and such that

(qi, pi) : X1
i −→ X2

i ×bi,X4
i

,ai
X3

i

is a closed immersion. If a and b are flat and of finite presentation, then there exists
an i10 ≥ max(i5, i6, i7, i8, i9) such that for i ≥ i10 the last displayed morphism is
an isomorphism.

Proof. According to the discussion in Remark 23.5 the choice of W 1 fitting into
a diagram as in (23.2.1) is immaterial for the truth of the lemma. Thus we may
choose W 1 = W 2 ×W 4 W 3. Then it is immediate from the construction of X1

i that
ai ◦ pi = bi ◦ qi and that

(qi, pi) : X1
i −→ X2

i ×bi,X4
i

,ai
X3

i

is a closed immersion.
If a and b are flat and of finite presentation, then so are p and q as base changes of
a and b. Thus we can apply Lemma 23.6 to each of a, b, p, q, and a ◦ p = b ◦ q. It
follows that there exists an i9 ∈ I such that

(qi, pi) : X1
i → X2

i ×X4
i

X3
i

is the base change of (qi9 , pi9) by the morphism by the morphism X4
i → X4

i9
for

all i ≥ i9. We conclude that (qi, pi) is an isomorphism for all sufficiently large i by
Lemma 6.10. □
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