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1. Introduction

06TG There is a myriad of ways to think about sheaves on algebraic stacks. In this chapter
we discuss one approach, which is particularly well adapted to our foundations for
algebraic stacks. Whenever we introduce a type of sheaves we will indicate the
precise relationship with similar notions in the literature. The goal of this chapter
is to state those results that are either obviously true or straightforward to prove
and leave more intricate constructions till later.

This is a chapter of the Stacks Project, version 74af77a7, compiled on Jun 27, 2023.
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In fact, it turns out that to develop a fully fledged theory of constructible étale
sheaves and/or an adequate discussion of derived categories of complexesO-modules
whose cohomology sheaves are quasi-coherent takes a significant amount of work,
see [Ols07]. We will return to this in Cohomology of Stacks, Section 1.
In the literature and in research papers on sheaves on algebraic stacks the lisse-étale
site of an algebraic stack often plays a prominent role. However, it is a problematic
beast, because it turns out that a morphism of algebraic stacks does not induce a
morphism of lisse-étale topoi. We have therefore made the design decision to avoid
any mention of the lisse-étale site as long as possible. Arguments that traditionally
use the lisse-étale site will be replaced by an argument using a Čech covering in the
site Xsmooth defined below.
Some of the notation, conventions and terminology in this chapter is awkward and
may seem backwards to the more experienced reader. This is intentional. Please
see Quot, Section 2 for an explanation.

2. Conventions

06TH The conventions we use in this chapter are the same as those in the chapter on
algebraic stacks, see Algebraic Stacks, Section 2. For convenience we repeat them
here.
We work in a suitable big fppf site Schfppf as in Topologies, Definition 7.6. So, if
not explicitly stated otherwise all schemes will be objects of Schfppf . We record
what changes if you change the big fppf site elsewhere (insert future reference here).
We will always work relative to a base S contained in Schfppf . And we will then
work with the big fppf site (Sch/S)fppf , see Topologies, Definition 7.8. The absolute
case can be recovered by taking S = Spec(Z).

3. Presheaves

06TI In this section we define presheaves on categories fibred in groupoids over (Sch/S)fppf ,
but most of the discussion works for categories over any base category. This section
also serves to introduce the notation we will use later on.

Definition 3.1.06TJ Let p : X → (Sch/S)fppf be a category fibred in groupoids.
(1) A presheaf on X is a presheaf on the underlying category of X .
(2) A morphism of presheaves on X is a morphism of presheaves on the under-

lying category of X .
We denote PSh(X ) the category of presheaves on X .

This defines presheaves of sets. Of course we can also talk about presheaves of
pointed sets, abelian groups, groups, monoids, rings, modules over a fixed ring,
and lie algebras over a fixed field, etc. The category of abelian presheaves, i.e.,
presheaves of abelian groups, is denoted PAb(X ).
Let f : X → Y be a 1-morphism of categories fibred in groupoids over (Sch/S)fppf .
Recall that this means just that f is a functor over (Sch/S)fppf . The material in
Sites, Section 19 provides us with a pair of adjoint functors1

(3.1.1)06TK fp : PSh(Y) −→ PSh(X ) and pf : PSh(X ) −→ PSh(Y).

1These functors will be denoted f−1 and f∗ after Lemma 4.4 has been proved.

https://stacks.math.columbia.edu/tag/06TJ
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The adjointness is

MorPSh(X )(fpG,F) = MorPSh(Y)(G, pfF)

where F ∈ Ob(PSh(X )) and G ∈ Ob(PSh(Y)). We call fpG the pullback of G. It
follows from the definitions that

fpG(x) = G(f(x))

for any x ∈ Ob(X ). The presheaf pfF is called the pushforward of F . It is described
by the formula

(pfF)(y) = limf(x)→y F(x).
The rest of this section should probably be moved to the chapter on sites and in
any case should be skipped on a first reading.

Lemma 3.2.06TL Let f : X → Y and g : Y → Z be 1-morphisms of categories fibred
in groupoids over (Sch/S)fppf . Then (g ◦ f)p = fp ◦ gp and there is a canonical
isomorphism p(g ◦ f) → pg ◦ pf compatible with adjointness of (fp, pf), (gp, pg),
and ((g ◦ f)p, p(g ◦ f)).

Proof. Let H be a presheaf on Z. Then (g ◦ f)pH = fp(gpH) is given by the
equalities

(g ◦ f)pH(x) = H((g ◦ f)(x)) = H(g(f(x))) = fp(gpH)(x).

We omit the verification that this is compatible with restriction maps.

Next, we define the transformation p(g◦f)→ pg◦pf . Let F be a presheaf on X . If z
is an object of Z then we get a category J of quadruples (x, f(x)→ y, y, g(y)→ z)
and a category I of pairs (x, g(f(x)) → z). There is a canonical functor J → I
sending the object (x, α : f(x)→ y, y, β : g(y)→ z) to (x, β ◦ f(α) : g(f(x))→ z).
This gives the arrow in

(p(g ◦ f)F)(z) = limg(f(x))→z F(x)
= limI F
→ limJ F

= limg(y)→z

(
limf(x)→y F(x)

)
= (pg ◦ pfF)(x)

by Categories, Lemma 14.9. We omit the verification that this is compatible with
restriction maps. An alternative to this direct construction is to define p(g ◦ f) ∼=
pg ◦ pf as the unique map compatible with the adjointness properties. This also
has the advantage that one does not need to prove the compatibility.

Compatibility with adjointness of (fp, pf), (gp, pg), and ((g ◦ f)p, p(g ◦ f)) means
that given presheaves H and F as above we have a commutative diagram

MorPSh(X )(fpgpH,F) MorPSh(Y)(gpH, pfF) MorPSh(Y)(H, pgpfF)

MorPSh(X )((g ◦ f)pG,F) MorPSh(Y)(G, p(g ◦ f)F)

OO

Proof omitted. □

https://stacks.math.columbia.edu/tag/06TL
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Lemma 3.3.06TM Let f, g : X → Y be 1-morphisms of categories fibred in groupoids
over (Sch/S)fppf . Let t : f → g be a 2-morphism of categories fibred in groupoids
over (Sch/S)fppf . Assigned to t there are canonical isomorphisms of functors

tp : gp −→ fp and pt : pf −→ pg

which compatible with adjointness of (fp, pf) and (gp, pg) and with vertical and
horizontal composition of 2-morphisms.

Proof. Let G be a presheaf on Y. Then tp : gpG → fpG is given by the family of
maps

gpG(x) = G(g(x)) G(tx)−−−→ G(f(x)) = fpG(x)

parametrized by x ∈ Ob(X ). This makes sense as tx : f(x) → g(x) and G is
a contravariant functor. We omit the verification that this is compatible with
restriction mappings.

To define the transformation pt for y ∈ Ob(Y) define fyI, resp. gyI to be the category
of pairs (x, ψ : f(x) → y), resp. (x, ψ : g(x) → y), see Sites, Section 19. Note that
t defines a functor yt : gyI → f

yI given by the rule

(x, g(x)→ y) 7−→ (x, f(x) tx−→ g(x)→ y).

Note that for F a presheaf on X the composition of yt with F : fyIopp → Sets,
(x, f(x) → y) 7→ F(x) is equal to F : gyIopp → Sets. Hence by Categories, Lemma
14.9 we get for every y ∈ Ob(Y) a canonical map

(pfF)(y) = limf
yI F −→ limg

yI F = (pgF)(y)

We omit the verification that this is compatible with restriction mappings. An
alternative to this direct construction is to define pt as the unique map compatible
with the adjointness properties of the pairs (fp, pf) and (gp, pg) (see below). This
also has the advantage that one does not need to prove the compatibility.

Compatibility with adjointness of (fp, pf) and (gp, pg) means that given presheaves
G and F as above we have a commutative diagram

MorPSh(X )(fpG,F)

−◦tp

��

MorPSh(Y)(G, pfF)

pt◦−
��

MorPSh(X )(gpG,F) MorPSh(Y)(G, pgF)

Proof omitted. Hint: Work through the proof of Sites, Lemma 19.2 and observe
the compatibility from the explicit description of the horizontal and vertical maps
in the diagram.

We omit the verification that this is compatible with vertical and horizontal com-
positions. Hint: The proof of this for tp is straightforward and one can conclude
that this holds for the pt maps using compatibility with adjointness. □

https://stacks.math.columbia.edu/tag/06TM
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4. Sheaves

06TN We first make an observation that is important and trivial (especially for those
readers who do not worry about set theoretical issues).

Consider a big fppf site Schfppf as in Topologies, Definition 7.6 and denote its
underlying category Schα. Besides being the underlying category of a fppf site, the
category Schα can also can serve as the underlying category for a big Zariski site,
a big étale site, a big smooth site, and a big syntomic site, see Topologies, Remark
11.1. We denote these sites SchZar, Schétale, Schsmooth, and Schsyntomic. In this
situation, since we have defined the big Zariski site (Sch/S)Zar of S, the big étale
site (Sch/S)étale of S, the big smooth site (Sch/S)smooth of S, the big syntomic
site (Sch/S)syntomic of S, and the big fppf site (Sch/S)fppf of S as the localiza-
tions (see Sites, Section 25) SchZar/S, Schétale/S, Schsmooth/S, Schsyntomic/S,
and Schfppf/S of these (absolute) big sites we see that all of these have the same
underlying category, namely Schα/S.

It follows that if we have a category p : X → (Sch/S)fppf fibred in groupoids,
then X inherits a Zariski, étale, smooth, syntomic, and fppf topology, see Stacks,
Definition 10.2.

Definition 4.1.06TP Let X be a category fibred in groupoids over (Sch/S)fppf .
(1) The associated Zariski site, denoted XZar, is the structure of site on X

inherited from (Sch/S)Zar.
(2) The associated étale site, denoted Xétale, is the structure of site on X in-

herited from (Sch/S)étale.
(3) The associated smooth site, denoted Xsmooth, is the structure of site on X

inherited from (Sch/S)smooth.
(4) The associated syntomic site, denoted Xsyntomic, is the structure of site on
X inherited from (Sch/S)syntomic.

(5) The associated fppf site, denoted Xfppf , is the structure of site on X inher-
ited from (Sch/S)fppf .

This definition makes sense by the discussion above. If X is an algebraic stack, the
literature calls Xfppf (or a site equivalent to it) the big fppf site of X and similarly
for the other ones. We may occasionally use this terminology to distinguish this
construction from others.

Remark 4.2.06TQ We only use this notation when the symbol X refers to a category
fibred in groupoids, and not a scheme, an algebraic space, etc. In this way we will
avoid confusion with the small étale site of a scheme, or algebraic space which is
denoted Xétale (in which case we use a roman capital instead of a calligraphic one).

Now that we have these topologies defined we can say what it means to have a
sheaf on X , i.e., define the corresponding topoi.

Definition 4.3.06TR Let X be a category fibred in groupoids over (Sch/S)fppf . Let
F be a presheaf on X .

(1) We say F is a Zariski sheaf, or a sheaf for the Zariski topology if F is a
sheaf on the associated Zariski site XZar.

(2) We say F is an étale sheaf, or a sheaf for the étale topology if F is a sheaf
on the associated étale site Xétale.

https://stacks.math.columbia.edu/tag/06TP
https://stacks.math.columbia.edu/tag/06TQ
https://stacks.math.columbia.edu/tag/06TR


SHEAVES ON ALGEBRAIC STACKS 6

(3) We say F is a smooth sheaf, or a sheaf for the smooth topology if F is a
sheaf on the associated smooth site Xsmooth.

(4) We say F is a syntomic sheaf, or a sheaf for the syntomic topology if F is a
sheaf on the associated syntomic site Xsyntomic.

(5) We say F is an fppf sheaf, or a sheaf, or a sheaf for the fppf topology if F is
a sheaf on the associated fppf site Xfppf .

A morphism of sheaves is just a morphism of presheaves. We denote these categories
of sheaves Sh(XZar), Sh(Xétale), Sh(Xsmooth), Sh(Xsyntomic), and Sh(Xfppf ).

Of course we can also talk about sheaves of pointed sets, abelian groups, groups,
monoids, rings, modules over a fixed ring, and lie algebras over a fixed field, etc. The
category of abelian sheaves, i.e., sheaves of abelian groups, is denoted Ab(Xfppf )
and similarly for the other topologies. If X is an algebraic stack, then Sh(Xfppf )
is equivalent (modulo set theoretical problems) to what in the literature would be
termed the category of sheaves on the big fppf site of X . Similar for other topologies.
We may occasionally use this terminology to distinguish this construction from
others.

Since the topologies are listed in increasing order of strength we have the following
strictly full inclusions

Sh(Xfppf ) ⊂ Sh(Xsyntomic) ⊂ Sh(Xsmooth) ⊂ Sh(Xétale) ⊂ Sh(XZar) ⊂ PSh(X )

We sometimes write Sh(Xfppf ) = Sh(X ) and Ab(Xfppf ) = Ab(X ) in accordance
with our terminology that a sheaf on X is an fppf sheaf on X .

With this setup functoriality of these topoi is straightforward, and moreover, is
compatible with the inclusion functors above.

Lemma 4.4.06TS Let f : X → Y be a 1-morphism of categories fibred in groupoids
over (Sch/S)fppf . Let τ ∈ {Zar, étale, smooth, syntomic, fppf}. The functors pf
and fp of (3.1.1) transform τ sheaves into τ sheaves and define a morphism of
topoi f : Sh(Xτ )→ Sh(Yτ ).

Proof. This follows immediately from Stacks, Lemma 10.3. □

In other words, pushforward and pullback of presheaves as defined in Section 3 also
produces pushforward and pullback of τ -sheaves. Having said all of the above we
see that we can write fp = f−1 and pf = f∗ without any possibility of confusion.

Definition 4.5.06TT Let f : X → Y be a morphism of categories fibred in groupoids
over (Sch/S)fppf . We denote

f = (f−1, f∗) : Sh(Xfppf ) −→ Sh(Yfppf )

the associated morphism of fppf topoi constructed above. Similarly for the associ-
ated Zariski, étale, smooth, and syntomic topoi.

As discussed in Sites, Section 44 the same formula (on the underlying sheaf of sets)
defines pushforward and pullback for sheaves (for one of our topologies) of pointed
sets, abelian groups, groups, monoids, rings, modules over a fixed ring, and lie
algebras over a fixed field, etc.

https://stacks.math.columbia.edu/tag/06TS
https://stacks.math.columbia.edu/tag/06TT
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5. Computing pushforward

06W5 Let f : X → Y be a 1-morphism of categories fibred in groupoids over (Sch/S)fppf .
Let F be a presheaf on X . Let y ∈ Ob(Y). We can compute f∗F(y) in the following
way. Suppose that y lies over the scheme V and using the 2-Yoneda lemma think
of y as a 1-morphism. Consider the projection

pr : (Sch/V )fppf ×y,Y X −→ X
Then we have a canonical identification
(5.0.1)06W6 f∗F(y) = Γ

(
(Sch/V )fppf ×y,Y X , pr−1F

)
Namely, objects of the 2-fibre product are triples (h : U → V, x, f(x) → h∗y).
Dropping the h from the notation we see that this is equivalent to the data of an
object x of X and a morphism α : f(x)→ y of Y. Since f∗F(y) = limf(x)→y F(x)
by definition the equality follows.
As a consequence we have the following “base change” result for pushforwards. This
result is trivial and hinges on the fact that we are using “big” sites.

Lemma 5.1.075B Let S be a scheme. Let

Y ′ ×Y X
g′

//

f ′

��

X

f

��
Y ′ g // Y

be a 2-cartesian diagram of categories fibred in groupoids over S. Then we have a
canonical isomorphism

g−1f∗F −→ f ′
∗(g′)−1F

functorial in the presheaf F on X .

Proof. Given an object y′ of Y ′ over V there is an equivalence
(Sch/V )fppf ×g(y′),Y X = (Sch/V )fppf ×y′,Y′ (Y ′ ×Y X )

Hence by (5.0.1) a bijection g−1f∗F(y′)→ f ′
∗(g′)−1F(y′). We omit the verification

that this is compatible with restriction mappings. □

In the case of a representable morphism of categories fibred in groupoids this for-
mula (5.0.1) simplifies. We suggest the reader skip the rest of this section.

Lemma 5.2.06W7 Let f : X → Y be a 1-morphism of categories fibred in groupoids
over (Sch/S)fppf . The following are equivalent

(1) f is representable, and
(2) for every y ∈ Ob(Y) the functor X opp → Sets, x 7→ MorY(f(x), y) is

representable.

Proof. According to the discussion in Algebraic Stacks, Section 6 we see that f is
representable if and only if for every y ∈ Ob(Y) lying over U the 2-fibre product
(Sch/U)fppf×y,YX is representable, i.e., of the form (Sch/Vy)fppf for some scheme
Vy over U . Objects in this 2-fibre products are triples (h : V → U, x, α : f(x) →
h∗y) where α lies over idV . Dropping the h from the notation we see that this is
equivalent to the data of an object x of X and a morphism f(x) → y. Hence the
2-fibre product is representable by Vy and f(xy) → y where xy is an object of X

https://stacks.math.columbia.edu/tag/075B
https://stacks.math.columbia.edu/tag/06W7
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over Vy if and only if the functor in (2) is representable by xy with universal object
a map f(xy)→ y. □

Let
X

f
//

p
%%

Y

q
yy

(Sch/S)fppf
be a 1-morphism of categories fibred in groupoids. Assume f is representable.
For every y ∈ Ob(Y) we choose an object u(y) ∈ Ob(X ) representing the functor
x 7→ MorY(f(x), y) of Lemma 5.2 (this is possible by the axiom of choice). The
objects come with canonical morphisms f(u(y)) → y by construction. For every
morphism β : y′ → y in Y we obtain a unique morphism u(β) : u(y′)→ u(y) in X
such that the diagram

f(u(y′))

��

f(u(β))
// f(u(y))

��
y′ // y

commutes. In other words, u : Y → X is a functor. In fact, we can say a little bit
more. Namely, suppose that V ′ = q(y′), V = q(y), U ′ = p(u(y′)) and U = p(u(y)).
Then

U ′
p(u(β))

//

��

U

��
V ′ q(β) // V

is a fibre product square. This is true because U ′ → U represents the base change
(Sch/V ′)fppf ×y′,Y X → (Sch/V )fppf ×y,Y X of V ′ → V .

Lemma 5.3.06W8 Let f : X → Y be a representable 1-morphism of categories fibred in
groupoids over (Sch/S)fppf . Let τ ∈ {Zar, étale, smooth, syntomic, fppf}. Then
the functor u : Yτ → Xτ is continuous and defines a morphism of sites Xτ → Yτ
which induces the same morphism of topoi Sh(Xτ ) → Sh(Yτ ) as the morphism f
constructed in Lemma 4.4. Moreover, f∗F(y) = F(u(y)) for any presheaf F on X .

Proof. Let {yi → y} be a τ -covering in Y. By definition this simply means that
{q(yi)→ q(y)} is a τ -covering of schemes. By the final remark above the lemma we
see that {p(u(yi)) → p(u(y))} is the base change of the τ -covering {q(yi) → q(y)}
by p(u(y)) → q(y), hence is itself a τ -covering by the axioms of a site. Hence
{u(yi)→ u(y)} is a τ -covering of X . This proves that u is continuous.

Let’s use the notation up, us, u
p, us of Sites, Sections 5 and 13. If we can show the

final assertion of the lemma, then we see that f∗ = up = us (by continuity of u
seen above) and hence by adjointness f−1 = us which will prove us is exact, hence
that u determines a morphism of sites, and the equality will be clear as well. To
see that f∗F(y) = F(u(y)) note that by definition

f∗F(y) = (pfF)(y) = limf(x)→y F(x).

Since u(y) is a final object in the category the limit is taken over we conclude. □

https://stacks.math.columbia.edu/tag/06W8
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6. The structure sheaf

06TU Let τ ∈ {Zar, étale, smooth, syntomic, fppf}. Let p : X → (Sch/S)fppf be a
category fibred in groupoids. The 2-category of categories fibred in groupoids over
(Sch/S)fppf has a final object, namely, id : (Sch/S)fppf → (Sch/S)fppf and p is
a 1-morphism from X to this final object. Hence any presheaf G on (Sch/S)fppf
gives a presheaf p−1G on X defined by the rule p−1G(x) = G(p(x)). Moreover, the
discussion in Section 4 shows that p−1G is a τ sheaf whenever G is a τ -sheaf.
Recall that the site (Sch/S)fppf is a ringed site with structure sheaf O defined by
the rule

(Sch/S)opp −→ Rings, U/S 7−→ Γ(U,OU )
see Descent, Definition 8.2.

Definition 6.1.06TV Let p : X → (Sch/S)fppf be a category fibred in groupoids. The
structure sheaf of X is the sheaf of rings OX = p−1O.

For an object x of X lying over U we have OX (x) = O(U) = Γ(U,OU ). Needless to
say OX is also a Zariski, étale, smooth, and syntomic sheaf, and hence each of the
sites XZar, Xétale, Xsmooth, Xsyntomic, and Xfppf is a ringed site. This construction
is functorial as well.

Lemma 6.2.06TW Let f : X → Y be a 1-morphism of categories fibred in groupoids over
(Sch/S)fppf . Let τ ∈ {Zar, étale, smooth, syntomic, fppf}. There is a canonical
identification f−1OY = OX which turns f : Sh(Xτ ) → Sh(Yτ ) into a morphism of
ringed topoi.

Proof. Denote p : X → (Sch/S)fppf and q : Y → (Sch/S)fppf the structural
functors. Then p = q ◦ f , hence p−1 = f−1 ◦ q−1 by Lemma 3.2. Since OX = p−1O
and OY = q−1O the result follows. □

Remark 6.3.06TX In the situation of Lemma 6.2 the morphism of ringed topoi f :
Sh(Xτ ) → Sh(Yτ ) is flat as is clear from the equality f−1OX = OY . This is a
bit counter intuitive, for example because a closed immersion of algebraic stacks is
typically not flat (as a morphism of algebraic stacks). However, exactly the same
thing happens when taking a closed immersion i : X → Y of schemes: in this case
the associated morphism of big τ -sites i : (Sch/X)τ → (Sch/Y )τ also is flat.

7. Sheaves of modules

06WA Since we have a structure sheaf we have modules.

Definition 7.1.06WB Let X be a category fibred in groupoids over (Sch/S)fppf .
(1) A presheaf of modules on X is a presheaf of OX -modules. The category of

presheaves of modules is denoted PMod(OX ).
(2) We say a presheaf of modules F is an OX -module, or more precisely a

sheaf of OX -modules if F is an fppf sheaf. The category of OX -modules is
denoted Mod(OX ).

These (pre)sheaves of modules occur in the literature as (pre)sheaves of OX -modules
on the big fppf site of X . We will occasionally use this terminology if we want to
distinguish these categories from others. We will also encounter presheaves of mod-
ules which are sheaves in the Zariski, étale, smooth, or syntomic topologies (without

https://stacks.math.columbia.edu/tag/06TV
https://stacks.math.columbia.edu/tag/06TW
https://stacks.math.columbia.edu/tag/06TX
https://stacks.math.columbia.edu/tag/06WB
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necessarily being sheaves). If need be these will be denoted Mod(Xétale,OX ) and
similarly for the other topologies.
Next, we address functoriality – first for presheaves of modules. Let

X
f

//

p
%%

Y

q
yy

(Sch/S)fppf

be a 1-morphism of categories fibred in groupoids. The functors f−1, f∗ on abelian
presheaves extend to functors
(7.1.1)06WD f−1 : PMod(OY) −→ PMod(OX ) and f∗ : PMod(OX ) −→ PMod(OY)
This is immediate for f−1 because f−1G(x) = G(f(x)) which is a module over
OY(f(x)) = O(q(f(x))) = O(p(x)) = OX (x). Alternatively it follows because
f−1OY = OX and because f−1 commutes with limits (on presheaves). Since f∗ is
a right adjoint it commutes with all limits (on presheaves) in particular products.
Hence we can extend f∗ to a functor on presheaves of modules as in the proof of
Modules on Sites, Lemma 12.1. We claim that the functors (7.1.1) form an adjoint
pair of functors:

MorPMod(OX )(f−1G,F) = MorPMod(OY )(G, f∗F).
As f−1OY = OX this follows from Modules on Sites, Lemma 12.3 by endowing X
and Y with the chaotic topology.
Next, we discuss functoriality for modules, i.e., for sheaves of modules in the fppf
topology. Denote by f also the induced morphism of ringed topoi, see Lemma 6.2
(for the fppf topologies right now). Note that the functors f−1 and f∗ of (7.1.1)
preserve the subcategories of sheaves of modules, see Lemma 4.4. Hence it follows
immediately that
(7.1.2)06WE f−1 : Mod(OY) −→ Mod(OX ) and f∗ : Mod(OX ) −→ Mod(OY)
form an adjoint pair of functors:

MorMod(OX )(f−1G,F) = MorMod(OY )(G, f∗F).
By uniqueness of adjoints we conclude that f∗ = f−1 where f∗ is as defined in
Modules on Sites, Section 13 for the morphism of ringed topoi f above. Of course
we could have seen this directly because f∗(−) = f−1(−)⊗f−1OY OX and because
f−1OY = OX .
Similarly for sheaves of modules in the Zariski, étale, smooth, syntomic topology.

8. Representable categories

076N In this short section we compare our definitions with what happens in case the
algebraic stacks in question are representable.

Lemma 8.1.075I Let S be a scheme. Let X be a category fibred in groupoids over
(Sch/S). Assume X is representable by a scheme X. For τ ∈ {Zar, étale, smooth,
syntomic, fppf} there is a canonical equivalence

(Xτ ,OX ) = ((Sch/X)τ ,OX)
of ringed sites.

https://stacks.math.columbia.edu/tag/075I
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Proof. This follows by choosing an equivalence (Sch/X)τ → X of categories fibred
in groupoids over (Sch/S)fppf and using the functoriality of the construction X ⇝
Xτ . □

Lemma 8.2.075J Let S be a scheme. Let f : X → Y be a morphism of categories
fibred in groupoids over S. Assume X , Y are representable by schemes X, Y .
Let f : X → Y be the morphism of schemes corresponding to f . For τ ∈ {Zar,
étale, smooth, syntomic, fppf} the morphism of ringed topoi f : (Sh(Xτ ),OX ) →
(Sh(Yτ ),OY) agrees with the morphism of ringed topoi f : (Sh((Sch/X)τ ),OX)→
(Sh((Sch/Y )τ ),OY ) via the identifications of Lemma 8.1.

Proof. Follows by unwinding the definitions. □

9. Restriction

075C A trivial but useful observation is that the localization of a category fibred in
groupoids at an object is equivalent to the big site of the scheme it lies over.

Lemma 9.1.06W0 Let p : X → (Sch/S)fppf be a category fibred in groupoids. Let
τ ∈ {Zar, étale, smooth, syntomic, fppf}. Let x ∈ Ob(X ) lying over U = p(x).
The functor p induces an equivalence of sites Xτ/x→ (Sch/U)τ .

Proof. Special case of Stacks, Lemma 10.4. □

We use the lemma above to talk about the pullback and the restriction of a
(pre)sheaf to a scheme.

Definition 9.2.06W1 Let p : X → (Sch/S)fppf be a category fibred in groupoids. Let
x ∈ Ob(X ) lying over U = p(x). Let F be a presheaf on X .

(1) The pullback x−1F of F is the restriction F|(X/x) viewed as a presheaf on
(Sch/U)fppf via the equivalence X/x→ (Sch/U)fppf of Lemma 9.1.

(2) The restriction of F to Uétale is x−1F|Uétale , abusively written F|Uétale .

This notation makes sense because to the object x the 2-Yoneda lemma, see Al-
gebraic Stacks, Section 5 associates a 1-morphism x : (Sch/U)fppf → X/x which
is quasi-inverse to p : X/x → (Sch/U)fppf . Hence x−1F truly is the pullback of
F via this 1-morphism. In particular, by the material above, if F is a sheaf (or a
Zariski, étale, smooth, syntomic sheaf), then x−1F is a sheaf on (Sch/U)fppf (or
on (Sch/U)Zar, (Sch/U)étale, (Sch/U)smooth, (Sch/U)syntomic).
Let p : X → (Sch/S)fppf be a category fibred in groupoids. Let φ : x → y
be a morphism of X lying over the morphism of schemes a : U → V . Recall
that a induces a morphism of small étale sites asmall : Uétale → Vétale, see Étale
Cohomology, Section 34. Let F be a presheaf on X . Let F|Uétale and F|Vétale be
the restrictions of F via x and y. There is a natural comparison map
(9.2.1)06W2 cφ : F|Vétale −→ asmall,∗(F|Uétale)
of presheaves on Uétale. Namely, if V ′ → V is étale, set U ′ = V ′ ×V U and define
cφ on sections over V ′ via

asmall,∗(F|Uétale)(V ′) F|Uétale(U ′) F(x′)

F|Vétale(V ′)

cφ

OO

F(y′)

F(φ′)

OO

https://stacks.math.columbia.edu/tag/075J
https://stacks.math.columbia.edu/tag/06W0
https://stacks.math.columbia.edu/tag/06W1


SHEAVES ON ALGEBRAIC STACKS 12

Here φ′ : x′ → y′ is a morphism of X fitting into a commutative diagram

x′ //

φ′

��

x

φ

��
y′ // y

lying over

U ′ //

��

U

a

��
V ′ // V

The existence and uniqueness of φ′ follow from the axioms of a category fibred in
groupoids. We omit the verification that cφ so defined is indeed a map of presheaves
(i.e., compatible with restriction mappings) and that it is functorial in F . In case
F is a sheaf for the étale topology we obtain a comparison map
(9.2.2)06W3 cφ : a−1

small(F|Vétale) −→ F|Uétale
which is also denoted cφ as indicated (this is the customary abuse of notation in
not distinguishing between adjoint maps).

Lemma 9.3.075D Let F be an étale sheaf on X → (Sch/S)fppf .
(1) If φ : x→ y and ψ : y → z are morphisms of X lying over a : U → V and

b : V →W , then the composition

a−1
small(b

−1
small(F|Wétale

))
a−1
small

cψ−−−−−−→ a−1
small(F|Vétale)

cφ−→ F|Uétale
is equal to cψ◦φ via the identification

(b ◦ a)−1
small(F|Wétale

) = a−1
small(b

−1
small(F|Wétale

)).
(2) If φ : x → y lies over an étale morphism of schemes a : U → V , then

(9.2.2) is an isomorphism.
(3) Suppose f : Y → X is a 1-morphism of categories fibred in groupoids over

(Sch/S)fppf and y is an object of Y lying over the scheme U with image
x = f(y). Then there is a canonical identification f−1F|Uétale = F|Uétale .

(4) Moreover, given ψ : y′ → y in Y lying over a : U ′ → U the comparison
map cψ : a−1

small(f−1F|Uétale)→ f−1F|U ′
étale

is equal to the comparison map
cf(ψ) : a−1

smallF|Uétale → F|U ′
étale

via the identifications in (3).

Proof. The verification of these properties is omitted. □

Next, we turn to the restriction of (pre)sheaves of modules.

Lemma 9.4.06W9 Let p : X → (Sch/S)fppf be a category fibred in groupoids. Let τ ∈
{Zar, étale, smooth, syntomic, fppf}. Let x ∈ Ob(X ) lying over U = p(x). The
equivalence of Lemma 9.1 extends to an equivalence of ringed sites (Xτ/x,OX |x)→
((Sch/U)τ ,O).

Proof. This is immediate from the construction of the structure sheaves. □

Let X be a category fibred in groupoids over (Sch/S)fppf . Let F be a (pre)sheaf
of modules on X as in Definition 7.1. Let x be an object of X lying over U .
Then Lemma 9.4 guarantees that the restriction x−1F is a (pre)sheaf of modules
on (Sch/U)fppf . We will sometimes write x∗F = x−1F in this case. Similarly,
if F is a sheaf for the Zariski, étale, smooth, or syntomic topology, then x−1F
is as well. Moreover, the restriction F|Uétale = x−1F|Uétale to U is a presheaf of
OUétale -modules. If F is a sheaf for the étale topology, then F|Uétale is a sheaf of
modules. Moreover, if φ : x→ y is a morphism of X lying over a : U → V then the

https://stacks.math.columbia.edu/tag/075D
https://stacks.math.columbia.edu/tag/06W9
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comparison map (9.2.2) is compatible with a♯small (see Descent, Remark 8.4) and
induces a comparison map
(9.4.1)06WC cφ : a∗

small(F|Vétale) −→ F|Uétale
of OUétale -modules. Note that the properties (1), (2), (3), and (4) of Lemma 9.3
hold in the setting of étale sheaves of modules as well. We will use this in the
following without further mention.
Lemma 9.5.06W4 Let p : X → (Sch/S)fppf be a category fibred in groupoids. Let
τ ∈ {Zar, étale, smooth, syntomic, fppf}. The site Xτ has enough points.
Proof. By Sites, Lemma 38.5 we have to show that there exists a family of objects
x of X such that Xτ/x has enough points and such that the sheaves h#

x cover
the final object of the category of sheaves. By Lemma 9.1 and Étale Cohomology,
Lemma 30.1 we see that Xτ/x has enough points for every object x and we win. □

10. Restriction to algebraic spaces

076P In this section we consider sheaves on categories representable by algebraic spaces.
The following lemma is the analogue of Topologies, Lemma 4.14 for algebraic spaces.
Lemma 10.1.073M Let S be a scheme. Let X → (Sch/S)fppf be a category fibred in
groupoids. Assume X is representable by an algebraic space F . Then there exists a
continuous and cocontinuous functor Fétale → Xétale which induces a morphism of
ringed sites

πF : (Xétale,OX ) −→ (Fétale,OF )
and a morphism of ringed topoi

iF : (Sh(Fétale),OF ) −→ (Sh(Xétale),OX )
such that πF ◦ iF = id. Moreover πF,∗ = i−1

F .
Proof. Choose an equivalence j : SF → X , see Algebraic Stacks, Sections 7 and
8. An object of Fétale is a scheme U together with an étale morphism φ : U → F .
Then φ is an object of SF over U . Hence j(φ) is an object of X over U . In
this way j induces a functor u : Fétale → X . It is clear that u is continuous and
cocontinuous for the étale topology on X . Since j is an equivalence, the functor u
is fully faithful. Also, fibre products and equalizers exist in Fétale and u commutes
with them because these are computed on the level of underlying schemes in Fétale.
Thus Sites, Lemmas 21.5, 21.6, and 21.7 apply. In particular u defines a morphism
of topoi iF : Sh(Fétale)→ Sh(Xétale) and there exists a left adjoint iF,! of i−1

F which
commutes with fibre products and equalizers.
We claim that iF,! is exact. If this is true, then we can define πF by the rules
π−1
F = iF,! and πF,∗ = i−1

F and everything is clear. To prove the claim, note that
we already know that iF,! is right exact and preserves fibre products. Hence it
suffices to show that iF,!∗ = ∗ where ∗ indicates the final object in the category of
sheaves of sets. Let U be a scheme and let φ : U → F be surjective and étale. Set
R = U ×F U . Then

hR
//
// hU // ∗

is a coequalizer diagram in Sh(Fétale). Using the right exactness of iF,!, using
iF,! = (up )#, and using Sites, Lemma 5.6 we see that

hu(R)
//
// hu(U) // iF,!∗

https://stacks.math.columbia.edu/tag/06W4
https://stacks.math.columbia.edu/tag/073M
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is a coequalizer diagram in Sh(Fétale). Using that j is an equivalence and that
F = U/R it follows that the coequalizer in Sh(Xétale) of the two maps hu(R) →
hu(U) is ∗. We omit the proof that these morphisms are compatible with structure
sheaves. □

Remark 10.2.0GQA The constructions in Lemma 10.1 are compatible with étale lo-
calization. Here is a precise formulation. Let S be a scheme. Let f : X → Y be
a morphism of categories fibred in groupoids over (Sch/S)fppf . Assume X , Y are
representable by algebraic spaces F , G, and that the induced morphism f : F → G
of algebraic spaces is étale. Denote fsmall : Fétale → Gétale the corresponding
morphism of ringed topoi. Then

(Sh(Fétale),OF )
fsmall

//

iF

��

(Sh(Gétale),OG)

iG

��
(Sh(Xétale),OX )

πF

��

f
// (Sh(Yétale),OY)

πG

��
(Sh(Fétale),OF ) fsmall // (Sh(Gétale),OG)

is a commutative diagram of ringed topoi. We omit the details.

Assume X is an algebraic stack represented by the algebraic space F . Let j : SF →
X be an equivalence and denote u : Fétale → Xétale the functor of the proof of
Lemma 10.1 above. Given a sheaf F on Xétale we have

πF,∗F(U) = i−1
F F(U) = F(u(U)).

This is why we often think of i−1
F as a restriction functor similarly to Definition 9.2

and to the restriction of a sheaf on the big étale site of a scheme to the small étale
site of a scheme. We often use the notation
(10.2.1)075K F|Fétale = i−1

F F = πF,∗F
in this situation.

Lemma 10.3.073N Let S be a scheme. Let f : X → Y be a morphism of categories
fibred in groupoids over (Sch/S)fppf . Assume X , Y are representable by algebraic
spaces F , G. Denote f : F → G the induced morphism of algebraic spaces, and
fsmall : Fétale → Gétale the corresponding morphism of ringed topoi. Then

(Sh(Xétale),OX )

πF

��

f
// (Sh(Yétale),OY)

πG

��
(Sh(Fétale),OF ) fsmall // (Sh(Gétale),OG)

is a commutative diagram of ringed topoi.

Proof. This is similar to Topologies, Lemma 4.17 (3) but there is a small snag due
to the fact that F → G may not be representable by schemes. In particular we
don’t get a commutative diagram of ringed sites, but only a commutative diagram
of ringed topoi.
Before we start the proof proper, we choose equivalences j : SF → X and j′ :
SG → Y which induce functors u : Fétale → X and u′ : Gétale → Y as in the proof

https://stacks.math.columbia.edu/tag/0GQA
https://stacks.math.columbia.edu/tag/073N
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of Lemma 10.1. Because of the 2-functoriality of sheaves on categories fibred in
groupoids over Schfppf (see discussion in Section 3) we may assume that X = SF
and Y = SG and that f : SF → SG is the functor associated to the morphism
f : F → G. Correspondingly we will omit u and u′ from the notation, i.e., given an
object U → F of Fétale we denote U/F the corresponding object of X . Similarly
for G.
Let G be a sheaf on Xétale. To prove (2) we compute πG,∗f∗G and fsmall,∗πF,∗G.
To do this let V → G be an object of Gétale. Then

πG,∗f∗G(V ) = f∗G(V/G) = Γ
(

(Sch/V )fppf ×Y X , pr−1G
)

see (5.0.1). The fibre product in the formula is
(Sch/V )fppf ×Y X = (Sch/V )fppf ×SG SF = SV×GF

i.e., it is the split category fibred in groupoids associated to the algebraic space
V ×G F . And pr−1G is a sheaf on SV×GF for the étale topology.
In particular, if V ×G F is representable, i.e., if it is a scheme, then πG,∗f∗G(V ) =
G(V ×G F/F ) and also

fsmall,∗πF,∗G(V ) = πF,∗G(V ×G F ) = G(V ×G F/F )
which proves the desired equality in this special case.
In general, choose a scheme U and a surjective étale morphism U → V ×G F . Set
R = U ×V×GF U . Then U/V ×G F and R/V ×G F are objects of the fibre product
category above. Since pr−1G is a sheaf for the étale topology on SV×GF the diagram

Γ
(

(Sch/V )fppf ×Y X , pr−1G
)

// pr−1G(U/V ×G F ) //
// pr−1G(R/V ×G F )

is an equalizer diagram. Note that pr−1G(U/V×GF ) = G(U/F ) and pr−1G(R/V×G
F ) = G(R/F ) by the definition of pullbacks. Moreover, by the material in Proper-
ties of Spaces, Section 18 (especially, Properties of Spaces, Remark 18.4 and Lemma
18.8) we see that there is an equalizer diagram

fsmall,∗πF,∗G(V ) // πF,∗G(U/F ) //
// πF,∗G(R/F )

Since we also have πF,∗G(U/F ) = G(U/F ) and πF,∗G(U/F ) = G(U/F ) we obtain
a canonical identification fsmall,∗πF,∗G(V ) = πG,∗f∗G(V ). We omit the proof that
this is compatible with restriction mappings and that it is functorial in G. □

Let f : X → Y and f : F → G be as in the second part of the lemma above. A
consequence of the lemma, using (10.2.1), is that
(10.3.1)075M (f∗F)|Gétale = fsmall,∗(F|Fétale)
for any sheaf F on Xétale. Moreover, if F is a sheaf of O-modules, then (10.3.1) is
an isomorphism of OG-modules on Gétale.
Finally, suppose that we have a 2-commutative diagram

U a //

f ��

|� φ

V
g

��
X
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of 1-morphisms of categories fibred in groupoids over (Sch/S)fppf , that F is a sheaf
on Xétale, and that U ,V are representable by algebraic spaces U, V . Then we obtain
a comparison map

(10.3.2)076Q cφ : a−1
small(g

−1F|Vétale) −→ f−1F|Uétale
where a : U → V denotes the morphism of algebraic spaces corresponding to a.
This is the analogue of (9.2.2). We define cφ as the adjoint to the map

g−1F|Vétale −→ asmall,∗(f−1F|Uétale) = (a∗f
−1F)|Vétale

(equality by (10.3.1)) which is the restriction to V (10.2.1) of the map

g−1F → a∗a
−1g−1F = a∗f

−1F

where the last equality uses the 2-commutativity of the diagram above. In case F
is a sheaf of OX -modules cφ induces a comparison map

(10.3.3)076R cφ : a∗
small(g∗F|Vétale) −→ f∗F|Uétale

of OUétale -modules. This is the analogue of (9.4.1). Note that the properties (1),
(2), (3), and (4) of Lemma 9.3 hold in this setting as well.

11. Quasi-coherent modules

06WF At this point we can apply the general definition of a quasi-coherent module to the
situation discussed in this chapter.

Definition 11.1.06WG Let p : X → (Sch/S)fppf be a category fibred in groupoids.
A quasi-coherent module on X , or a quasi-coherent OX -module is a quasi-coherent
module on the ringed site (Xfppf ,OX ) as in Modules on Sites, Definition 23.1. The
category of quasi-coherent sheaves on X is denoted QCoh(OX ).

If X is an algebraic stack, then this definition agrees with all definitions in the
literature in the sense that QCoh(OX ) is equivalent (modulo set theoretic issues)
to any variant of this category defined in the literature. For example, we will match
our definition with the definition in [Ols07, Definition 6.1] in Cohomology on Stacks,
Lemma 12.2. We will also see alternative constructions of this category later on.

In general (as is the case for morphisms of schemes) the pushforward of quasi-
coherent sheaf along a 1-morphism is not quasi-coherent. Pullback does preserve
quasi-coherence.

Lemma 11.2.06WH Let f : X → Y be a 1-morphism of categories fibred in groupoids
over (Sch/S)fppf . The pullback functor f∗ = f−1 : Mod(OY) → Mod(OX ) pre-
serves quasi-coherent sheaves.

Proof. This is a general fact, see Modules on Sites, Lemma 23.4. □

It turns out that quasi-coherent sheaves have a very simple characterization in
terms of their pullbacks. See also Lemma 12.2 for a characterization in terms of
restrictions.

Lemma 11.3.06WI Let p : X → (Sch/S)fppf be a category fibred in groupoids. Let
F be a sheaf of OX -modules. Then F is quasi-coherent if and only if x∗F is a
quasi-coherent sheaf on (Sch/U)fppf for every object x of X with U = p(x).

https://stacks.math.columbia.edu/tag/06WG
https://stacks.math.columbia.edu/tag/06WH
https://stacks.math.columbia.edu/tag/06WI
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Proof. By Lemma 11.2 the condition is necessary. Conversely, since x∗F is just
the restriction to Xfppf/x we see that it is sufficient directly from the definition of
a quasi-coherent sheaf (and the fact that the notion of being quasi-coherent is an
intrinsic property of sheaves of modules, see Modules on Sites, Section 18). □

Lemma 11.4.0EM8 Let p : X → (Sch/S)fppf be a category fibred in groupoids. Let F
be a presheaf of modules on X . The following are equivalent

(1) F is an object of Mod(XZar,OX ) and F is a quasi-coherent module on
(XZar,OX ) in the sense of Modules on Sites, Definition 23.1,

(2) F is an object of Mod(Xétale,OX ) and F is a quasi-coherent module on
(Xétale,OX ) in the sense of Modules on Sites, Definition 23.1, and

(3) F is a quasi-coherent module on X in the sense of Definition 11.1.

Proof. Assume either (1), (2), or (3) holds. Let x be an object of X lying over
the scheme U . Recall that x∗F = x−1F is just the restriction to X/x = (Sch/U)τ
where τ = fppf , τ = étale, or τ = Zar, see Section 9. By the definition of
quasi-coherent modules on a ringed site this restriction is quasi-coherent provided
F is. By Descent, Proposition 8.9 we see that x∗F is the sheaf associated to a
quasi-coherent OU -module and is therefore a quasi-coherent module in the fppf,
étale, and Zariski topology; here we also use Descent, Lemma 8.1 and Definition
8.2. Since this holds for every object x of X , we see that F is a sheaf in any of the
three topologies. Moreover, we find that F is quasi-coherent in any of the three
topologies directly from the definition of being quasi-coherent and the fact that x
is an arbitrary object of X . □

12. Locally quasi-coherent modules

0GQB Although there is a variant for the Zariski topology, it seems that the étale topology
is the natural topology to use in the following definition.

Definition 12.1.06WJ Let p : X → (Sch/S)fppf be a category fibred in groupoids. Let
F be a presheaf of OX -modules. We say F is locally quasi-coherent2 if F is a sheaf
for the étale topology and for every object x of X the restriction x∗F|Uétale is a
quasi-coherent sheaf. Here U = p(x).

We use LQCoh(OX ) to indicate the category of locally quasi-coherent modules. We
now have the following diagram of categories of modules

QCoh(OX ) //

��

Mod(OX )

��
LQCoh(OX ) // Mod(Xétale,OX )

where the arrows are strictly full embeddings. It turns out that many results
for quasi-coherent sheaves have a counter part for locally quasi-coherent modules.
Moreover, from many points of view (as we shall see later) this is a natural category
to consider. For example the quasi-coherent sheaves are exactly those locally quasi-
coherent modules that are “cartesian”, i.e., satisfy the second condition of the
lemma below.

2This is nonstandard notation.

https://stacks.math.columbia.edu/tag/0EM8
https://stacks.math.columbia.edu/tag/06WJ
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Lemma 12.2.06WK Let p : X → (Sch/S)fppf be a category fibred in groupoids. Let F
be a presheaf of OX -modules. Then F is quasi-coherent if and only if the following
two conditions hold

(1) F is locally quasi-coherent, and
(2) for any morphism φ : x → y of X lying over f : U → V the comparison

map cφ : f∗
smallF|Vétale → F|Uétale of (9.4.1) is an isomorphism.

Proof. Assume F is quasi-coherent. Then F is a sheaf for the fppf topology, hence
a sheaf for the étale topology. Moreover, any pullback of F to a ringed topos is
quasi-coherent, hence the restrictions x∗F|Uétale are quasi-coherent. This proves F
is locally quasi-coherent. Let y be an object of X with V = p(y). We have seen
that X/y = (Sch/V )fppf . By Descent, Proposition 8.9 it follows that y∗F is the
quasi-coherent module associated to a (usual) quasi-coherent module FV on the
scheme V . Hence certainly the comparison maps (9.4.1) are isomorphisms.
Conversely, suppose that F satisfies (1) and (2). Let y be an object of X with
V = p(y). Denote FV the quasi-coherent module on the scheme V corresponding
to the restriction y∗F|Vétale which is quasi-coherent by assumption (1), see Descent,
Proposition 8.9. Condition (2) now signifies that the restrictions x∗F|Uétale for x
over y are each isomorphic to the (étale sheaf associated to the) pullback of FV
via the corresponding morphism of schemes U → V . Hence y∗F is the sheaf on
(Sch/V )fppf associated to FV . Hence it is quasi-coherent (by Descent, Proposition
8.9 again) and we see that F is quasi-coherent on X by Lemma 11.3. □

Lemma 12.3.06WL Let f : X → Y be a 1-morphism of categories fibred in groupoids
over (Sch/S)fppf . The pullback functor f∗ = f−1 : Mod(Yétale,OY)→ Mod(Xétale,OX )
preserves locally quasi-coherent sheaves.

Proof. Let G be locally quasi-coherent on Y. Choose an object x of X lying over
the scheme U . The restriction x∗f∗G|Uétale equals (f ◦ x)∗G|Uétale hence is a quasi-
coherent sheaf by assumption on G. □

Lemma 12.4.06WM Let p : X → (Sch/S)fppf be a category fibred in groupoids.
(1) The category LQCoh(OX ) has colimits and they agree with colimits in the

category Mod(Xétale,OX ).
(2) The category LQCoh(OX ) is abelian with kernels and cokernels computed

in Mod(Xétale,OX ), in other words the inclusion functor is exact.
(3) Given a short exact sequence 0→ F1 → F2 → F3 → 0 of Mod(Xétale,OX )

if two out of three are locally quasi-coherent so is the third.
(4) Given F ,G in LQCoh(OX ) the tensor product F⊗OX G in Mod(Xétale,OX )

is an object of LQCoh(OX ).
(5) Given F ,G in LQCoh(OX ) with F of finite presentation on Xétale the sheaf
HomOX (F ,G) in Mod(Xétale,OX ) is an object of LQCoh(OX ).

Proof. In the arguments below x denotes an arbitrary object of X lying over the
scheme U . To show that an object H of Mod(Xétale,OX ) is in LQCoh(OX ) we
will show that the restriction x∗H|Uétale = H|Uétale is a quasi-coherent object of
Mod(Uétale,OU ).
Proof of (1). Let I → LQCoh(OX ), i 7→ Fi be a diagram. Consider the object F =
colimi Fi of Mod(Xétale,OX ). The pullback functor x∗ commutes with all colimits
as it is a left adjoint. Hence x∗F = colimi x

∗Fi. Similarly we have x∗F|Uétale =

https://stacks.math.columbia.edu/tag/06WK
https://stacks.math.columbia.edu/tag/06WL
https://stacks.math.columbia.edu/tag/06WM
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colimi x
∗Fi|Uétale . Now by assumption each x∗Fi|Uétale is quasi-coherent. Hence

colimi x
∗Fi|Uétale is quasi-coherent by Descent, Lemma 10.3. Thus x∗F|Uétale is

quasi-coherent as desired.
Proof of (2). It follows from (1) that cokernels exist in LQCoh(OX ) and agree
with the cokernels computed in Mod(Xétale,OX ). Let φ : F → G be a morphism of
LQCoh(OX ) and let K = Ker(φ) computed in Mod(Xétale,OX ). If we can show that
K is a locally quasi-coherent module, then the proof of (2) is complete. To see this,
note that kernels are computed in the category of presheaves (no sheafification
necessary). Hence K|Uétale is the kernel of the map F|Uétale → G|Uétale , i.e., is
the kernel of a map of quasi-coherent sheaves on Uétale whence quasi-coherent by
Descent, Lemma 10.3. This proves (2).
Proof of (3). Let 0 → F1 → F2 → F3 → 0 be a short exact sequence of
Mod(Xétale,OX ). Since we are using the étale topology, the restriction 0→ F1|Uétale →
F2|Uétale → F3|Uétale → 0 is a short exact sequence too. Hence (3) follows from the
corresponding statement in Descent, Lemma 10.3.
Proof of (4). Let F and G be in LQCoh(OX ). Since restriction to Uétale is given
by pullback along the morphism of ringed topoi Uétale → (Sch/U)étale → Xétale
we see that the restriction of the tensor product F ⊗OX G to Uétale is equal to
F|Uétale⊗OU

G|Uétale , see Modules on Sites, Lemma 26.2. Since F|Uétale and G|Uétale
are quasi-coherent, so is their tensor product, see Descent, Lemma 10.3.
Proof of (5). Let F and G be in LQCoh(OX ) with F of finite presentation. Since
(Sch/U)étale = Xétale/x is a localization of Xétale at an object we see that the
restriction of HomOX (F ,G) to (Sch/U)étale is equal to

H = HomO|(Sch/U)étale
(F|(Sch/U)étale ,G|(Sch/U)étale)

by Modules on Sites, Lemma 27.2. The morphism of ringed topoi (Uétale,OU ) →
((Sch/U)étale,O) is flat as the pullback of O is OU . Hence the pullback of H by this
morphism is equal to HomOU

(F|Uétale ,G|Uétale) by Modules on Sites, Lemma 31.4.
In other words, the restriction ofHomOX (F ,G) to Uétale isHomOU

(F|Uétale ,G|Uétale).
Since F|Uétale and G|Uétale are quasi-coherent, so is HomOU

(F|Uétale ,G|Uétale), see
Descent, Lemma 10.3. We conclude as before. □

In the generality discussed here the category of quasi-coherent sheaves is not abelian.
See Examples, Section 13. Here is what we can prove without any further work.

Lemma 12.5.06WN Let p : X → (Sch/S)fppf be a category fibred in groupoids.
(1) The category QCoh(OX ) has colimits and they agree with colimits in the

categories Mod(XZar,OX ), Mod(Xétale,OX ), Mod(OX ), and LQCoh(OX ).
(2) Given F ,G in QCoh(OX ) the tensor products F⊗OXG computed in Mod(XZar,OX ),

Mod(Xétale,OX ), or Mod(OX ) agree and the common value is an object of
QCoh(OX ).

(3) Given F ,G in QCoh(OX ) with F finite locally free (in fppf, or equivalently
étale, or equivalently Zariski topology) the internal homs HomOX (F ,G)
computed in Mod(XZar,OX ), Mod(Xétale,OX ), or Mod(OX ) agree and the
common value is an object of QCoh(OX ).

Proof. Let x be an arbitrary object of X lying over the scheme U . Let τ ∈
{Zariski, étale, fppf}. To show that an object H of Mod(Xτ ,OX ) is in QCoh(OX )
it suffices show that the restriction x∗H (Section 9) is a quasi-coherent object of

https://stacks.math.columbia.edu/tag/06WN
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Mod((Sch/U)τ ,O). See Lemmas 11.3 and 11.4. Similarly for being finite locally
free. Recall that (Sch/U)τ = Xτ/x is a localization of Xτ at an object. Hence
restriction commutes with colimits, tensor products, and forming internal hom
(see Modules on Sites, Lemmas 14.3, 26.2, and 27.2). This reduces the lemma to
Descent, Lemma 10.6. □

13. Stackification and sheaves

06WP It turns out that the category of sheaves on a category fibred in groupoids only
“knows about” the stackification.
Lemma 13.1.06WQ Let f : X → Y be a 1-morphism of categories fibred in groupoids
over (Sch/S)fppf . If f induces an equivalence of stackifications, then the morphism
of topoi f : Sh(Xfppf )→ Sh(Yfppf ) is an equivalence.
Proof. We may assume Y is the stackification of X . We claim that f : X → Y is a
special cocontinuous functor, see Sites, Definition 29.2 which will prove the lemma.
By Stacks, Lemma 10.3 the functor f is continuous and cocontinuous. By Stacks,
Lemma 8.1 we see that conditions (3), (4), and (5) of Sites, Lemma 29.1 hold. □

Lemma 13.2.06WR Let f : X → Y be a 1-morphism of categories fibred in groupoids
over (Sch/S)fppf . If f induces an equivalence of stackifications, then f∗ induces
equivalences Mod(OX )→ Mod(OY) and QCoh(OX )→ QCoh(OY).
Proof. We may assume Y is the stackification of X . The first assertion is clear
from Lemma 13.1 and OX = f−1OY . Pullback of quasi-coherent sheaves are quasi-
coherent, see Lemma 11.2. Hence it suffices to show that if f∗G is quasi-coherent,
then G is. To see this, let y be an object of Y. Translating the condition that Y
is the stackification of X we see there exists an fppf covering {yi → y} in Y such
that yi ∼= f(xi) for some xi object of X . Say xi and yi lie over the scheme Ui.
Then f∗G being quasi-coherent, means that x∗

i f
∗G is quasi-coherent. Since x∗

i f
∗G

is isomorphic to y∗
i G (as sheaves on (Sch/Ui)fppf we see that y∗

i G is quasi-coherent.
It follows from Modules on Sites, Lemma 23.3 that the restriction of G to Y/y is
quasi-coherent. Hence G is quasi-coherent by Lemma 11.3. □

14. Quasi-coherent sheaves and presentations

06WS Let us first match quasi-coherent sheaves with our previously defined notions for
schemes and algebraic spaces.
Lemma 14.1.0GQC Let S be a scheme. Let X → (Sch/S)fppf be a category fibred in
groupoids wich is representable by an algebraic space F . If F is in LQCoh(OX )
then the restriction F|Fétale (10.2.1) is quasi-coherent.
Proof. Let U be a scheme étale over F . Then F|Uétale = (F|Fétale)|Uétale . This is
clear but see also Remark 10.2. Thus the assertion follows from the definitions. □

Lemma 14.2.0GQD Let S be a scheme. Let X → (Sch/S)fppf be a category fibred
in groupoids wich is representable by an algebraic space F . The functor (10.2.1)
defines an equivalence

QCoh(OX )→ QCoh(OF ), F 7−→ F|Fétale
with quasi-inverse given by G 7→ π∗

FG. This equivalence is compatible with pull-
back for morphisms between categories fibred in groupoids representable by algebraic
spaces.

https://stacks.math.columbia.edu/tag/06WQ
https://stacks.math.columbia.edu/tag/06WR
https://stacks.math.columbia.edu/tag/0GQC
https://stacks.math.columbia.edu/tag/0GQD
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Proof. By Lemma 11.4 we may work with the étale topology. We will use the
notation and results of Lemma 10.1 without further mention. Recall that the
restriction functor Mod(Xétale,OX ) → Mod(Fétale,OF ), F 7→ F|Fétale is given by
i∗F . By Lemma 14.1 or by Modules on Sites, Lemma 23.4 we see that F|Fétale is
quasi-coherent if F is quasi-coherent. Hence we get a functor as indicated in the
statement of the lemma and we get a functor π∗

F in the opposite direction. Since
πF ◦ iF = id we see that i∗Fπ∗

FG = G.

For F in Mod(Xétale,OX ) there is a canonical map π∗
F (F|Fétale) → F , namely the

map adjoint to the identification F|Fétale = πF,∗F . We will show that this map
is an isomorphism if F is a quasi-coherent module on X . Choose a scheme U
and a surjective étale morphism U → F . Denote x : U → X the corresponding
object of X over U . It suffices to show that π∗

F (F|Fétale) → F is an isomorphism
after restricting to Xétale/x = (Sch/U)étale. Since U → F is étale, it follows from
Remark 10.2 that

π∗
F (F|Fétale)|Xétale/x = π∗

U (F|Uétale)
and that the restriction of the map π∗

F (F|Fétale)→ F to Xétale/x = (Sch/U)étale is
equal to the corresponding map π∗

U (F|Uétale)→ F|(Sch/U)étale . Since we have seen
the result is true for schemes in Descent, Section 83 we conclude.

Compatibility with pullbacks follows from the fact that the quasi-inverse is given
by π∗

F and the commutative diagram of ringed topoi in Lemma 10.3. □

In Groupoids in Spaces, Definition 12.1 we have the defined the notion of a quasi-
coherent module on an arbitrary groupoid. The following (formal) proposition tells
us that we can study quasi-coherent sheaves on quotient stacks in terms of quasi-
coherent modules on presentations.

Proposition 14.3.06WT Let (U,R, s, t, c) be a groupoid in algebraic spaces over S. Let
X = [U/R] be the quotient stack. The category of quasi-coherent modules on X is
equivalent to the category of quasi-coherent modules on (U,R, s, t, c).

Proof. We will construct quasi-inverse functors

QCoh(OX )←→ QCoh(U,R, s, t, c).

where QCoh(U,R, s, t, c) denotes the category of quasi-coherent modules on the
groupoid (U,R, s, t, c).

Let F be an object of QCoh(OX ). Denote U , R the categories fibred in groupoids
corresponding to U and R. Denote x the (defining) object of X over U . Recall that
we have a 2-commutative diagram

R
s
//

t

��

U

x

��
U x // X

3Namely, if U is a scheme and F is quasi-coherent on (Sch/U)étale, then F = Ha for
some quasi-coherent module H on the scheme U by Descent, Proposition 8.9. In other words,
F = (idétale,Zar)∗H by Descent, Remark 8.6 with notation as in Descent, Lemma 8.5. Then
we have idétale,Zar = πU ◦ idsmall,étale,Zar and hence we see that F = π∗

U G where G =
(idsmall,étale,Zar)∗H is quasi-coherent. Then π∗

U i∗
U F = π∗

U i∗
U π∗

U G = π∗
U G = F as desired.

https://stacks.math.columbia.edu/tag/06WT
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See Groupoids in Spaces, Lemma 20.3. By Lemma 3.3 the 2-arrow inherent in the
diagram induces an isomorphism α : t∗x∗F → s∗x∗F which satisfies the cocycle
condition over R ×s,U,t R; this is a consequence of Groupoids in Spaces, Lemma
23.1. Thus if we set G = x∗F|Uétale then the equivalence of categories in Lemma 14.2
(used several times compatibly with pullbacks) gives an isomorphism α : t∗smallG →
s∗
smallG satisfying the cocycle condition on R ×s,U,t R, i.e., (G, α) is an object of

QCoh(U,R, s, t, c). The rule F 7→ (G, α) is our functor from left to right.

Construction of the functor in the other direction. Let (G, α) be an object of
QCoh(U,R, s, t, c). According to Lemma 13.2 the stackification map [U/pR] →
[U/R] (see Groupoids in Spaces, Definition 20.1) induces an equivalence of cat-
egories of quasi-coherent sheaves. Thus it suffices to construct a quasi-coherent
module F on [U/pR].

Recall that an object x = (T, u) of [U/pR] is given by a scheme T and a morphism
u : T → U . A morphism (T, u)→ (T ′, u′) is given by a pair (f, r) where f : T → T ′

and r : T → R with s ◦ r = u and t ◦ r = u′ ◦ f . Let us call a special morphism any
morphism of the form (f, e ◦ u′ ◦ f) : (T, u′ ◦ f) → (T ′, u′). The category of (T, u)
with special morphisms is just the category of schemes over U .

With this notation in place, given an object (T, u) of [U/pR], we set

F(T, u) := Γ(T, u∗
smallG).

Given a morphism (f, r) : (T, u)→ (T ′, u′) we get a map

F(T ′, u′) = Γ(T ′, (u′)∗
smallG)

→ Γ(T, f∗
small(u′)∗

smallG) = Γ(T, (u′ ◦ f)∗
smallG)

= Γ(T, (t ◦ r)∗
smallG) = Γ(T, r∗

smallt
∗
smallG)

→ Γ(T, r∗
smalls

∗
smallG) = Γ(T, (s ◦ r)∗

smallG)
= Γ(T, u∗

smallG)
= F(T, u)

where the first arrow is pullback along f and the second arrow is α. Note that if
(T, r) is a special morphism, then this map is just pullback along f as e∗

smallα = id
by the axioms of a sheaf of quasi-coherent modules on a groupoid. The cocycle
condition implies that F is a presheaf of modules (details omitted). We see that
the restriction of F to (Sch/T )fppf is quasi-coherent by the simple description of
the restriction maps of F in case of a special morphism. Hence F is a sheaf on
[U/pR] and quasi-coherent (Lemma 11.3).

We omit the verification that the functors constructed above are quasi-inverse to
each other. □

We finish this section with a technical lemma on maps out of quasi-coherent sheaves.
It is an analogue of Schemes, Lemma 7.1. We will see later (Criteria for Repre-
sentability, Theorem 17.2) that the assumptions on the groupoid imply that X is
an algebraic stack.

Lemma 14.4.076S Let (U,R, s, t, c) be a groupoid in algebraic spaces over S. Assume
s, t are flat and locally of finite presentation. Let X = [U/R] be the quotient stack.

https://stacks.math.columbia.edu/tag/076S
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Denote x the object of X over U . Let F be a quasi-coherent OX -module, and let H
be any object of Mod(OX ). The map

HomOX (F ,H) −→ HomOU
(x∗F|Uétale , x∗H|Uétale), ϕ 7−→ x∗ϕ|Uétale

is injective and its image consists of exactly those φ : x∗F|Uétale → x∗H|Uétale which
give rise to a commutative diagram

s∗
small(x∗F|Uétale) //

s∗
smallφ

��

(x ◦ s)∗F|Rétale = (x ◦ t)∗F|Rétale t∗small(x∗F|Uétale)oo

t∗smallφ

��
s∗
small(x∗H|Uétale) // (x ◦ s)∗H|Rétale = (x ◦ t)∗H|Rétale t∗small(x∗H|Uétale)oo

of modules on Rétale where the horizontal arrows are the comparison maps (10.3.3).

Proof. According to Lemma 13.2 the stackification map [U/pR] → [U/R] (see
Groupoids in Spaces, Definition 20.1) induces an equivalence of categories of quasi-
coherent sheaves and of fppf O-modules. Thus it suffices to prove the lemma with
X = [U/pR]. By Proposition 14.3 and its proof there exists a quasi-coherent module
(G, α) on (U,R, s, t, c) such that F is given by the rule F(T, u) = Γ(T, u∗G). In
particular x∗F|Uétale = G and it is clear that the map of the statement of the
lemma is injective. Moreover, given a map φ : G → x∗H|Uétale and given any object
y = (T, u) of [U/pR] we can consider the map

F(y) = Γ(T, u∗G) u∗
smallφ−−−−−→ Γ(T, u∗

smallx
∗H|Uétale)→ Γ(T, y∗H|Tétale) = H(y)

where the second arrow is the comparison map (9.4.1) for the sheaf H. This as-
signment is compatible with the restriction mappings of the sheaves F and G for
morphisms of [U/pR] if the cocycle condition of the lemma is satisfied. Proof omit-
ted. Hint: the restriction maps of F are made explicit in terms of (G, α) in the
proof of Proposition 14.3. □

15. Quasi-coherent sheaves on algebraic stacks

06WU Let X be an algebraic stack over S. By Algebraic Stacks, Lemma 16.2 we can find
an equivalence [U/R] → X where (U,R, s, t, c) is a smooth groupoid in algebraic
spaces. Then

QCoh(OX ) ∼= QCoh(O[U/R]) ∼= QCoh(U,R, s, t, c)

where the second equivalence is Proposition 14.3. Hence the category of quasi-
coherent sheaves on an algebraic stack is equivalent to the category of quasi-coherent
modules on a smooth groupoid in algebraic spaces. In particular, by Groupoids in
Spaces, Lemma 12.6 we see that QCoh(OX ) is abelian!

There is something slightly disconcerting about our current setup. It is that the
fully faithful embedding

QCoh(OX ) −→ Mod(OX )

is in general not exact. However, exactly the same thing happens for schemes: for
most schemes X the embedding

QCoh(OX) ∼= QCoh((Sch/X)fppf ,OX) −→ Mod((Sch/X)fppf ,OX)
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isn’t exact, see Descent, Lemma 10.2. Parenthetically, the example in the proof of
Descent, Lemma 10.2 shows that in general the strictly full embedding QCoh(OX )→
LQCoh(OX ) isn’t exact either.
We collect all the results obtained so far in a single statement.

Lemma 15.1.06WV Let X be an algebraic stack over S.
(1) If [U/R] → X is a presentation of X then there is a canonical equivalence

QCoh(OX ) ∼= QCoh(U,R, s, t, c).
(2) The category QCoh(OX ) is abelian.
(3) The inclusion functor QCoh(OX )→ Mod(OX ) is right exact but not exact

in general.
(4) The category QCoh(OX ) has colimits and they agree with colimits in the

category Mod(OX ).
(5) Given F ,G in QCoh(OX ) the tensor product F ⊗OX G in Mod(OX ) is an

object of QCoh(OX ).
(6) Given F ,G in QCoh(OX ) with F finite locally free the sheaf HomOX (F ,G)

in Mod(OX ) is an object of QCoh(OX ).
(7) Given a short exact sequence 0 → F1 → F2 → F3 → 0 in Mod(OX ) with
F1 and F3 quasi-coherent, then F2 is quasi-coherent.

Proof. Properties (4), (5), and (6) were proven in Lemma 12.5. Part (1) is Propo-
sition 14.3. Part (2) follows from part (1) and Groupoids in Spaces, Lemma 12.6
as discussed above. Right exactness of the inclusion functor in (3) follows from (4);
please compare with Homology, Lemma 7.2. For the nonexactness of the inclusion
functor in part (3) see Descent, Lemma 10.2. To see (7) observe that it suffices to
check the restriction of F2 to the big site of a scheme is quasi-coherent (Lemma
11.3), hence this follows from the corresponding part of Descent, Lemma 10.2. □

Next we construct the coherator for modules on an algebraic stack.

Proposition 15.2.0781 Let X be an algebraic stack over S.
(1) The category QCoh(OX ) is a Grothendieck abelian category. Consequently,

QCoh(OX ) has enough injectives and all limits.
(2) The inclusion functor QCoh(OX )→ Mod(OX ) has a right adjoint4

Q : Mod(OX ) −→ QCoh(OX )
such that for every quasi-coherent sheaf F the adjunction mapping Q(F)→
F is an isomorphism.

Proof. This proof is a repeat of the proof in the case of schemes, see Proper-
ties, Proposition 23.4 and the case of algebraic spaces, see Properties of Spaces,
Proposition 32.2. We advise the reader to read either of those proofs first.
Part (1) means QCoh(OX ) (a) has all colimits, (b) filtered colimits are exact, and (c)
has a generator, see Injectives, Section 10. By Lemma 15.1 colimits in QCoh(OX)
exist and agree with colimits in Mod(OX). By Modules on Sites, Lemma 14.2
filtered colimits are exact. Hence (a) and (b) hold.
Choose a presentation X = [U/R] so that (U,R, s, t, c) is a smooth groupoid in
algebraic spaces and in particular s and t are flat morphisms of algebraic spaces.

4This functor is sometimes called the coherator.

https://stacks.math.columbia.edu/tag/06WV
https://stacks.math.columbia.edu/tag/0781
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By Lemma 15.1 above we have QCoh(OX ) = QCoh(U,R, s, t, c). By Groupoids in
Spaces, Lemma 14.2 there exists a set T and a family (Ft)t∈T of quasi-coherent
sheaves on X such that every quasi-coherent sheaf on X is the directed colimit of
its subsheaves which are isomorphic to one of the Ft. Thus

⊕
t Ft is a generator of

QCoh(OX) and we conclude that (c) holds. The assertions on limits and injectives
hold in any Grothendieck abelian category, see Injectives, Theorem 11.7 and Lemma
13.2.
Proof of (2). To construct Q we use the following general procedure. Given an
object F of Mod(OX ) we consider the functor

QCoh(OX )opp −→ Sets, G 7−→ HomX (G,F)
This functor transforms colimits into limits, hence is representable, see Injectives,
Lemma 13.1. Thus there exists a quasi-coherent sheaf Q(F) and a functorial iso-
morphism HomX (G,F) = HomX (G, Q(F)) for G in QCoh(OX ). By the Yoneda
lemma (Categories, Lemma 3.5) the construction F ⇝ Q(F) is functorial in F . By
construction Q is a right adjoint to the inclusion functor. The fact that Q(F)→ F
is an isomorphism when F is quasi-coherent is a formal consequence of the fact
that the inclusion functor QCoh(OX )→ Mod(OX ) is fully faithful. □

16. Cohomology

075E Let S be a scheme and let X be a category fibred in groupoids over (Sch/S)fppf .
For any τ ∈ {Zariski, étale, smooth, syntomic, fppf} the categories Ab(Xτ ) and
Mod(Xτ ,OX ) have enough injectives, see Injectives, Theorems 7.4 and 8.4. Thus we
can use the machinery of Cohomology on Sites, Section 2 to define the cohomology
groups

Hp(Xτ ,F) = Hp
τ (X ,F) and Hp(x,F) = Hp

τ (x,F)
for any x ∈ Ob(X ) and any object F of Ab(Xτ ) or Mod(Xτ ,OX ). Moreover, if
f : X → Y is a 1-morphism of categories fibred in groupoids over (Sch/S)fppf , then
we obtain the higher direct images Rif∗F in Ab(Yτ ) or Mod(Yτ ,OY). Of course,
as explained in Cohomology on Sites, Section 3 there are also derived versions of
Hp(−) and Rif∗.

Lemma 16.1.075F Let S be a scheme. Let X be a category fibred in groupoids over
(Sch/S)fppf . Let τ ∈ {Zariski, étale, smooth, syntomic, fppf}. Let x ∈ Ob(X ) be
an object lying over the scheme U . Let F be an object of Ab(Xτ ) or Mod(Xτ ,OX ).
Then

Hp
τ (x,F) = Hp((Sch/U)τ , x−1F)

and if τ = étale, then we also have
Hp
étale(x,F) = Hp(Uétale,F|Uétale).

Proof. The first statement follows from Cohomology on Sites, Lemma 7.1 and the
equivalence of Lemma 9.4. The second statement follows from the first combined
with Étale Cohomology, Lemma 20.3. □

17. Injective sheaves

06WW The pushforward of an injective abelian sheaf or module is injective.

Lemma 17.1.06WX Let f : X → Y be a 1-morphism of categories fibred in groupoids
over (Sch/S)fppf . Let τ ∈ {Zar, étale, smooth, syntomic, fppf}.

https://stacks.math.columbia.edu/tag/075F
https://stacks.math.columbia.edu/tag/06WX
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(1) f∗I is injective in Ab(Yτ ) for I injective in Ab(Xτ ), and
(2) f∗I is injective in Mod(Yτ ,OY) for I injective in Mod(Xτ ,OX ).

Proof. This follows formally from the fact that f−1 is an exact left adjoint of f∗,
see Homology, Lemma 29.1. □

In the rest of this section we prove that pullback f−1 has a left adjoint f! on abelian
sheaves and modules. If f is representable (by schemes or by algebraic spaces), then
it will turn out that f! is exact and f−1 will preserve injectives. We first prove a
few preliminary lemmas about fibre products and equalizers in categories fibred in
groupoids and their behaviour with respect to morphisms.

Lemma 17.2.06WY Let p : X → (Sch/S)fppf be a category fibred in groupoids.
(1) The category X has fibre products.
(2) If the Isom-presheaves of X are representable by algebraic spaces, then X

has equalizers.
(3) If X is an algebraic stack (or more generally a quotient stack), then X has

equalizers.

Proof. Part (1) follows Categories, Lemma 35.15 as (Sch/S)fppf has fibre prod-
ucts.
Let a, b : x → y be morphisms of X . Set U = p(x) and V = p(y). The category
of schemes has equalizers hence we can let W → U be the equalizer of p(a) and
p(b). Denote c : z → x a morphism of X lying over W → U . The equalizer
of a and b, if it exists, is the equalizer of a ◦ c and b ◦ c. Thus we may assume
that p(a) = p(b) = f : U → V . As X is fibred in groupoids, there exists a unique
automorphism i : x→ x in the fibre category of X over U such that a◦ i = b. Again
the equalizer of a and b is the equalizer of idx and i. Recall that the IsomX (x)
is the presheaf on (Sch/U)fppf which to T/U associates the set of automorphisms
of x|T in the fibre category of X over T , see Stacks, Definition 2.2. If IsomX (x)
is representable by an algebraic space G → U , then we see that idx and i define
morphisms e, i : U → G over U . Set M = U ×e,G,i U , which by Morphisms of
Spaces, Lemma 4.7 is a scheme. Then it is clear that x|M → x is the equalizer of
the maps idx and i in X . This proves (2).
If X = [U/R] for some groupoid in algebraic spaces (U,R, s, t, c) over S, then the
hypothesis of (2) holds by Bootstrap, Lemma 11.5. If X is an algebraic stack, then
we can choose a presentation [U/R] ∼= X by Algebraic Stacks, Lemma 16.2. □

Lemma 17.3.06WZ Let f : X → Y be a 1-morphism of categories fibred in groupoids
over (Sch/S)fppf .

(1) The functor f transforms fibre products into fibre products.
(2) If f is faithful, then f transforms equalizers into equalizers.

Proof. By Categories, Lemma 35.15 we see that a fibre product in X is any com-
mutative square lying over a fibre product diagram in (Sch/S)fppf . Similarly for
Y. Hence (1) is clear.
Let x → x′ be the equalizer of two morphisms a, b : x′ → x′′ in X . We will show
that f(x) → f(x′) is the equalizer of f(a) and f(b). Let y → f(x) be a morphism
of Y equalizing f(a) and f(b). Say x, x′, x′′ lie over the schemes U,U ′, U ′′ and y
lies over V . Denote h : V → U ′ the image of y → f(x) in the category of schemes.
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The morphism y → f(x) is isomorphic to f(h∗x′)→ f(x′) by the axioms of fibred
categories. Hence, as f is faithful, we see that h∗x′ → x′ equalizes a and b. Thus
we obtain a unique morphism h∗x′ → x whose image y = f(h∗x′) → f(x) is the
desired morphism in Y. □

Lemma 17.4.06X0 Let f : X → Y, g : Z → Y be faithful 1-morphisms of categories
fibred in groupoids over (Sch/S)fppf .

(1) the functor X ×Y Z → Y is faithful, and
(2) if X ,Z have equalizers, so does X ×Y Z.

Proof. We think of objects in X ×Y Z as quadruples (U, x, z, α) where α : f(x)→
g(z) is an isomorphism over U , see Categories, Lemma 32.3. A morphism (U, x, z, α)→
(U ′, x′, z′, α′) is a pair of morphisms a : x → x′ and b : z → z′ compatible with α
and α′. Thus it is clear that if f and g are faithful, so is the functor X ×Y Z → Y.
Now, suppose that (a, b), (a′, b′) : (U, x, z, α) → (U ′, x′, z′, α′) are two morphisms
of the 2-fibre product. Then consider the equalizer x′′ → x of a and a′ and the
equalizer z′′ → z of b and b′. Since f commutes with equalizers (by Lemma 17.3)
we see that f(x′′)→ f(x) is the equalizer of f(a) and f(a′). Similarly, g(z′′)→ g(z)
is the equalizer of g(b) and g(b′). Picture

f(x′′) //

α′′

��

f(x)

α

��

f(a) //
f(a′)

// f(x′)

α′

��
g(z′′) // g(z)

g(b) //
g(b′)

// g(z′)

It is clear that the dotted arrow exists and is an isomorphism. However, it is not
a priori the case that the image of α′′ in the category of schemes is the identity
of its source. On the other hand, the existence of α′′ means that we can assume
that x′′ and z′′ are defined over the same scheme and that the morphisms x′′ → x
and z′′ → z have the same image in the category of schemes. Redoing the diagram
above we see that the dotted arrow now does project to an identity morphism and
we win. Some details omitted. □

As we are working with big sites we have the following somewhat counter intuitive
result (which also holds for morphisms of big sites of schemes). Warning: This
result isn’t true if we drop the hypothesis that f is faithful.

Lemma 17.5.06X1 Let f : X → Y be a 1-morphism of categories fibred in groupoids
over (Sch/S)fppf . Let τ ∈ {Zar, étale, smooth, syntomic, fppf}. The functor
f−1 : Ab(Yτ ) → Ab(Xτ ) has a left adjoint f! : Ab(Xτ ) → Ab(Yτ ). If f is faith-
ful and X has equalizers, then

(1) f! is exact, and
(2) f−1I is injective in Ab(Xτ ) for I injective in Ab(Yτ ).

Proof. By Stacks, Lemma 10.3 the functor f is continuous and cocontinuous.
Hence by Modules on Sites, Lemma 16.2 the functor f−1 : Ab(Yτ ) → Ab(Xτ )
has a left adjoint f! : Ab(Xτ ) → Ab(Yτ ). To see (1) we apply Modules on Sites,
Lemma 16.3 and to see that the hypotheses of that lemma are satisfied use Lem-
mas 17.2 and 17.3 above. Part (2) follows from this formally, see Homology, Lemma
29.1. □
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Lemma 17.6.06X2 Let f : X → Y be a 1-morphism of categories fibred in groupoids
over (Sch/S)fppf . Let τ ∈ {Zar, étale, smooth, syntomic, fppf}. The functor f∗ :
Mod(Yτ ,OY)→ Mod(Xτ ,OX ) has a left adjoint f! : Mod(Xτ ,OX )→ Mod(Yτ ,OY)
which agrees with the functor f! of Lemma 17.5 on underlying abelian sheaves. If
f is faithful and X has equalizers, then

(1) f! is exact, and
(2) f−1I is injective in Mod(Xτ ,OX ) for I injective in Mod(Yτ ,OX ).

Proof. Recall that f is a continuous and cocontinuous functor of sites and that
f−1OY = OX . Hence Modules on Sites, Lemma 41.1 implies f∗ has a left adjoint
fMod

! . Let x be an object of X lying over the scheme U . Then f induces an
equivalence of ringed sites

X/x −→ Y/f(x)
as both sides are equivalent to (Sch/U)τ , see Lemma 9.4. Modules on Sites, Remark
41.2 shows that f! agrees with the functor on abelian sheaves.

Assume now that X has equalizers and that f is faithful. Lemma 17.5 tells us that
f! is exact. Finally, Homology, Lemma 29.1 implies the statement on pullbacks of
injective modules. □

18. The Čech complex

06X3 To compute the cohomology of a sheaf on an algebraic stack we compare it to the
cohomology of the sheaf restricted to coverings of the given algebraic stack.

Throughout this section the situation will be as follows. We are given a 1-morphism
of categories fibred in groupoids

(18.0.1)06X4

U
f

//

q %%

X

pyy
(Sch/S)fppf

We are going to think about U as a “covering” of X . Hence we want to consider
the simplicial object

U ×X U ×X U
////// U ×X U //// U

in the category of categories fibred in groupoids over (Sch/S)fppf . However, since
this is a (2, 1)-category and not a category, we should say explicitly what we mean.
Namely, we let Un be the category with objects (u0, . . . , un, x, α0, . . . , αn) where
αi : f(ui) → x is an isomorphism in X . We denote fn : Un → X the 1-morphism
which assigns to (u0, . . . , un, x, α0, . . . , αn) the object x. Note that U0 = U and
f0 = f . Given a map φ : [m] → [n] we consider the 1-morphism Uφ : Un −→ Un
given by

(u0, . . . , un, x, α0, . . . , αn) 7−→ (uφ(0), . . . , uφ(m), x, αφ(0), . . . , αφ(m))

on objects. All of these 1-morphisms compose correctly on the nose (no 2-morphisms
required) and all of these 1-morphisms are 1-morphisms over X . We denote U• this
simplicial object. If F is a presheaf of sets on X , then we obtain a cosimplicial set

Γ(U0, f
−1
0 F) // // Γ(U1, f

−1
1 F) // //// Γ(U2, f

−1
2 F)

https://stacks.math.columbia.edu/tag/06X2
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Here the arrows are the pullback maps along the given morphisms of the simplicial
object. If F is a presheaf of abelian groups, this is a cosimplicial abelian group.

Let U → X be as above and let F be an abelian presheaf on X . The Čech complex
associated to the situation is denoted Č•(U → X ,F). It is the cochain complex
associated to the cosimplicial abelian group above, see Simplicial, Section 25. It
has terms

Čn(U → X ,F) = Γ(Un, f−1
n F).

The boundary maps are the maps

dn =
∑n+1

i=0
(−1)iδn+1

i : Γ(Un, f−1
n F) −→ Γ(Un+1, f

−1
n+1F)

where δn+1
i corresponds to the map [n] → [n + 1] omitting the index i. Note that

the map Γ(X ,F) → Γ(U0, f
−1
0 F0) is in the kernel of the differential d0. Hence we

define the extended Čech complex to be the complex

. . .→ 0→ Γ(X ,F)→ Γ(U0, f
−1
0 F0)→ Γ(U1, f

−1
1 F1)→ . . .

with Γ(X ,F) placed in degree −1. The extended Čech complex is acyclic if and
only if the canonical map

Γ(X ,F)[0] −→ Č•(U → X ,F)

is a quasi-isomorphism of complexes.

Lemma 18.1.06X5 Generalities on Čech complexes.
(1) If

V
g

��

h
// U

f

��
Y e // X

is 2-commutative diagram of categories fibred in groupoids over (Sch/S)fppf ,
then there is a morphism of Čech complexes

Č•(U → X ,F) −→ Č•(V → Y, e−1F)

(2) if h and e are equivalences, then the map of (1) is an isomorphism,
(3) if f, f ′ : U → X are 2-isomorphic, then the associated Čech complexes are

isomorphic.

Proof. In the situation of (1) let t : f ◦ h → e ◦ g be a 2-morphism. The map on
complexes is given in degree n by pullback along the 1-morphisms Vn → Un given
by the rule

(v0, . . . , vn, y, β0, . . . , βn) 7−→ (h(v0), . . . , h(vn), e(y), e(β0) ◦ tv0 , . . . , e(βn) ◦ tvn).

For (2), note that pullback on global sections is an isomorphism for any presheaf
of sets when the pullback is along an equivalence of categories. Part (3) follows on
combining (1) and (2). □

Lemma 18.2.06X6 If there exists a 1-morphism s : X → U such that f ◦ s is 2-
isomorphic to idX then the extended Čech complex is homotopic to zero.

https://stacks.math.columbia.edu/tag/06X5
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Proof. Set U ′ = U ×X X equal to the fibre product as described in Categories,
Lemma 32.3. Set f ′ : U ′ → X equal to the second projection. Then U → U ′,
u 7→ (u, f(x), 1) is an equivalence over X , hence we may replace (U , f) by (U ′, f ′)
by Lemma 18.1. The advantage of this is that now f ′ has a section s′ such that
f ′ ◦ s′ = idX on the nose. Namely, if t : s ◦ f → idX is a 2-isomorphism then we
can set s′(x) = (s(x), x, tx). Thus we may assume that f ◦ s = idX .

In the case that f ◦ s = idX the result follows from general principles. We give
the homotopy explicitly. Namely, for n ≥ 0 define sn : Un → Un+1 to be the
1-morphism defined by the rule on objects

(u0, . . . , un, x, α0, . . . , αn) 7−→ (u0, . . . , un, s(x), x, α0, . . . , αn, idx).

Define
hn+1 : Γ(Un+1, f

−1
n+1F) −→ Γ(Un, f−1

n F)
as pullback along sn. We also set s−1 = s and h0 : Γ(U0, f

−1
0 F) → Γ(X ,F) equal

to pullback along s−1. Then the family of maps {hn}n≥0 is a homotopy between 1
and 0 on the extended Čech complex. □

19. The relative Čech complex

06X7 Let f : U → X be a 1-morphism of categories fibred in groupoids over (Sch/S)fppf
as in (18.0.1). Consider the associated simplicial object U• and the maps fn : Un →
X . Let τ ∈ {Zar, étale, smooth, syntomic, fppf}. Finally, suppose that F is a
sheaf (of sets) on Xτ . Then

f0,∗f
−1
0 F

// // f1,∗f
−1
1 F

////// f2,∗f
−1
2 F

is a cosimplicial sheaf on Xτ where we use the pullback maps introduced in Sites,
Section 45. If F is an abelian sheaf, then fn,∗f

−1
n F form a cosimplicial abelian

sheaf on Xτ . The associated complex (see Simplicial, Section 25)

. . .→ 0→ f0,∗f
−1
0 F → f1,∗f

−1
1 F → f2,∗f

−1
2 F → . . .

is called the relative Čech complex associated to the situation. We will denote this
complex K•(f,F). The extended relative Čech complex is the complex

. . .→ 0→ F → f0,∗f
−1
0 F → f1,∗f

−1
1 F → f2,∗f

−1
2 F → . . .

with F in degree −1. The extended relative Čech complex is acyclic if and only if
the map F [0]→ K•(f,F) is a quasi-isomorphism of complexes of sheaves.

Remark 19.1.06X8 We can define the complex K•(f,F) also if F is a presheaf, only
we cannot use the reference to Sites, Section 45 to define the pullback maps. To
explain the pullback maps, suppose given a commutative diagram

V

g ��

h
// U

f��
X

of categories fibred in groupoids over (Sch/S)fppf and a presheaf G on U we can
define the pullback map f∗G → g∗h

−1G as the composition

f∗G −→ f∗h∗h
−1G = g∗h

−1G

https://stacks.math.columbia.edu/tag/06X8
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where the map comes from the adjunction map G → h∗h
−1G. This works because

in our situation the functors h∗ and h−1 are adjoint in presheaves (and agree with
their counter parts on sheaves). See Sections 3 and 4.

Lemma 19.2.06X9 Generalities on relative Čech complexes.
(1) If

V
g

��

h
// U

f

��
Y e // X

is 2-commutative diagram of categories fibred in groupoids over (Sch/S)fppf ,
then there is a morphism e−1K•(f,F)→ K•(g, e−1F).

(2) if h and e are equivalences, then the map of (1) is an isomorphism,
(3) if f, f ′ : U → X are 2-isomorphic, then the associated relative Čech com-

plexes are isomorphic,

Proof. Literally the same as the proof of Lemma 18.1 using the pullback maps of
Remark 19.1. □

Lemma 19.3.06XA If there exists a 1-morphism s : X → U such that f ◦ s is 2-
isomorphic to idX then the extended relative Čech complex is homotopic to zero.

Proof. Literally the same as the proof of Lemma 18.2. □

Remark 19.4.06XB Let us “compute” the value of the relative Čech complex on an
object x of X . Say p(x) = U . Consider the 2-fibre product diagram (which serves
to introduce the notation g : V → Y)

V

g

��

(Sch/U)fppf ×x,X U //

��

U

f

��
Y (Sch/U)fppf

x // X

Note that the morphism Vn → Un of the proof of Lemma 18.1 induces an equivalence
Vn = (Sch/U)fppf ×x,X Un. Hence we see from (5.0.1) that

Γ(x,K•(f,F)) = Č•(V → Y, x−1F)

In words: The value of the relative Čech complex on an object x of X is the Čech
complex of the base change of f to X/x ∼= (Sch/U)fppf . This implies for example
that Lemma 18.2 implies Lemma 19.3 and more generally that results on the (usual)
Čech complex imply results for the relative Čech complex.

Lemma 19.5.06XC Let
V
g

��

h
// U

f

��
Y e // X

be a 2-fibre product of categories fibred in groupoids over (Sch/S)fppf and let F be
an abelian presheaf on X . Then the map e−1K•(f,F) → K•(g, e−1F) of Lemma
19.2 is an isomorphism of complexes of abelian presheaves.

https://stacks.math.columbia.edu/tag/06X9
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Proof. Let y be an object of Y lying over the scheme T . Set x = e(y). We are
going to show that the map induces an isomorphism on sections over y. Note that

Γ(y, e−1K•(f,F)) = Γ(x,K•(f,F)) = Č•((Sch/T )fppf×x,XU → (Sch/T )fppf , x−1F)

by Remark 19.4. On the other hand,

Γ(y,K•(g, e−1F)) = Č•((Sch/T )fppf ×y,Y V → (Sch/T )fppf , y−1e−1F)

also by Remark 19.4. Note that y−1e−1F = x−1F and since the diagram is 2-
cartesian the 1-morphism

(Sch/T )fppf ×y,Y V → (Sch/T )fppf ×x,X U

is an equivalence. Hence the map on sections over y is an isomorphism by Lemma
18.1. □

Exactness can be checked on a “covering”.

Lemma 19.6.06XD Let f : U → X be a 1-morphism of categories fibred in groupoids
over (Sch/S)fppf . Let τ ∈ {Zar, étale, smooth, syntomic, fppf}. Let

F → G → H

be a complex in Ab(Xτ ). Assume that
(1) for every object x of X there exists a covering {xi → x} in Xτ such that

each xi is isomorphic to f(ui) for some object ui of U , and
(2) f−1F → f−1G → f−1H is exact.

Then the sequence F → G → H is exact.

Proof. Let x be an object of X lying over the scheme T . Consider the sequence
x−1F → x−1G → x−1H of abelian sheaves on (Sch/T )τ . It suffices to show this
sequence is exact. By assumption there exists a τ -covering {Ti → T} such that x|Ti
is isomorphic to f(ui) for some object ui of U over Ti and moreover the sequence
u−1
i f−1F → u−1

i f−1G → u−1
i f−1H of abelian sheaves on (Sch/Ti)τ is exact. Since

u−1
i f−1F = x−1F|(Sch/Ti)τ we conclude that the sequence x−1F → x−1G → x−1H

become exact after localizing at each of the members of a covering, hence the
sequence is exact. □

Proposition 19.7.06XE Let f : U → X be a 1-morphism of categories fibred in
groupoids over (Sch/S)fppf . Let τ ∈ {Zar, étale, smooth, syntomic, fppf}. If

(1) F is an abelian sheaf on Xτ , and
(2) for every object x of X there exists a covering {xi → x} in Xτ such that

each xi is isomorphic to f(ui) for some object ui of U ,
then the extended relative Čech complex

. . .→ 0→ F → f0,∗f
−1
0 F → f1,∗f

−1
1 F → f2,∗f

−1
2 F → . . .

is exact in Ab(Xτ ).

Proof. By Lemma 19.6 it suffices to check exactness after pulling back to U . By
Lemma 19.5 the pullback of the extended relative Čech complex is isomorphic to
the extend relative Čech complex for the morphism U ×X U → U and an abelian
sheaf on Uτ . Since there is a section ∆U/X : U → U ×X U exactness follows from
Lemma 19.3. □
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Using this we can construct the Čech-to-cohomology spectral sequence as follows.
We first give a technical, precise version. In the next section we give a version that
applies only to algebraic stacks.

Lemma 19.8.06XF Let f : U → X be a 1-morphism of categories fibred in groupoids
over (Sch/S)fppf . Let τ ∈ {Zar, étale, smooth, syntomic, fppf}. Assume

(1) F is an abelian sheaf on Xτ ,
(2) for every object x of X there exists a covering {xi → x} in Xτ such that

each xi is isomorphic to f(ui) for some object ui of U ,
(3) the category U has equalizers, and
(4) the functor f is faithful.

Then there is a first quadrant spectral sequence of abelian groups
Ep,q1 = Hq((Up)τ , f−1

p F)⇒ Hp+q(Xτ ,F)
converging to the cohomology of F in the τ -topology.

Proof. Before we start the proof we make some remarks. By Lemma 17.4 (and
induction) all of the categories fibred in groupoids Up have equalizers and all of the
morphisms fp : Up → X are faithful. Let I be an injective object of Ab(Xτ ). By
Lemma 17.5 we see f−1

p I is an injective object of Ab((Up)τ ). Hence fp,∗f−1
p I is an

injective object of Ab(Xτ ) by Lemma 17.1. Hence Proposition 19.7 shows that the
extended relative Čech complex

. . .→ 0→ I → f0,∗f
−1
0 I → f1,∗f

−1
1 I → f2,∗f

−1
2 I → . . .

is an exact complex in Ab(Xτ ) all of whose terms are injective. Taking global
sections of this complex is exact and we see that the Čech complex Č•(U → X , I)
is quasi-isomorphic to Γ(Xτ , I)[0].
With these preliminaries out of the way consider the two spectral sequences asso-
ciated to the double complex (see Homology, Section 25)

Č•(U → X , I•)
where F → I• is an injective resolution in Ab(Xτ ). The discussion above shows
that Homology, Lemma 25.4 applies which shows that Γ(Xτ , I•) is quasi-isomorphic
to the total complex associated to the double complex. By our remarks above the
complex f−1

p I• is an injective resolution of f−1
p F . Hence the other spectral sequence

is as indicated in the lemma. □

To be sure there is a version for modules as well.

Lemma 19.9.06XG Let f : U → X be a 1-morphism of categories fibred in groupoids
over (Sch/S)fppf . Let τ ∈ {Zar, étale, smooth, syntomic, fppf}. Assume

(1) F is an object of Mod(Xτ ,OX ),
(2) for every object x of X there exists a covering {xi → x} in Xτ such that

each xi is isomorphic to f(ui) for some object ui of U ,
(3) the category U has equalizers, and
(4) the functor f is faithful.

Then there is a first quadrant spectral sequence of Γ(OX )-modules
Ep,q1 = Hq((Up)τ , f∗

pF)⇒ Hp+q(Xτ ,F)
converging to the cohomology of F in the τ -topology.
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Proof. The proof of this lemma is identical to the proof of Lemma 19.8 except
that it uses an injective resolution in Mod(Xτ ,OX ) and it uses Lemma 17.6 instead
of Lemma 17.5. □

Here is a lemma that translates a more usual kind of covering in the kinds of
coverings we have encountered above.

Lemma 19.10.06XH Let f : X → Y be a 1-morphism of categories fibred in groupoids
over (Sch/S)fppf .

(1) Assume that f is representable by algebraic spaces, surjective, flat, and
locally of finite presentation. Then for any object y of Y there exists an
fppf covering {yi → y} and objects xi of X such that f(xi) ∼= yi in Y.

(2) Assume that f is representable by algebraic spaces, surjective, and smooth.
Then for any object y of Y there exists an étale covering {yi → y} and
objects xi of X such that f(xi) ∼= yi in Y.

Proof. Proof of (1). Suppose that y lies over the scheme V . We may think of y as
a morphism (Sch/V )fppf → Y. By definition the 2-fibre product X×Y (Sch/V )fppf
is representable by an algebraic space W and the morphism W → V is surjective,
flat, and locally of finite presentation. Choose a scheme U and a surjective étale
morphism U → W . Then U → V is also surjective, flat, and locally of finite
presentation (see Morphisms of Spaces, Lemmas 39.7, 39.8, 5.4, 28.2, and 30.3).
Hence {U → V } is an fppf covering. Denote x the object of X over U corresponding
to the 1-morphism (Sch/U)fppf → X . Then {f(x)→ y} is the desired fppf covering
of Y.

Proof of (2). Suppose that y lies over the scheme V . We may think of y as a
morphism (Sch/V )fppf → Y. By definition the 2-fibre product X ×Y (Sch/V )fppf
is representable by an algebraic space W and the morphism W → V is surjective
and smooth. Choose a scheme U and a surjective étale morphism U → W . Then
U → V is also surjective and smooth (see Morphisms of Spaces, Lemmas 39.6, 5.4,
and 37.2). Hence {U → V } is a smooth covering. By More on Morphisms, Lemma
38.7 there exists an étale covering {Vi → V } such that each Vi → V factors through
U . Denote xi the object of X over Vi corresponding to the 1-morphism

(Sch/Vi)fppf → (Sch/U)fppf → X .

Then {f(xi)→ y} is the desired étale covering of Y. □

Lemma 19.11.072D Let f : U → X and g : X → Y be composable 1-morphisms of cate-
gories fibred in groupoids over (Sch/S)fppf . Let τ ∈ {Zar, étale, smooth, syntomic,
fppf}. Assume

(1) F is an abelian sheaf on Xτ ,
(2) for every object x of X there exists a covering {xi → x} in Xτ such that

each xi is isomorphic to f(ui) for some object ui of U ,
(3) the category U has equalizers, and
(4) the functor f is faithful.

Then there is a first quadrant spectral sequence of abelian sheaves on Yτ
Ep,q1 = Rq(g ◦ fp)∗f

−1
p F ⇒ Rp+qg∗F

where all higher direct images are computed in the τ -topology.
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Proof. Note that the assumptions on f : U → X and F are identical to those in
Lemma 19.8. Hence the preliminary remarks made in the proof of that lemma hold
here also. These remarks imply in particular that

0→ g∗I → (g ◦ f0)∗f
−1
0 I → (g ◦ f1)∗f

−1
1 I → . . .

is exact if I is an injective object of Ab(Xτ ). Having said this, consider the two
spectral sequences of Homology, Section 25 associated to the double complex C•,•

with terms
Cp,q = (g ◦ fp)∗Iq

where F → I• is an injective resolution in Ab(Xτ ). The first spectral sequence
implies, via Homology, Lemma 25.4, that g∗I• is quasi-isomorphic to the total
complex associated to C•,•. Since f−1

p I• is an injective resolution of f−1
p F (see

Lemma 17.5) the second spectral sequence has terms Ep,q1 = Rq(g ◦ fp)∗f
−1
p F as in

the statement of the lemma. □

Lemma 19.12.072E Let f : U → X and g : X → Y be composable 1-morphisms of cate-
gories fibred in groupoids over (Sch/S)fppf . Let τ ∈ {Zar, étale, smooth, syntomic,
fppf}. Assume

(1) F is an object of Mod(Xτ ,OX ),
(2) for every object x of X there exists a covering {xi → x} in Xτ such that

each xi is isomorphic to f(ui) for some object ui of U ,
(3) the category U has equalizers, and
(4) the functor f is faithful.

Then there is a first quadrant spectral sequence in Mod(Yτ ,OY)

Ep,q1 = Rq(g ◦ fp)∗f
−1
p F ⇒ Rp+qg∗F

where all higher direct images are computed in the τ -topology.

Proof. The proof is identical to the proof of Lemma 19.11 except that it uses
an injective resolution in Mod(Xτ ,OX ) and it uses Lemma 17.6 instead of Lemma
17.5. □

20. Cohomology on algebraic stacks

06XI Let X be an algebraic stack over S. In the sections above we have seen how to
define sheaves for the étale, ..., fppf topologies on X . In fact, we have constructed
a site Xτ for each τ ∈ {Zar, étale, smooth, syntomic, fppf}. There is a notion of
an abelian sheaf F on these sites. In the chapter on cohomology of sites we have
explained how to define cohomology. Putting all of this together, let’s define the
derived global sections or total cohomology

RΓZar(X ,F), RΓétale(X ,F), . . . , RΓfppf (X ,F)

as Γ(Xτ , I•) where F → I• is an injective resolution in Ab(Xτ ). The ith cohomology
group of F is the ith cohomology of the total cohomology. We will denote this

Hi
Zar(X ,F), Hi

étale(X ,F), . . . ,Hi
fppf (X ,F).

It will turn out that Hi
étale = Hi

smooth because of More on Morphisms, Lemma 38.7.

If F is a presheaf of OX -modules which is a sheaf in the τ -topology, then we
use injective resolutions in Mod(Xτ ,OX ) to compute its total cohomology, resp.

https://stacks.math.columbia.edu/tag/072E
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cohomology groups; the end result is quasi-isomorphic, resp. isomorphic to the co-
homology of F viewed as a sheaf of abelian groups by the very general Cohomology
on Sites, Lemma 12.4.
So far our only tool to compute cohomology groups is the result on Čech complexes
proved above. We rephrase it here in the language of algebraic stacks for the étale
and the fppf topology. Let f : U → X be a 1-morphism of algebraic stacks. Recall
that

fp : Up = U ×X . . .×X U −→ X
is the structure morphism where there are (p+ 1)-factors. Also, recall that a sheaf
on X is a sheaf for the fppf topology. Note that if U is an algebraic space, then
f : U → X is representable by algebraic spaces, see Algebraic Stacks, Lemma 10.11.
Thus the proposition applies in particular to a smooth cover of the algebraic stack
X by a scheme.

Proposition 20.1.06XJ Let f : U → X be a 1-morphism of algebraic stacks.
(1) Let F be an abelian étale sheaf on X . Assume that f is representable by

algebraic spaces, surjective, and smooth. Then there is a spectral sequence
Ep,q1 = Hq

étale(Up, f
−1
p F)⇒ Hp+q

étale(X ,F)
(2) Let F be an abelian sheaf on X . Assume that f is representable by algebraic

spaces, surjective, flat, and locally of finite presentation. Then there is a
spectral sequence

Ep,q1 = Hq
fppf (Up, f−1

p F)⇒ Hp+q
fppf (X ,F)

Proof. To see this we will check the hypotheses (1) – (4) of Lemma 19.8. The
1-morphism f is faithful by Algebraic Stacks, Lemma 15.2. This proves (4). Hy-
pothesis (3) follows from the fact that U is an algebraic stack, see Lemma 17.2. To
see (2) apply Lemma 19.10. Condition (1) is satisfied by fiat. □

21. Higher direct images and algebraic stacks

072F Let g : X → Y be a 1-morphism of algebraic stacks over S. In the sections above
we have constructed a morphism of ringed topoi g : Sh(Xτ ) → Sh(Yτ ) for each
τ ∈ {Zar, étale, smooth, syntomic, fppf}. In the chapter on cohomology of sites
we have explained how to define higher direct images. Hence the total direct image
Rg∗F is defined as g∗I• where F → I• is an injective resolution in Ab(Xτ ). The
ith higher direct image Rig∗F is the ith cohomology of the total direct image.
Important: it matters which topology τ is used here!
If F is a presheaf of OX -modules which is a sheaf in the τ -topology, then we
use injective resolutions in Mod(Xτ ,OX ) to compute total direct image and higher
direct images.
So far our only tool to compute the higher direct images of g∗ is the result on Čech
complexes proved above. This requires the choice of a “covering” f : U → X . If
U is an algebraic space, then f : U → X is representable by algebraic spaces, see
Algebraic Stacks, Lemma 10.11. Thus the proposition applies in particular to a
smooth cover of the algebraic stack X by a scheme.

Proposition 21.1.072G Let f : U → X and g : X → Y be composable 1-morphisms of
algebraic stacks.
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(1) Assume that f is representable by algebraic spaces, surjective and smooth.
(a) If F is in Ab(Xétale) then there is a spectral sequence

Ep,q1 = Rq(g ◦ fp)∗f
−1
p F ⇒ Rp+qg∗F

in Ab(Yétale) with higher direct images computed in the étale topology.
(b) If F is in Mod(Xétale,OX ) then there is a spectral sequence

Ep,q1 = Rq(g ◦ fp)∗f
−1
p F ⇒ Rp+qg∗F

in Mod(Yétale,OY).
(2) Assume that f is representable by algebraic spaces, surjective, flat, and

locally of finite presentation.
(a) If F is in Ab(X ) then there is a spectral sequence

Ep,q1 = Rq(g ◦ fp)∗f
−1
p F ⇒ Rp+qg∗F

in Ab(Y) with higher direct images computed in the fppf topology.
(b) If F is in Mod(OX ) then there is a spectral sequence

Ep,q1 = Rq(g ◦ fp)∗f
−1
p F ⇒ Rp+qg∗F

in Mod(OY).

Proof. To see this we will check the hypotheses (1) – (4) of Lemma 19.11 and
Lemma 19.12. The 1-morphism f is faithful by Algebraic Stacks, Lemma 15.2.
This proves (4). Hypothesis (3) follows from the fact that U is an algebraic stack,
see Lemma 17.2. To see (2) apply Lemma 19.10. Condition (1) is satisfied by fiat
in all four cases. □

Here is a description of higher direct images for a morphism of algebraic stacks.

Lemma 21.2.075G Let S be a scheme. Let f : X → Y be a 1-morphism of algebraic
stacks5 over S. Let τ ∈ {Zariski, étale, smooth, syntomic, fppf}. Let F be an
object of Ab(Xτ ) or Mod(Xτ ,OX ). Then the sheaf Rif∗F is the sheaf associated to
the presheaf

y 7−→ Hi
τ

(
(Sch/V )fppf ×y,Y X , pr−1F

)
Here y is an object of Y lying over the scheme V .

Proof. Choose an injective resolution F [0]→ I•. By the formula for pushforward
(5.0.1) we see that Rif∗F is the sheaf associated to the presheaf which associates
to y the cohomology of the complex

Γ
(

(Sch/V )fppf ×y,Y X , pr−1Ii−1
)

↓
Γ

(
(Sch/V )fppf ×y,Y X , pr−1Ii

)
↓

Γ
(

(Sch/V )fppf ×y,Y X , pr−1Ii+1
)

Since pr−1 is exact, it suffices to show that pr−1 preserves injectives. This follows
from Lemmas 17.5 and 17.6 as well as the fact that pr is a representable morphism
of algebraic stacks (so that pr is faithful by Algebraic Stacks, Lemma 15.2 and that
(Sch/V )fppf ×y,Y X has equalizers by Lemma 17.2). □

5This result should hold for any 1-morphism of categories fibred in groupoids over (Sch/S)fppf .

https://stacks.math.columbia.edu/tag/075G
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Here is a trivial base change result.

Lemma 21.3.075H Let S be a scheme. Let τ ∈ {Zariski, étale, smooth, syntomic,
fppf}. Let

Y ′ ×Y X
g′

//

f ′

��

X

f

��
Y ′ g // Y

be a 2-cartesian diagram of algebraic stacks over S. Then the base change map is
an isomorphism

g−1Rf∗F −→ Rf ′
∗(g′)−1F

functorial for F in Ab(Xτ ) or F in Mod(Xτ ,OX ).

Proof. The isomorphism g−1f∗F = f ′
∗(g′)−1F is Lemma 5.1 (and it holds for

arbitrary presheaves). For the total direct images, there is a base change map
because the morphisms g and g′ are flat, see Cohomology on Sites, Section 15. To
see that this map is a quasi-isomorphism we can use that for an object y′ of Y ′ over
a scheme V there is an equivalence

(Sch/V )fppf ×g(y′),Y X = (Sch/V )fppf ×y′,Y′ (Y ′ ×Y X )

We conclude that the induced map g−1Rif∗F → Rif ′
∗(g′)−1F is an isomorphism

by Lemma 21.2. □

22. Comparison

073L In this section we collect some results on comparing cohomology defined using stacks
and using algebraic spaces.

Lemma 22.1.075L Let S be a scheme. Let X be an algebraic stack over S representable
by the algebraic space F .

(1) If I injective in Ab(Xétale), then I|Fétale is injective in Ab(Fétale),
(2) If I• is a K-injective complex in Ab(Xétale), then I•|Fétale is a K-injective

complex in Ab(Fétale).
The same does not hold for modules.

Proof. This follows formally from the fact that the restriction functor πF,∗ = i−1
F

(see Lemma 10.1) is right adjoint to the exact functor π−1
F , see Homology, Lemma

29.1 and Derived Categories, Lemma 31.9. To see that the lemma does not hold
for modules, we refer the reader to Étale Cohomology, Lemma 99.1. □

Lemma 22.2.075N Let S be a scheme. Let f : X → Y be a morphism of algebraic
stacks over S. Assume X , Y are representable by algebraic spaces F , G. Denote
f : F → G the induced morphism of algebraic spaces.

(1) For any F ∈ Ab(Xétale) we have
(Rf∗F)|Gétale = Rfsmall,∗(F|Fétale)

in D(Gétale).
(2) For any object F of Mod(Xétale,OX ) we have

(Rf∗F)|Gétale = Rfsmall,∗(F|Fétale)
in D(OG).
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Proof. Part (1) follows immediately from Lemma 22.1 and (10.3.1) on choosing
an injective resolution of F .
Part (2) can be proved as follows. In Lemma 10.3 we have seen that πG◦f = fsmall◦
πF as morphisms of ringed sites. Hence we obtain RπG,∗ ◦Rf∗ = Rfsmall,∗ ◦RπF,∗
by Cohomology on Sites, Lemma 19.2. Since the restriction functors πF,∗ and πG,∗
are exact, we conclude. □

Lemma 22.3.075P Let S be a scheme. Consider a 2-fibre product square

X ′
g′
//

f ′

��

X

f

��
Y ′ g // Y

of algebraic stacks over S. Assume that f is representable by algebraic spaces and
that Y ′ is representable by an algebraic space G′. Then X ′ is representable by an
algebraic space F ′ and denoting f ′ : F ′ → G′ the induced morphism of algebraic
spaces we have

g−1(Rf∗F)|G′
étale

= Rf ′
small,∗((g′)−1F|F ′

étale
)

for any F in Ab(Xétale) or in Mod(Xétale,OX )

Proof. Follows formally on combining Lemmas 21.3 and 22.2. □

23. Change of topology

075Q Here is a technical lemma which tells us that the fppf cohomology of a locally quasi-
coherent sheaf is equal to its étale cohomology provided the comparison maps are
isomorphisms for morphisms of X lying over flat morphisms.

Lemma 23.1.076T Let S be a scheme. Let X be an algebraic stack over S. Let F be
a presheaf of OX -modules. Assume

(a) F is locally quasi-coherent, and
(b) for any morphism φ : x → y of X which lies over a morphism of schemes

f : U → V which is flat and locally of finite presentation the comparison
map cφ : f∗

smallF|Vétale → F|Uétale of (9.4.1) is an isomorphism.
Then F is a sheaf for the fppf topology.

Proof. Let {xi → x} be an fppf covering of X lying over the fppf covering
{fi : Ui → U} of schemes over S. By assumption the restriction G = F|Uétale is
quasi-coherent and the comparison maps f∗

i,smallG → F|Ui,étale are isomorphisms.
Hence the sheaf condition for F and the covering {xi → x} is equivalent to the
sheaf condition for Ga on (Sch/U)fppf and the covering {Ui → U} which holds by
Descent, Lemma 8.1. □

Lemma 23.2.075R Let S be a scheme. Let X be an algebraic stack over S. Let F be
a presheaf OX -module such that

(a) F is locally quasi-coherent, and
(b) for any morphism φ : x → y of X which lies over a morphism of schemes

f : U → V which is flat and locally of finite presentation, the comparison
map cφ : f∗

smallF|Vétale → F|Uétale of (9.4.1) is an isomorphism.
Then F is an OX -module and we have the following
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(1) If ϵ : Xfppf → Xétale is the comparison morphism, then Rϵ∗F = ϵ∗F .
(2) The cohomology groups Hp

fppf (X ,F) are equal to the cohomology groups
computed in the étale topology on X . Similarly for the cohomology groups
Hp
fppf (x,F) and the derived versions RΓ(X ,F) and RΓ(x,F).

(3) If f : X → Y is a 1-morphism of categories fibred in groupoids over
(Sch/S)fppf then Rif∗F is equal to the fppf-sheafification of the higher
direct image computed in the étale cohomology. Similarly for derived pull-
back.

Proof. The assertion that F is an OX -module follows from Lemma 23.1. Note
that ϵ is a morphism of sites given by the identity functor on X . The sheaf Rpϵ∗F
is therefore the sheaf associated to the presheaf x 7→ Hp

fppf (x,F), see Cohomology
on Sites, Lemma 7.4. To prove (1) it suffices to show that Hp

fppf (x,F) = 0 for p > 0
whenever x lies over an affine scheme U . By Lemma 16.1 we have Hp

fppf (x,F) =
Hp((Sch/U)fppf , x−1F). Combining Descent, Lemma 12.4 with Cohomology of
Schemes, Lemma 2.2 we see that these cohomology groups are zero.

We have seen above that ϵ∗F and F are the sheaves on Xétale and Xfppf corre-
sponding to the same presheaf on X (and this is true more generally for any sheaf
in the fppf topology on X ). We often abusively identify F and ϵ∗F and this is the
sense in which parts (2) and (3) of the lemma should be understood. Thus part
(2) follows formally from (1) and the Leray spectral sequence, see Cohomology on
Sites, Lemma 14.6.

Finally we prove (3). The sheaf Rif∗F (resp. Rfétale,∗F) is the sheaf associated to
the presheaf

y 7−→ Hi
τ

(
(Sch/V )fppf ×y,Y X , pr−1F

)
where τ is fppf (resp. étale), see Lemma 21.2. Note that pr−1F satisfies properties
(a) and (b) also (by Lemmas 12.3 and 9.3), hence these two presheaves are equal
by (2). This immediately implies (3). □

We will use the following lemma to compare étale cohomology of sheaves on alge-
braic stacks with cohomology on the lisse-étale topos.

Lemma 23.3.07AK Let S be a scheme. Let X be an algebraic stack over S. Let
τ = étale (resp. τ = fppf). Let X ′ ⊂ X be a full subcategory with the following
properties

(1) if x → x′ is a morphism of X which lies over a smooth (resp. flat and
locally finitely presented) morphism of schemes and x′ ∈ Ob(X ′), then
x ∈ Ob(X ′), and

(2) there exists an object x ∈ Ob(X ′) lying over a scheme U such that the
associated 1-morphism x : (Sch/U)fppf → X is smooth and surjective.

We get a site X ′
τ by declaring a covering of X ′ to be any family of morphisms

{xi → x} in X ′ which is a covering in Xτ . Then the inclusion functor X ′ → Xτ is
fully faithful, cocontinuous, and continuous, whence defines a morphism of topoi

g : Sh(X ′
τ ) −→ Sh(Xτ )

and Hp(X ′
τ , g

−1F) = Hp(Xτ ,F) for all p ≥ 0 and all F ∈ Ab(Xτ ).

https://stacks.math.columbia.edu/tag/07AK
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Proof. Note that assumption (1) implies that if {xi → x} is a covering of Xτ and
x ∈ Ob(X ′), then we have xi ∈ Ob(X ′). Hence we see that X ′ → X is continuous
and cocontinuous as the coverings of objects of X ′

τ agree with their coverings seen
as objects of Xτ . We obtain the morphism g and the functor g−1 is identified with
the restriction functor, see Sites, Lemma 21.5.

In particular, if {xi → x} is a covering in X ′
τ , then for any abelian sheaf F on X

then
Ȟp({xi → x}, g−1F) = Ȟp({xi → x},F)

Thus if I is an injective abelian sheaf on Xτ then we see that the higher Čech coho-
mology groups are zero (Cohomology on Sites, Lemma 10.2). Hence Hp(x, g−1I) =
0 for all objects x of X ′ (Cohomology on Sites, Lemma 10.9). In other words injec-
tive abelian sheaves on Xτ are right acyclic for the functor H0(x, g−1−). It follows
that Hp(x, g−1F) = Hp(x,F) for all F ∈ Ab(X ) and all x ∈ Ob(X ′).

Choose an object x ∈ X ′ lying over a scheme U as in assumption (2). In particular
X/x→ X is a morphism of algebraic stacks which representable by algebraic spaces,
surjective, and smooth. (Note that X/x is equivalent to (Sch/U)fppf , see Lemma
9.1.) The map of sheaves

hx −→ ∗
in Sh(Xτ ) is surjective. Namely, for any object x′ of X there exists a τ -covering
{x′

i → x′} such that there exist morphisms x′
i → x, see Lemma 19.10. Since g is

exact, the map of sheaves
g−1hx −→ ∗ = g−1∗

in Sh(X ′
τ ) is surjective also. Let hx,n be the (n + 1)-fold product hx × . . . × hx.

Then we have spectral sequences

(23.3.1)07AL Ep,q1 = Hq(hx,p,F)⇒ Hp+q(Xτ ,F)

and

(23.3.2)07AM Ep,q1 = Hq(g−1hx,p, g
−1F)⇒ Hp+q(X ′

τ , g
−1F)

see Cohomology on Sites, Lemma 13.2.

Case I: X has a final object x which is also an object of X ′. This case follows
immediately from the discussion in the second paragraph above.

Case II: X is representable by an algebraic space F . In this case the sheaves hx,n are
representable by an object xn in X . (Namely, if SF = X and x : U → F is the given
object, then hx,n is representable by the object U×F . . .×F U → F of SF .) It follows
that Hq(hx,p,F) = Hq(xp,F). The morphisms xn → x lie over smooth morphisms
of schemes, hence xn ∈ X ′ for all n. Hence Hq(g−1hx,p, g

−1F) = Hq(xp, g−1F).
Thus in the two spectral sequences (23.3.1) and (23.3.2) above the Ep,q1 terms agree
by the discussion in the second paragraph. The lemma follows in Case II as well.

Case III: X is an algebraic stack. We claim that in this case the cohomology groups
Hq(hx,p,F) and Hq(g−1hx,n, g

−1F) agree by Case II above. Once we have proved
this the result will follow as before.

Namely, consider the category X/hx,n, see Sites, Lemma 30.3. Since hx,n is the
(n+1)-fold product of hx an object of this category is an (n+2)-tuple (y, s0, . . . , sn)
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where y is an object of X and each si : y → x is a morphism of X . This is a category
over (Sch/S)fppf . There is an equivalence

X/hx,n −→ (Sch/U)fppf ×X . . .×X (Sch/U)fppf =: Un
over (Sch/S)fppf . Namely, if x : (Sch/U)fppf → X also denotes the 1-morphism
associated with x and p : X → (Sch/S)fppf the structure functor, then we can think
of (y, s0, . . . , sn) as (y, f0, . . . , fn, α0, . . . , αn) where y is an object of X , fi : p(y)→
p(x) is a morphism of schemes, and αi : y → x(fi) an isomorphism. The category
of 2n+3-tuples (y, f0, . . . , fn, α0, . . . , αn) is an incarnation of the (n+1)-fold fibred
product Un of algebraic stacks displayed above, as we discussed in Section 18. By
Cohomology on Sites, Lemma 13.3 we have

Hp(Un,F|Un) = Hp(X/hx,n,F|X/hx,n) = Hp(hx,n,F).
Finally, we discuss the “primed” analogue of this. Namely, X ′/hx,n corresponds,
via the equivalence above to the full subcategory U ′

n ⊂ Un consisting of those
tuples (y, f0, . . . , fn, α0, . . . , αn) with y ∈ X ′. Hence certainly property (1) of the
statement of the lemma holds for the inclusion U ′

n ⊂ Un. To see property (2) choose
an object ξ = (y, s0, . . . , sn) which lies over a scheme W such that (Sch/W )fppf →
Un is smooth and surjective (this is possible as Un is an algebraic stack). Then
(Sch/W )fppf → Un → (Sch/U)fppf is smooth as a composition of base changes of
the morphism x : (Sch/U)fppf → X , see Algebraic Stacks, Lemmas 10.6 and 10.5.
Thus axiom (1) for X implies that y is an object of X ′ whence ξ is an object of U ′

n.
Using again

Hp(U ′
n,F|U ′

n
) = Hp(X ′/hx,n,F|X ′/hx,n) = Hp(g−1hx,n, g

−1F).
we now can use Case II for U ′

n ⊂ Un to conclude. □

24. Restricting to affines

0H08 In this section, given a category X fibred in groupoids over (Sch/S)fppf we will
consider the full subcategory Xaffine of X consisting of objects x lying over affine
schemes U . We will see how, for any topology τ finer than the Zariski topology,
the category of sheaves on X and Xaffine,τ agree.

Definition 24.1.0H09 Let p : X → (Sch/S)fppf be a category fibred in groupoids.
The associated affine site is the full subcategory Xaffine of X whose objects are
those x ∈ Ob(X ) lying over a scheme U such that U is affine. The topology on
Xaffine will be the chaotic one, i.e., such that sheaves on Xaffine are the same as
presheaves.

Thus the functor p : X → (Sch/S)fppf restricts to a functor
p : Xaffine −→ (Aff/S)fppf

where the notation on the right hand side is the one introduced in Topologies,
Definition 7.8. It is clear that Xaffine is fibred in groupoids over (Aff/S)fppf . It
follows that Xaffine inherits a Zariski, étale, smooth, syntomic, and fppf topology
from (Aff/S)Zar, (Aff/S)étale, (Aff/S)smooth, (Aff/S)syntomic, and (Aff/S)fppf , see
Stacks, Definition 10.2.

Definition 24.2.0H0A Let p : X → (Sch/S)fppf be a category fibred in groupoids.
(1) The associated affine Zariski site Xaffine,Zar is the structure of site on
Xaffine inherited from (Aff/S)Zar.
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(2) The associated affine étale site Xaffine,étale is the structure of site on
Xaffine inherited from (Aff/S)étale.

(3) The associated affine smooth site Xaffine,smooth is the structure of site on
Xaffine inherited from (Aff/S)smooth.

(4) The associated affine syntomic site Xaffine,syntomic is the structure of site
on Xaffine inherited from (Aff/S)syntomic.

(5) The associated affine fppf site Xaffine,fppf is the structure of site on Xaffine
inherited from (Aff/S)fppf .

This definition makes sense by the discussion above. For each τ ∈ {Zariski, étale, smooth, syntomic, fppf}
a family of morphisms {xi → x}i∈I with fixed target in Xaffine is a covering in
Xaffine,τ if and only if the family of morphisms {p(xi)→ p(x)}i∈I of affine schemes
is a standard τ -covering as defined in Topologies, Definitions 3.4, 4.5, 5.5, 6.5, and
7.5.

Lemma 24.3.0H0B Let p : X → (Sch/S)fppf be a category fibred in groupoids. Let τ ∈
{Zariski, étale, smooth, syntomic, fppf}. The functor Xaffine,τ → Xτ is a special
cocontinuous functor. Hence it induces an equivalence of topoi from Sh(Xaffine,τ )
to Sh(Xτ ).

Proof. Omitted. Hint: the proof is exactly the same as the proof of Topologies,
Lemmas 3.10, 4.11, 5.9, 6.9, and 7.11. □

Let p : X → (Sch/S)fppf be a category fibred in groupoids. Let us denote O
the restriction of OX to Xaffine. Then O is a sheaf in the Zariski, étale, smooth,
syntomic, and fppf topologies on Xaffine. Furthermore, the equivalence of topoi of
Lemma 24.3 extends to an equivalence
(24.3.1)0H0C (Sh(Xaffine,τ ),O) −→ (Sh(Xτ ),OX )
of ringed topoi for τ ∈ {Zariski, étale, smooth, syntomic, fppf}.

25. Quasi-coherent modules and affines

0H0D Let p : X → (Sch/S)fppf be a category fibred in groupoids. In Section 24 we have
associated to this a ringed site (Xaffine,O).

Lemma 25.1.0H0E Let p : X → (Sch/S)fppf be a category fibred in groupoids. Let F
be an O-module on Xaffine. The following are equivalent

(1) for every morphism x→ x′ of Xaffine the map F(x′)⊗O(x′) O(x)→ F(x)
is an isomorphism,

(2) F is a quasi-coherent module on (Xaffine,O) in the sense of Modules on
Sites, Definition 23.1,

(3) F is a sheaf for the Zariski topology on Xaffine and a quasi-coherent module
on (Xaffine,Zar,O) in the sense of Modules on Sites, Definition 23.1,

(4) same as in (3) for the étale topology,
(5) same as in (3) for the smooth topology,
(6) same as in (3) for the syntomic topology,
(7) same as in (3) for the fppf topology, and
(8) F corresponds to a quasi-coherent module on X via the equivalence (24.3.1).

Proof. To make sense out of part (2), recall that Xaffine is a site gotten by en-
dowing the category Xaffine with the chaotic topology (Definition 24.1) and hence
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a sheaf of O-modules F is the same thing as a presheaf of O-modules. Condi-
tions (1) and (2) are equivalent by Modules on Sites, Lemma 24.2. Observe that
for τ ∈ {Zariski, étale, smooth, syntomic, fppf} the presheaf F is a τ -sheaf if
and only if for all x ∈ Ob(Xaffine) the restriction to Xaffine/x is a τ -sheaf. Set
U = p(x). Similarly to the discussion in Section 9 the object x of Xaffine induces
an equivalence Xaffine,étale/x → (Aff/U)étale of sites. In this way we see that the
equivalence of (1) with (3) – (7) follows from Descent, Lemma 11.1 applied to each
of these sites. The equivalence of (8) and (7) is immediate from the fact that “being
quasi-coherent” is an intrinsic property of sheaves of modules, see Modules on Sites,
Section 18 □

Lemma 25.2.0H0F Let p : X → (Sch/S)fppf be a category fibred in groupoids. Let F
be an O-module on Xaffine. The following are equivalent

(1) for every morphism x → x′ of Xaffine such that p(x) → p(x′) is an étale
morphism (of affine schemes), the map F(x′) ⊗O(x′) O(x) → F(x) is an
isomorphism,

(2) F is a sheaf for the étale topology on Xaffine and for every object x of
Xaffine the restriction x∗F|Uaffine,étale is quasi-coherent where U = p(x),

(3) F corresponds to a locally quasi-coherent module on X via the equivalence
(24.3.1) for the étale topology.

Proof. To make sense out of condition (2), recall that Uaffine,étale is the full
subcategory of Uétale consisting of affine objects, see Topologies, Definition 4.8.
Similarly to the discussion in Section 9 the object x of Xaffine induces an equiv-
alence Xaffine,étale/x → (Aff/U)étale of sites. Then x∗F is the sheaf of modules
on (Aff/U)étale corresponding to the restriction F|Xaffine,étale/x. Finally, using the
continuous and cocontinuous inclusion functor Uaffine,étale → (Aff/U)étale we can
further restrict and obtain x∗F|Uaffine,étale .

The equivalence of (1) and (2) follows from the remarks above and Descent, Lemma
11.2 applied to the restriction of F to Uaffine,étale for every object x of X lying
over an affine scheme U . The equivalence of (2) and (3) is immediate from the
definitions and the fact that quasi-coherent modules on Uaffine,étale and Uétale
correspond (again by Descent, Lemma 11.2 for example). □

26. Quasi-coherent objects in the derived category

0H0G Algebraic geometers have contemplated invariants for non-representable functors X
(valued in sets or groupoids) on Sch/S for decades. For instance, before the notion
of a stack was invented, Mumford defined [Mum65] the Picard groupoid Pic(X)
for the moduli functor X of elliptic curves as the 2-limit Pic(U) over the category
of all schemes U equipped with a map to X (i.e., with a family of elliptic curves).
Similarly, Beilinson-Drinfeld defined [BD] the category QCoh(X) for an ind-scheme
X = colimXi as the 2-limit lim QCoh(Xi). This strategy is sufficient for defining
1-categorical invariants like QCoh(−), but inadequate for derived categorical ones
(such as the quasi-coherent derived category) as 2-limits of triangulated categories
are poorly behaved. With the advent of higher categorical technology and derived
algebraic geometry, this problem can be resolved gracefully: one can define the
quasi-coherent derived∞-category Dqc(X) of the functor X as the limit limDqc(U),
where U ranges over all derived affines over X (see [Lur04]).
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The goal of this section is to attach a triangulated category QC (X) to a functor
X (valued in sets or groupoids) as above. In fact, the construction works for any
category p : X → (Sch/S)fppf fibred in groupoids (not just split ones). In good
cases, the category QC (X ) can be shown to agree with the homotopy category of
Dqc(X ), though it is outside the scope of this document to explain this comparison.
The salient features of the construction are:

(a) QC (X ) is a full subcategory of D(Xaffine,O) by construction,
(b) QC (X ) agrees with DQCoh(OX) when X is representable by the algebraic

space X,
(c) QC (X ) agrees with DQCoh(OX ) when X is an algebraic stack,
(d) when X = Spf(A) is an affine formal algebraic space attached to a noether-

ian ring A equipped with the I-adic topology for an ideal I, the triangulated
category QC (X) agrees with the full subcategory Dcomp(A, I) ⊂ D(A) of
derived complete objects.

These results are proven in Proposition 26.4, Derived Categories of Stacks, Propo-
sition 8.4, and Proposition 26.5.
As a motivation for the precise definition of QC (X ) we point the reader to the
characterization, in Lemma 25.1, of quasi-coherent modules on X as presheaves of
O-modules on Xaffine which satisfy a kind of base change property.

Definition 26.1.0H0H Let p : X → (Sch/S)fppf be a category fibred in groupoids.
Let O be the sheaf of rings on Xaffine introduced in Section 24. We define the
triangulated category of quasi-coherent objects in the derived category by the formula

QC (X ) = QC (Xaffine,O)
where the right hand side is as defined in Cohomology on Sites, Definition 43.1.

Note that this makes sense as Xaffine is a category and is viewed as a site by
endowing it with the chaotic topology and O is a sheaf of rings on this category,
exactly as required in Cohomology on Sites, Definition 43.1.
The relationship of this definition with the category of quasi-coherent modules on X
is not so clear in general! For example, suppose thatM is an object of QC (X ). Then
the cohomology sheaves Hi(M) of M are (pre)sheaves of O-modules on Xaffine,
but in general they are not quasi-coherent. The last nonvanishing cohomology sheaf
is quasi-coherent however.

Lemma 26.2.0H0I In the situation of Definition 26.1 suppose that M is an object
of QC (X ) and b ∈ Z such that Hi(M) = 0 for all i > b. Then Hb(M) is a
quasi-coherent module on (Xaffine,O), see Lemma 25.1.

Proof. Special case of Cohomology on Sites, Lemma 43.3. □

Lemma 26.3.0H0J Let S be a scheme. Let X → (Sch/S)fppf be a category fibred
in groupoids. The comparision morphism ϵ : Xaffine,étale → Xaffine satisfies the
assumptions and conclusions of Cohomology on Sites, Lemma 43.12.

Proof. Assumption (1) holds by definition of Xaffine. For condition (2) we use
that for x ∈ Ob(X ) lying over the affine scheme U = p(x) we have an equivalence
Xaffine,étale/x = (Aff/U)étale compatible with structure sheaves; see discussion
in Section 9. Thus it suffices to show: given an affine scheme U = Spec(R) and
a complex of R-modules M• the total cohomology of the complex of modules on
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(Aff/U)étale associated to M• is quasi-isomorphic to M•. This follows from a
combination of: Derived Categories of Schemes, Lemma 3.5 (total cohomology of
complexes of modules over affines in the Zariski topology), Derived Categories of
Spaces, Remark 6.3 (agreement between total cohomology in small Zariski and
étale topologies for quasi-coherent complexes of modules), and Étale Cohomology,
Lemma 99.3 (to see that the étale cohomology of a complex of modules on the big
étale site of a scheme may be computed after restricting to the small étale site). □

If we apply the definition in case our category fibred in groupoids X is representable
by an algebraic space X, then we recover DQCoh(OX). We will later state and prove
the analogous result for algebraic stacks (insert future reference here).

Proposition 26.4.0H0K Let S be a scheme. Let X → (Sch/S)fppf be a category fibred
in groupoids. Assume X is representable by an algebraic space X. Then QC (X ) is
canonically equivalent to DQCoh(OX).

Proof. Denote Xaffine the category of affine schemes étale over X endowed with
the chaotic topology and its structure sheaf OX , see Derived Categories of Spaces,
Section 30. The functor u : Xétale → Xétale of Lemma 10.1 gives rise to a functor
Xaffine → Xaffine. This is compatible with structure sheaves and produces a
functor

G : QC (X ) = QC (Xaffine,O) −→ QC (Xaffine,OX)
See Cohomology on Sites, Lemma 43.10. By Derived Categories of Spaces, Lemma
30.1 the triangulated category QC (Xaffine,OX) is equivalent toDQCoh(OX). Hence
it suffices to prove that G is an equivalence.

Consider the flat comparision morphisms ϵX : Xaffine,étale → Xaffine and ϵX :
Xaffine,étale → Xaffine of ringed sites. Lemma 26.3 and (the proof of) De-
rived Categories of Spaces, Lemma 30.1 show that the functors ϵ∗X and ϵ∗X identify
QC (Xaffine,O) and QC (Xaffine,OX) with subcategoriesQX ⊂ D(Xaffine,étale,O)
and QX ⊂ D(Xaffine,étale,OX). With these identifications the functor G in the
first paragraph is induced by the functor

Li∗X = RπX,∗ : D(Xaffine,étale,O) −→ D(Xaffine,étale,OX)

where iX and πX are the morphisms from Lemma 10.1 but with the étale sites
replaced by the corresponding affine ones. The reader can show that this re-
placement is permissible either by reproving the lemma for the affine sites di-
rectly or by using the equivalences of topoi Sh(Xaffine,étale) = Sh(Xétale) and
Sh(Xaffine,étale) = Sh(Xétale). The lemma also tells us Li∗X has a left adjoint

Lπ∗
X : D(Xaffine,étale,OX) −→ D(Xaffine,étale,O)

and moreover we have Li∗X ◦Lπ∗
X = id since πX ◦ iX is the identity. Thus it suffices

to show that (a) Lπ∗
X sends QX into QX and (b) the kernel of Li∗X is 0. See Derived

Categories, Lemma 7.2.

Proof of (a). By Derived Categories of Spaces, Lemma 30.1 we have QX =
DQCoh(Xaffine,étale,OX). Let K be an object of QX . Let x be an object of
Xaffine,étale lying over the affine scheme U = p(x). Denote f : U → X the mor-
phism corresponding to x. Then we see that

RΓ(x, Lπ∗
XK) = RΓ(U,Lf∗K)
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This follows from transitivity of pullbacks; see discussion in Section 10. Next,
suppose that x → x′ is a morphism of Xaffine,étale lying over the morphism h :
U → U ′ of affine schemes. As before denote f : U → X and f ′ : U ′ → X the
morphisms corresponding to x and x′ so that we have f = f ′ ◦ h. Then

RΓ(x, Lπ∗
XK) = RΓ(U,Lf∗K)

= RΓ(U,Lh∗L(f ′)∗K)
= RΓ(U ′, L(f ′)∗K)⊗L

O(U ′) O(U)

= RΓ(x′, Lπ∗
XK)⊗L

O(x′) O(x)

and hence we have (a) by the footnote in the statement of Cohomology on Sites,
Lemma 43.12. The third equality is Derived Categories of Schemes, Lemma 3.8.

Proof of (b). Let M be an object of QX such that Li∗XM = 0. Let x′ be an
object of Xaffine,étale lying over the affine scheme U ′ = p(x′) and assume that
the corresponding morphism f ′ : U ′ → X is étale. Then f ′ : U ′ → X is an
object of Xaffine,étale and the condition Li∗XM = 0 implies that M |U ′

étale
= 0. In

particular, we see that RΓ(x′,M) = 0. However, for an arbitrary object x of the
site Xaffine,étale there exists a covering {xi → x} such that for each i there is a
morphism xi → x′

i with x′
i corresponding to an object of Xaffine,étale. Now since

M is in QX we have

RΓ(xi,M) = RΓ(x′
i,M)⊗L

O(x′
i
) O(xi) = 0

and we conclude that M is zero as desired. □

To show that the construction produces an interesting category in another case, let
us state and prove a characterization of QC (Spf(A)) for the formal spectrum of a
Noetherian adic ring A.

Proposition 26.5.0H0L Let S be a scheme. Let X = Spf(A) where A is an an adic
Noetherian topological S-algebra with ideal of definition I, see More on Algebra,
Definition 36.1 and Formal Spaces, Definition 9.9. Let p : X → (Sch/S)fppf the be
category fibred in sets associated to the functor X, see Categories, Example 38.5.
Then QC (X ) is canonically equivalent to the category Dcomp(A, I) of objects of
D(A) which are derived complete with respect to I.

Proof. Recall that X = colim Spec(A/In) as an fppf sheaf. An object of Xaffine
is the same thing as an affine scheme U = Spec(R) with a given morphism f :
U → X. By Formal Spaces, Lemma 9.4 there exists an n ≥ 1 such that f factors
through the monomorphism Spec(A/In) → X. Consider the full subcategory C ⊂
Xaffine consisting of the objects Spec(A/In)→ X. By the remarks just made and
Differential Graded Sheaves, Lemma 34.1 restriction to C is an exact equivalence
QC (X )→ QC (C,O|C). For simplicity, let us assume that In ̸= In+1 for all n ≥ 1.
Then (C,O|C) is isomorphic as a ringed site to the ringed site (N, (A/In)), see
Differential Graded Sheaves, Section 35. Hence we conclude by Differential Graded
Sheaves, Proposition 35.4. □

The following lemma will be used in comparing QC (X ) to DQCoh(OX ) when X is
an algebraic stack.

https://stacks.math.columbia.edu/tag/0H0L


SHEAVES ON ALGEBRAIC STACKS 48

Lemma 26.6.0H0X Let S be a scheme. Let X → (Sch/S)fppf be a category fibred
in groupoids. The comparision morphism ϵ : Xaffine,fppf → Xaffine satisfies the
assumptions and conclusions of Cohomology on Sites, Lemma 43.12.

Proof. The proof is exactly the same as the proof of Lemma 26.3. Assumption
(1) holds by definition of Xaffine. For condition (2) we use that for x ∈ Ob(X )
lying over the affine scheme U = p(x) we have an equivalence Xaffine,étale/x =
(Aff/U)étale compatible with structure sheaves; see discussion in Section 9. Thus it
suffices to show: given an affine scheme U = Spec(R) and a complex of R-modules
M• the total cohomology of the complex of modules on (Aff/U)fppf associated to
M• is quasi-isomorphic to M•. This is Étale Cohomology, Lemma 101.3. □
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