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. Random Partitions via Circular 5-Ensembles

Throughout, live on the unit circle

T:={weC : |w|=1}

Define an inner product on C[wi", ..., wi] by

, 5 N dw:
Fout =L P p— f Fout Fln i
(%, P ™ E ’W’ WJ’ - 2miw;
This involves |W,|? for multi-valued

Wo(wi, ..., wylB) = [T(wi - w;)?/”.
i<j
Restrict (-, -)1.5n to:
1. Chirality:  ordinary polynomials ~ Clwy, ..., wy]

2. Symmetry: symmetric polynomials Clw, ..., wy]*(")




. Random Partitions via Circular 5-Ensembles

Conjugating
H =V THY,

the generator H of circular-3 Dyson Brownian motion by

v, = H(Wi _ WJ.)B/z

i<j
arrive at
N
/B wi + w; 0 0
= > (wy ) +5 Z o T~ W)
— ow; 2 4 "ow; ow;
i=1 J
1. H is self-adjoint operator on Clwy, ..., wy]*™ for (-, )r.5.n
. N o
2. H commutes with degree operator D =} ;" wig.-

3. Eigenspaces of D on C[wy, ..., WN]S(N) are dim < oo



I. Random Partitions via Circular S-Ensembles

Spectral Theorem: 7 diagonalized in Clws, ..., wy]*(") by

Pyx(wi, ..., wy|B)

a basis of multivariate homogeneous symmetric orthogonal
polynomials for (-, )15 n.

Definition: These P, are the Jack symmetric polynomials,
indexed by 0 < Ay < -+ < A7 with \; € N,

Collective Variables: work with Jacks Py(p|3) only via

mm=%+w+%

and z7-. Abandon original w; and 5.~ for stability in N — oo



I. Random Partitions via Circular S-Ensembles

Recall our pairing on symmetric polynomials

B

N
ut in . ‘Fout( ). Fin(w P— W; dwi
<F° F >T;B;N = jgr,v Fe t(W) F (W)E ’W’ WJ’ /:1_[1 2miw;

and call pi(W) = wf + - -- + wf the power sums.

Amazing Fact: Unlike Jacks Py(ws, ..., wy|3), for
# : N — N compact support

pN:pl#lp:;Q”'pk#k"'
are not orthogonal with respect to (-, )15 n,
but ARE orthogonal in the limit
- <Fout’ Fin)T;ﬁ;N.

Fout Fin ) —
(F Flmp 0 = i (L, 1)man

» Can define (-,-)T.8,00 on C[p1, p2, .. .| by declaring
p_k = gk% to be the adjoint of multiplication by py.



. Random Partitions via Circular 5-Ensembles

To better understand asymptotic orthogonality of p,, rescale

1%
Pk = —5
to new variables Vi, V5, ... via real parameters c¢p < 0 < &1
chosen so that g = —2—2. The limit
. . . < '>'J1‘;,3;N
<'7 ')—5152 = <'7 '>T;ﬂ700 = lim :

N—oo <1, 1>’]I‘;6;N‘

is now defined on F = C[V4, Vs, .. .] by declaring

0
Vo =—c1e0k—
k €1€2 Vi
to be adjoint of multiplication by Vj on F. If deg V) = k,
F=P Fa
d=0

decomposes via degree operator D = % Yoo VikVoy.



. Random Partitions via Circular 5-Ensembles

Write Jacks Py(wi, ..., wy|f3) via rescaled power sums Vj,
Pa(Vle2,e1) = Y xh(e2,e1)
HEY

strange superpositions of Vl#l V2#2 -+« diagonalizing H.
» V), € F indexed by partitions p = 1#12%2 . .. ki«
» P, € F indexed by partitions A\ € Y4 of degree d

0<---< X<\ deg(A) :=> X

> inner product —ei1e5 vs. anisotropy €1 + €2
» compare 5 8= —i—i inverse Jack parameter
> at the isotropic point e1 + e =0o0r g =2

(82,61) — (f:, f)

Jacks become Schur functions.



I. Random Partitions via Circular S-Ensembles

Since V), and P) are both orthogonal for (-,-)_. .,, write the
resolution of the identity in two ways

0 Vout\/in P W P Vin
Hexp( k k)zz A(VUlea, e1) PA(V™ €2, €1)

*€1€2k AEY <’D)\7 P>\>—€182

to define Stanley-Cauchy kernel M(Vout y/in

).

Definition: If VUt = V" for all k € Z., define My/(s2,¢1)
Jack Measure on partitions \ by

2
1 }P)\(V’€2,€1)’
I'I(V, V| »1¢ ) <P>\7 P>\>—51€2

—€1€2

Probv;82781 ()\) =




. Random Partitions via Circular 5-Ensembles

Motivation: On T the unit circle,

S Vout

Viw) =) —F——

k=1
defines V : T — R iff Vout = vin,

|n

— 2

Random Matrices: class functions on U(/N) lead to

Py 2miw;

Gessel-Heine-Szego-Weyl: Z is a Toeplitz determinant

N
Zew(N[2,t) = ]{ et SNV ] |wi - w,
™ i<j

N
det Ty (e ¢ V(")) = Zry (N2, ¢) =1 ]P’()\’l < /v>.

and law of first column of A from Schur measure My (=, ¢).

» Random Matrices — Random Partitions: N formal variable!



I. Random Partitions via Circular S-Ensembles

Motivation: Jack measures My (s2,1) on partitions

s V°“tV P\(V
k=1 _€1€2k AEY P/\7 PA) —€1€2
unify 3,V deformations of Poissonized Plancherel measures:
My (e2,¢1)
My (—=,2) Me(e2,21)
Mo(—=2,2)
(22,61) — (—=,9) Schur measures Okounkov (2001)

Ve(w)=w+ 1 abelian pure Nekrasov-Okounkov (2006)



. Random Partitions via Circular 5-Ensembles
Motivation: Circular S-Ensembles, random w € TN.

d 74

27TiW,'

N
Zr.v(N|B,t) = jnge_A‘IZ’{V—IV(W")H‘Wi—Wj)ﬁH

i<j i=1
From Probability to Integrability:

—

[Sliey)

» strong-weak duality + phase transitions

™[

> |W,|? Calogero-Sutherland QMBP W, = [](w; — w))*#/°

i<j
B-Gessel-Heine-Szego-Weyl: Can write Z via expectation

Toeplitz operators = Zt,v(N|B,t) =1 - E{OA(HN,B)]

against Jack measure on partitions so that N formal variable!

ﬁ 51_1_52:(%—1)%.
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Il. Limit Shapes and Gaussian Fluctuations

For Jack measures My (£2,c1), random deg(A) = A1+ Ao - -

Eldeg(N)] = =25 > Vil < o0
k=1

For Vo(w) = w + % typical A from My(—=,¢) as = — 0:




Il. Limit Shapes and Gaussian Fluctuations

For eo < 0 < e1 real parameters, consider anisotropic box

> Area(DQ@) = 2(—e12).

» lIsotropic boxes (£2,£1) — (—¢2,¢) are squares.



Il. Limit Shapes and Gaussian Fluctuations

A partition X ...




Il. Limit Shapes and Gaussian Fluctuations

A partition X ...

Shifted variables: \ = c5(i — 1) + 21 A;



Il. Limit Shapes and Gaussian Fluctuations

A partition A ... and its anisotropic profile f\(cle2,21)




Il. Limit Shapes and Gaussian Fluctuations

A partition A ... and its anisotropic profile f\(cle2, 1)




Il. Limit Shapes and Gaussian Fluctuations

A partition A ... and its anisotropic profile f\(cle2,21)

Linear statistics: chy[f] = [*_c‘2f"(c)dc



Il. Limit Shapes and Gaussian Fluctuations

Partitions: sequences
0<---< X<\

of non-negative integers \; € N such that
o oo

deg()\) = Z/\,‘<OO Y = UYd
i=1 d=0

Profiles: functions f : R — R>¢ of ¢ € R such that

[f(c1) = ()| <1 |a1 —

Area(f) ;:/ (F(c) - |¢[)de < oo y=J »A).



Il. Limit Shapes and Gaussian Fluctuations

Recall
oo

Eldeg(\)] = = D IVil?
k=1

Macroscopic Scaling: If we choose to represent A as
anisotropic partition \ € Y(e2,21) with the same 5,¢;
defining My (£2,¢1), then

E[Area(f\(-]e2,21))] =2 i | Vie|?
k=1

is independent of both £; and &5!.

Thus, have scaled to “see something" as either 5 — 0 < 1.



Il. Limit Shapes and Gaussian Fluctuations

Motivation: Recall the change of variables
2 t?

—E1E2 = B /\/2

€1+ e = (;_1);/

> The scaling limit of Jack measures

g0 = 0<¢+ &1
at rate é = 7% is the thermodynamic limit
N — oo

of circular B-ensembles in background V at VUt = Vvin:

V(w) = Z V’?Utkw + Z Vk”;(W

k=1 k=1

However, will state results in terms of symbol v : T — R

o0

[e.9]
v(w) = Z Voutw K 4+ Z virwk
k=1

k=1



Il. Limit Shapes and Gaussian Fluctuations

For random X sampled from M\ (e,,21) with analytic symbol v, in
the limit e; — 0 < ¢; taken so that 8/2 = —e5/e; > 0 is fixed,

Theorem 1 [M. 2015] (LLN) The random profile
fa(clea, e1) = fipu(c)

concentrates on a limit shape f,),(c) € }, independent of j3:

1+f*"v(c)

o7 - = (v.df)((~o0, )

is the distribution function of the push-forward along
v : T — R of the uniform measure on the circle.

» Recover: § =2 Okounkov (2003).



Il. Limit Shapes and Gaussian Fluctuations

LLN: despite valleys of v, we are in one-cut regime.

’U(eig)

L+ fy,(0)




Il. Limit Shapes and Gaussian Fluctuations

Recover: Poissonized Plancherel v.(eig) = 2cos 6, new proof

f/‘.(c) 2 arcsin §

o

Corrections: (CLT) Kerov (1993), Ivanov-Olshanski (2003)



Il. Limit Shapes and Gaussian Fluctuations

Application: Since VKLS is supported on [—2,2]

1

|
&
&)
N

Nl
detTN(e £ ( +W)) _ ZT;W+%(N]2, t) = H.P(: A< t)
implies the Gross-Witten phase transition at t = 2 (1980).

» Forrester, Majumdar, Schehr Non-intersecting Brownian
walkers and Yang-Mills theory on the sphere (2010)

Corrections: At =2 and Vo(w)=w+ 1 as=—0

]P’(:);lz/;2 <'5) = TW.(s)

via double scaling limit in Baik-Deift-Johansson (1999).



Il. Limit Shapes and Gaussian Fluctuations

For random X sampled from M\ (e,,21) with analytic symbol v, in
the limit e; — 0 < ¢; taken so that 8/2 = —e5/e; > 0 s fixed,

Theorem 2 [M. 2015] (CLT) Profile fluctuations
1
(Alelez, 1) = ful©))

—E&1&2
converge to a Gaussian field: besides explicit shift X,(c),

2 B
’]1‘+)(C) + <\/; — \/Q) X,(c).

this is push-forward along v : T — R of the restriction to
T, = TNH, of the Gaussian free field on H

Pa(clea.e1) =

odv(c) = (V*CDIHI+

2
Wy — w2

1
Cov [0+ (w1), O (wy)] = 4o

wyp — w2

with zero boundary conditions.



Il. Limit Shapes and Gaussian Fluctuations

20
Figure 4.1: Discrete Gaussian free field on 20 by 20 grid with zero boundary
conditions.

» Compare: Borodin Gaussian free field in 3-ensembles and
random surfaces (Lecture C.M.I. 2013)

> Recover: Breuer-Duits CLT for biorthogonal ensembles at
B8 =2 with “symbol" v (2013)
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1. Nazarov-Sklyanin Lax Operator

Recall F = C[V4, Vo, .. ] with (-,-)_.,., via

Vo= — k—-.
k €162 V.

Define the ng current

o0
v(w|—ce1e2) = Z Vi@ w X

k=—o0

at level —e1e5 and V = 0.
Auxiliary Hardy Space: C[w] has basis w" = |h) for h€ N

e : Clw, w™!] = C[w].
is self-adjoint for pairing

(hy|h—) =0(hy — h-)



1. Nazarov-Sklyanin Lax Operator

Proposition: The Toeplitz operator
T(v|—c1£2) == (1 @ me)v(w|—c122)(1 ® 7,)

with symbol v is well-defined T(v) : F ® C[w] — F @ C[w]
and self-adjoint with respect to (-,)—c,-, ® (hy — h_).

Compare: if V_y, Vi € C are modes of scalar symbol

v(w) = f: View ™k

k=—00

can define a Toeplitz operator
T(v) = mev(w)me

which gives T(v) : C[w] — C[w] if v(w) € C[w, w™1].



1. Nazarov-Sklyanin Lax Operator

Definition: The Nazarov-Sklyanin Lax operator
L:F®Clw] = F®Clw]
is given by

L= L(e2,61) = T(v|—£122) + (61 + €2)Daux

> T(v]—c122) = (1 @ me)W(w|—c122)(1 ® ms) Toeplitz
» Daux=1® Wa% auxiliary degree operator.
Even at the isotropic point
(52751) - (7:7 5)

T(v) still unbounded operator on F @ C[w].



1. Nazarov-Sklyanin Lax Operator

L is operator on C[w] with coefficients (hy|L|h_) : F — F :

0 v Vg U3 v, ]
V-1 1(51 +€2) (%1 (%] Vh—1
V_g v_1 2(e1 +&3) vy
L= V_3 V_9 v_1 3(51 + 52)
Vop U_(h-1) “- h(er te)

> (pairings) When ky = k_ =k, [V_k, Vik] = —c1e2k
> (slides) When hy = h_ = h, ['h,h = (81 + 62)"].
» Lhp=0if 1 +e2 =0 (no slides iff 5= 2).



1. Nazarov-Sklyanin Lax Operator

Recall V_j = —slsgkaivk. Notice that

(0]£210) = ZEOhﬁho—ZVkV p

is a multiple of degree operator, and

o
©I2%0) = > LomLh,mLho
hy,hy=0
o.] oo
= > Vin Vipn Von, + (e14+22) D hViVoy
hy,h2=0 h=0

is the Hamiltonian of the quantum Benjamin-Ono equation.

> Recover: for Vi = pr(—2) at px = wf + - -+ + wy, these
(0£2]0) and (0|£3|0) are D and H for circular 3-ensembles!



1. Nazarov-Sklyanin Lax Operator

Theorem [NS], First Part: Forall{=0,1,2..., the VEVs
0|£40) : F — F
commute and give the quantum Benjamin-Ono hierarchy.

Gather these operators as modes of the resolvent
R(u)=(u— L)t = Z v 1t
=0

for u formal parameter. The family of operators

T(u! €2, 61) = <0|'R(U| &2, 61)|0>
commute [T (u1), T (u2)] = 0.
» Compare: R for Y51+52(g/[\1) Maulik-Okounkov (2012)



1. Nazarov-Sklyanin Lax Operator

As dim F4 < oo and all (0|£f|0) self-adjoint w.r.t. (-,-)_.,.,
commute with degree operator (0|£?|0),

Theorem [NS], Second Part: The basis of Fy
Pr(Viea,e1) = > xh(e2,61) Vi
lu|=d

simultaneously diagonalizing all (0|£*|0) are the Jack
symmetric functions with inverse Jack parameter g = —Z—i.

This gives a new definition of Jacks that is stable (no ).

» Compare: Sergeev-Veselov Dunkl operators at infinity and
Calogero-Moser systems (2013)

» Compare: Dubrovin Symplectic field theory of a disk,
quantum integrable systems, and Schur polynomials (2014)



1. Nazarov-Sklyanin Lax Operator

Theorem [NS] Third Part: The eigenvalues of
T(ule2,61) = (0l(u — £)71(0)
on Jacks P\(V|e2,e1) are Stieltjes transforms

oo 7y (cle2,£1)dc

Tx(ule2,21) :/

oo u—=c

of the anisotropic transition measure 7)(c|z2,21) of .

This 7x(c|£2,¢1) appears naturally in Pieri rule for Jacks.

» Compare: Jucy-Murphy elements for C[S(d)] and transition
measures T (c|—=,¢) at €1 + £2 = 0 Biane (1998)



1. Nazarov-Sklyanin Lax Operator

Alternatively, the relation
f(clea,e1) +— 7a(clen,e1)

is an incarnation of the Kerov-Markov-Krein transform
which associates to any profile f € ) a probability measure
7r on R defined by

exp(/_O:O log l“icl éf”(c)dc) = /_O:o T,;(i)cclc

Corollary: The spectral measure T\(c|e2,£1) of

L:F®Clw] = F®Clw]

at the vector Py(v|ez,e1) @ |0) is the Kerov-Markov-Krein
transform of the profile f\(cle2,£1).



1. Nazarov-Sklyanin Lax Operator
Theorem [NS] Third Part + KMK: The eigenvalues of
T(ule2,61) = (0](u = £)71(0)

on Jacks Py(v|e2,21) depend only on the profile f\(cle2,21).
Explicitly, the logarithmic derivative

9,
30 log T (u)

acts on Jacks with eigenvalues

/00 %fk”(c|52, £1)dc

o u—=c

» Compare: log derivative of transmission coefficient for KdV

» Compare: log derivative of transfer matrix for XXZ
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IV. From Hierarchies to Scaling Limits: Recipe

Probability: To regard object A € Y as random with weight
Wi (V|e) > 0 in variables V and ¢, the partition function

n(Vie) : Z Wi(V|e)

must converge so that Proby () = n(v|€ Wy (Ve).

Integrability: Given a family of operators 7 (ule) indexed by
u € U, acting in variables V, and simultaneously diagonal

T(ulg)Wa(V]e) = Ta(ule)Wa(Vle)

on weights Wy (V) with eigenvalues Ty (ule), we have

N(V[e) T (urle) -+ T(unlo)(V]e) = B[ Ta(tn]e) - Ta(unle)].



IV. From Hierarchies to Scaling Limits: Ingredients

1. Random partition A € Y sampled with relative weight

P,\(V°“t| €2, El)P)\(Vin| €2, 61)
<'D>w P)\>—€1€2

Wi(Vle) :==

Vout_—\/in

2. Partition function: decoupled (“Amazing Fact")

H exp (VOUtV’I‘n> =M= Z Wi(Vie)

—c152k €Y

3. Observables: £: F ® C[w] — F @ C[w] resolvent VEV

<0|—52’)|0>Px\= </_O;TA(5|_52’C€1)>PA

» Joint moments of linear statistics computable via

M710] (uy — £2°)7H0) -+ (0] (up — £°%) 1 |0) 1



V.

From Hierarchies to Scaling Limits: Cooking

M71(0)(ur — £2)7H0) -+~ (Of(un — £2*)7HO)TT
1. L(eg,e1) = T(v|—€1£2) + (¢1 + €2)D made of Vj and

0
v_k = 75162/(87\/;('

2. Keep track of pairings (Leibniz rule) and slides
3. Exchange relation

[Vout ] = V"

from Kac-Moody symbol to scalar symbol v : T — R

o0 o
v (w|—e180) = Z Voutw —k 4 Z Voutyk
k=1 k=1

o) o
viw) = Z Vl?utW—k + Z VanWk'
k=1 k=1



IV. From Hierarchies to Scaling Limits: Symbols

At e = 0=1¢1, n =1 case reduces to
M7(0]£(e2,21)"10) — (0 T(v)*[0)
VEV of power of Toeplitz operator with symbol

o (o)
v(w) = Z Vl‘j“twfk + Z Virwk,
k=1 k=1

I I A T I A T R |
| L L L L L I L L




IV. From Hierarchies to Scaling Limits: Slides

If —e160 =0 but e = &1 +¢e2 #0, n=1 case reduces to
M71(0]£(22,£1) 0)11 — (0](T(v) + £Dax) [0)

VEV of power of unbounded perturbation of T(v).

(e1+&2)h

N

012 l

T T T T




IV. From Hierarchies to Scaling Limits: Pairings

If —e160 # 0 but 61 + 62 =0, n =1 case reduces to
N70]L(22,£1) |0)1 — (0| T (v| —£122)0)
VEV of Toeplitz operator with ng current

o
v(w|—e182) = Z Vi@ w K

k=—o00

1 |
11

S —
I /'/
=
-



V.

From Hierarchies to Scaling Limits: Regularity

Estimates: although the partition function
VoM\/m
M= ex
H p( —E1E2 k )
is convergent if the potential
0 \/outvv——k

o0 in . k
Vi) = e L

k=1 k=1

lies in HY/2(T), our operators (0|£¢|0) only defined on F.

Lemma: M is in the domain of definition of (0|£¢|0) iff

VeH(T) for £=2s.

In particular, moment method requires all Sobolev norms.
» V: T — C analytic around T lies in all H*(T)



IV. From Hierarchies to Scaling Limits: Expansions

For random X sampled from M\ (£2,21) with analytic symbol v,

Theorem 3 [M. 2015]: WY (l1,. .., lnle1,22) joint
cumulants of (0]£%|0) have convergent expansion:

3o Y (ere) M ITE (e + &) WY g il Ln)
g=0 m=0

(¢1,...,¢,) weighted enumeration of connected
“rlbgbon paths” on n sites of lengths /1,..., ¢, with
(n— 1) + g pairings and m slides, and are expressed solely
through matrix elements of the classical Toeplitz
operator T(v) with scalar symbol v(w).

» Recover: double Hurwitz numbers for Schur measures at
B =2 ore; + 3 = 0 Okounkov (2000)

» Compare: loop equations and refined topological recursion
Chekhov-Eynard (2006), Borot-Guionnet (2012)



IV. From Hierarchies to Scaling Limits: Expansions
Compare: expansion of 3-Ensembles on R for one-cut V:

Theorem [C-E + B-G]: After the change of variables

2 t? 2 t
—£1€3 = B /\/2 €1+ér = (E — 1)N
the joint cumulants W,,V(él, ...y lnle2, €1) of linear statistics

J22 xp(x)dx have asymptotic expansion:

Z Z €1ﬁ2 (" 1+g(61+€2) W,‘,/gm(fl,...,f,,)

g=0 m=0
where an m(l1,...,¢n) is V-weighted enumeration of
connected ribbon graphs on n vertices of degree ¢1,...,¢,

of genus g and m MGobius strips, and are expressed solely
through geometry of the spectral curve ¥y, .



V.

From Hierarchies to Scaling Limits: Expansions

Figure 7: Examples of ribbon graphs of genus g = 1.

» Source: Chekhov-Eynard-Marchal Topological expansion of
the Bethe ansatz and quantum algebraic geometry (2009)

» Compare: —c1£5 as “handle-gluing element"



V.

From Hierarchies to Scaling Limits: Limit Shapes

Proof Sketch LLN:
» LLN occurs: no pairings or slides to leading order.

» LLN form: to determine limit shape f,|,(c), must invert

Wy'oo(u Z'fﬁ 1W100(£)
=0

which requires the analytic continuation

(0l(a— T(v)) /0) = p<21r § s [_1%] ci;v)

Krein (1958) and Calderén-Spitzer-Widom (1958), via
Wiener-Hopf factorization of the family of loops

y(w; u) : T — GL(1) y(w; u) = u— v(w)

» LLN meaning: Lifshitz-Krein spectral shift function.



V.

From Hierarchies to Scaling Limits: GFF

Proof Sketch CLT:

» CLT occurs: it requires n — 1 pairings to connect n
sites, and slides cannot connect correlators

» CLT form: to compute covariance of limiting Gaussian
field, need Wy o(u1, 2): introduce welding operator

W = Z 0

= v(1 5% av® @)

Duplicate variables, simulates all ways of creating one
pairing of any type k, hence

v(®) v v
W Wygo(u1) x Wylgo(u2) — Wolgo(ut, u2)
have LLN x LLN = CLT covariance.

» Compare: loop insertion operator (u) and unstable
correlators W, o(u), Wi¥o 1 (1), Wo'go(u, 1)



Conclusion

Review:

1. Jack measures My(e2,21) for every symbol v : T — R
via N-body circular S-ensembles in background V

2. Limit shapes and global fluctuations as push-forwards

3. Lax operator £ = T(v|—c162) + (¢1 + €2)D plays role
of matrix model for Jack measure arbitrary 5 and V

4. Toeplitz operators with symbol v and ribbon path
expansion: a non-recursive analog of the
Chekhov-Eynard refined topological recursion

(Q) Why do global fluctuations involve Gaussian Free Field?



Conclusion

Why do Jack Measure fluctuations involve Gaussian Free Field?

Circular S-ensembles V = 0 = random empirical measure

N
t
p(w) = N > 6w —w;).
i=1
Compare: N — oo limit shape and Gaussian fluctuations:
1(_
p~pet L A)(¢]T)
where p, is uniform measure on T and ® is a GFF on C.

> 3 =2: Szegd (1915), Diaconis-Shahshahani (1994)

» 3> 0: =~ Johansson (1998), or “obvious” since law circular
B-ensembles depends only on empirical measure via

1
Prob[w, ..., wy] = ?exp< — fiNQ/g[/)]>

which is just a conditioned p = —A® for ® GFF on C.



Conclusion

Why do Jack Measure fluctuations involve Gaussian Free Field?

Wait, did we already see Circular 3-Ensembles — GFF71?]

» Amazing Fact: p, = pfhpg7£2 e pfk -+ are not orthogonal
with respect to (-, -)1.5,n, but they are orthogonal in limit

out in
<Fout, ,;_—in>7€152 — lim <F , F >T;/3;N
N— oo <1, 1>T;5;N

Conclusion: Stanley-Cauchy identity defining Jack measures

Vout\/ \/out in
H exp( ) -y Py(Voutlez, e1)PA(V™"|e2, 1)

_;:1;:2/( A€Y <P)\7 P)\>—51€2

factorizes in variables V) precisely due to GFF fluctuations
of circular B-ensembles with V = 0.



Conclusion

Review:
1. Jack measures My (g2,¢1) for every symbol v : T — R
via N-body circular B-ensembles in background V
2. Limit shapes and global fluctuations as push-forwards
3. Lax operator £ = T(v|—e162) + (¢1 + €2)D plays role
of matrix model for Jack measure arbitrary 5 and V
4. Toeplitz operators with symbol v and ribbon path

expansion: a non-recursive analog of the
Chekhov-Eynard refined topological recursion

Outlook:

» Our v analytic, yet have new spectral theory grounded
in classical analysis: towards symbols of low regularity.

» L via quantization of classical of Benjamin-Ono fluid
with periodic v ... dynamical meaning of results?



Thank you!




