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Conservation laws in one space dimension

Continuum physics is based on conservation laws

∂tu(t, x) + div J(t, x) = 0, t ≥ 0, x ∈ R
q ,

where:
! u = (u1, . . . , ud) ∈ Rd is the vector of densities of conserved quantities,
! div J = (div J1, . . . ,div Jd) with Jγ ∈ Rq being the current of uγ ,

supplemented with constitutive relations

J = f(u),

where f is the flux function.
Throughout this talk, q = 1: one space dimension.

! Relevant e.g. for gas dynamics or road traffic.
! Resulting equation is the nonlinear conservation law

∂tu+ ∂xf(u) = 0,

with f : Rd → Rd.
! Possibility of introducing a dissipation mechanism by adding a viscosity term

1
2∂xxA(u) on the right-hand side.

Scalar conservation law d = 1 System of conservation laws d ≥ 2
Thin notations u, f , ... Bold notations u, f , ...
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Probabilistic interpretation of one-dimensional conservation laws

! Assume that initial conditions u1
0, . . . , u

d
0 : R → R are monotonic and bounded.

! Up to rescaling: u1
0, . . . , u

d
0 : R → [0, 1] are Cumulative Distribution Functions of

m1, . . . ,md ∈ P(R).
! The coordinates of the solution u1(t, ·), . . . , ud(t, ·) are expected to remain CDFs.

Lagrangian description

! Do these CDFs describe the evolution of a continuum of particles on R, with an
intrinsic dynamics?

! What can be deduced from this Lagrangian description?

Scalar case with viscosity: nonlinear Fokker-Planck equation.
! McKean-Vlasov approach: mean-field particle system, propagation of chaos.
! Initiated by Bossy, Talay (Ann. Appl. Probab. 96, Math. Comp. 97), Jourdain (ESAIM:

P&S 97, Stoch. Proc. Appl. 00), Shkolnikov (Stoch. Proc. Appl. 10), ...

Without viscosity: inviscid Burgers-like equation.
! Related with pressureless gas dynamics, turbulence models.
! Works by E, Rykov, Sinai (Comm. Math. Phys. 96), Brenier, Grenier (SIAM J. Numer.

Anal. 98), Bolley, Brenier, Loeper (J. Hyperbolic Differ. Equ. 05), ...
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The nonlinear Fokker-Planck equation

We consider here the scalar parabolic Cauchy problem

⎧

⎨

⎩

∂tu+ ∂xf(u) =
1

2
∂xxA(u),

u(0, x) = u0(x),

! u0(x) = H ∗m(x), CDF of m ∈ P(R), H(x) := 1{x≥0},

! f, A ∈ C1([0, 1]), f ′(u) = b(u), A′(u) = σ2(u)> 0.

The space derivative Pt := ∂xu(t, ·) satisfies the nonlinear Fokker-Planck equation

⎧

⎨

⎩

∂tPt =
1

2
∂xx(σ

2(H ∗ Pt)Pt)− ∂x(b(H ∗ Pt)Pt),

P0 = m,

associated with nonlinear (in McKean’s sense) diffusion process on the line
{

dXt = b(H ∗ Pt(Xt))dt + σ(H ∗ Pt(Xt))dWt,

Xt ∼ Pt, X0 ∼ m.

The coefficients of the diffusion depend on the law of Xt!
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McKean’s procedure: the particle system

McKean’s idea: replace nonlinearity with interaction.
! Introduce n copies X1,n

t , . . . ,Xn,n
t driven by independent Brownian motions

W 1
t , . . . ,W

n
t ,

! replace Pt with empirical measure µn
t := 1

n

∑n
i=1 δXi,n

t
.

We obtain a system of n particles on the line with mean-field interaction

dXi,n
t = b(H ∗ µn

t (X
i,n
t ))dt + σ(H ∗ µn

t (X
i,n
t ))dW i

t , Xi,n
0 ∼ m iid.

Approximation result: propagation of chaos in the space of sample-paths.
! Law of large numbers for the empirical measure µn := 1

n

∑n
i=1 δ(Xi,n

t )t≥0

,

converges to the unique solution P to the nonlinear martingale problem
associated with nonlinear SDE.

! For any fixed i ≥ 1, the law of (X1,n
t , . . . ,Xi,n

t )t≥0 converges to P⊗i.
! The solution u(t, ·) is well approximated by the empirical CDF of the particle

system.

LLN: Bossy, Talay (Ann. Appl. Probab. 96, Math. Comp. 97), Jourdain (ESAIM: P&S 97, Stoch.

Proc. Appl. 00), Shkolnikov (Stoch. Proc. Appl. 10), Jourdain, R. (Stoch. PDE: Anal. Comp. 13);
CLT: Jourdain (Methodol. Comput. Appl. Probab. 00);
LDP: Dembo, Shkolnikov, Varadhan, Zeitouni (Comm. Pure Appl. Math. 15+).
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Rank-based interacting diffusions

The particle system rewrites

dXi,n
t = b

⎛

⎝

1

n

n
∑

j=1

1
{Xj,n

t ≤Xi,n
t }

⎞

⎠dt + σ

⎛

⎝

1

n

n
∑

j=1

1
{Xj,n

t ≤Xi,n
t }

⎞

⎠ dW i
t ,

i.e. the particle ranked in k-th position has constant coefficients b(k/n) and σ(k/n).

! System of rank-based interacting diffusions, example of competing particles.
! Occurrence in spin glasses models: Ruzmaikina, Aizenman (Ann. Probab. 05),

Arguin, Aizenman (Ann. Probab. 09), systems of Brownian queues: Harrison 88.
! Important model of equity market in Stochastic Portfolio Theory: Fernholz 02,

Banner, Fernholz, Karatzas (Ann. Appl. Probab. 05), Jourdain, R. (Ann. Finance 15) to
name a few.

! Interesting ergodic theory: Pal, Pitman (Ann. Appl. Probab. 08), Jourdain, Malrieu
(Ann. Appl. Probab. 08), Banner, Fernholz, Ichiba, Karatzas, Papathanakos (Ann.

Appl. Probab. 11), R. (Electron. Commun. Probab. 15), to be discussed now.
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Long time behaviour: the particle system

! Our purpose: use the probabilistic representation to study the long time
behaviour of u(t, ·).

! We first address the particle system by means of classical ergodic theory of
diffusion processes.

Evolution of centre of mass X̄n
t := 1

n

∑n
i=1 X

i,n
t :

dX̄n
t = b̄ndt+

1

n

n
∑

k=1

σ(k/n)dW i
t , b̄n :=

1

n

n
∑

k=1

b(k/n),

Brownian motion with constant drift: does not converge!

Necessity of centering: define X̃i,n
t := Xi,n

t − X̄n
t , diffusion process in the hyperplane

Mn := {(x1, . . . , xn) ∈ R
n : x1 + · · ·+ xn = 0}.

Ergodicity of (X̃1,n
t , . . . , X̃n,n

t )?
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Ergodicity of the centered particle system

If σ2 is constant, the centered particle system rewrites

dX̃n
t = −(ΠnΠ

⊤
n )∇Vn(X̃

n
t )dt + σΠndWt ∈ Mn,

where

Vn(x) := −
n
∑

k=1

b(k/n)x(k), x(1) ≤ · · · ≤ x(n),

and Πn is the orthogonal projection on Mn.
! Typical gradient system, candidate equilibrium measure with density

exp
(

− 2
σ2 Vn(z)

)

with respect to surface measure dz on Mn.
! Pal, Pitman (Ann. Appl. Probab. 08):

∫

z∈Mn

exp

(

−
2

σ2
Vn(z)

)

dz < +∞

if and only if b satisfies the stability condition

∀l ∈ {1, . . . , n− 1},
1

l

l
∑

k=1

b(k/n) >
1

n− l

n
∑

k=l+1

b(k/n).

If σ2 is not constant: |z|2 is a Lyapunov functional under the stability condition,
enough to ensure ergodicity (Banner, Fernholz, Ichiba, Karatzas, Papathanakos (Ann.

Appl. Probab. 11), Jourdain, R. (Electron. J. Probab. 14)).
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Intermediary conclusion

For the long time behaviour of the particle system:
! Necessity of centering the system around Brownian motion with average velocity

b̄n =
1

n

n
∑

k=1

b(k/n) ≃

∫ 1

u=0
b(u)du = f(1) − f(0) =: b̄.

! Convergence to equilibrium if and only if stability
condition: for all l ∈ {1, . . . , n− 1},

1

l

l
∑

k=1

b(k/n) >
1

n− l

n
∑

k=l+1

b(k/n),

which roughly rewrites: for all u ∈ (0, 1),

f(u) − f(0)

u− 0
>

f(1) − f(u)

1− u
.

0 1

f(u)

! Jourdain, Malrieu (Ann. Appl. Probab. 08): if f uniformly concave and σ2 is
constant, then Poincaré inequality uniform in n, which implies exponential
decay to equilibrium at uniform rate.

What can be extended to nonlinear process?
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Average growth of the nonlinear process

Easy computation:

E[Xt] = E[X0] +

∫ t

s=0
E[b(H ∗ Ps(Xs))]ds

= E[X0] +

∫ t

s=0

∫ 1

u=0
b(u)duds = E[X0] + tb̄.

! Stationary behaviour can only be observed on fluctuation process X̃t = Xt − tb̄.
! A stationary distribution P̃∞ for this process has a CDF ũ∞ such that

u∞(t, x) := ũ∞(x− tb̄)

is a traveling wave solution to the original PDE ∂tu+ ∂xf(u) = 1
2∂xxA(u).

In the 1950s: Lax, Hopf, Gel’fand, Il’in, Oleinik, ... interested in 1D viscous shock
waves connecting constant states u± in ±∞, applications in kinetic chemistry.

u−

u+b̄

Waves are physically observable if they are stable under perturbations:
! if u0(x) = ũ∞(x) + v0(x), do we have ∥u(t, ·)− ũ∞(·− tb̄)∥ → 0?
! probabilistic formulation: convergence of X̃t to equilibrium measure P̃∞?
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Stability of viscous profiles

Stationary equation for ũ∞:
⎧

⎨

⎩

1

2
σ2(ũ∞)∂xũ∞ = f(ũ∞)− (1 − ũ∞)f(0) − ũ∞f(1),

ũ∞(−∞) = 0, ũ∞(+∞) = 1,

1D ODE solvable if and only if f satisfies Oleinik’s entropy condition

∀u ∈ (0, 1), f(u) > (1− u)f(0) + uf(1).

! Continuous version of our stability condition!
! Then all viscous profiles ũ∞ are translations of each other.

Stability of viscous profiles

Under Oleinik’s condition, if u0 − ũ∞ ∈ L1(R) and
∫

x∈R

(u0(x) − ũ∞(x))dx = 0 (i.e. E[X̃0] = E[X̃∞]),

then lim
t→+∞

∥u(t, ·)− ũ∞(·− tb̄)∥L1(R) = 0.

! Serre, Freistühler (Comm. Pure Appl. Math. 98), Gasnikov (Izv. Ross. Akad. 09).
! Rate of convergence: transfer of information from space decay of initial

perturbation to time decay to equilibrium, no general exponential decay!
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The gradient flow approach

The Wasserstein distance on P(Rq)

For p ∈ [1,+∞) and µ, ν ∈ Pp(Rq),

Wp(µ, ν) := inf (E[|X − Y |p])1/p ,

taken on couplings (X, Y ) of µ and ν.

! Jordan, Kinderlehrer, Otto (SIAM J. Math. Anal. 98): interpret (P2(Rq),W2) as a
infinite-dimensional Riemannian manifold, allows to make formal sense of
gradient flow

∂tpt = −Grad E[pt], E : P2(R
q) → R.

In particular, the linear Fokker-Planck equation

∂tpt = ∆pt + div(pt∇V )

is the gradient flow of the free energy

F [p] :=

∫

x∈Rq
p(x) log p(x)dx+

∫

x∈Rq
V (x)p(x)dx.

! Carrillo, McCann, Villani (Rev. Mat. Iberoamericana 03, Arch. Ration. Mech. Anal. 06)
extend to McKean-Vlasov (nonlinear Fokker-Planck) models, study long time
behaviour, also Bolley, Gentil, Guillin (Arch. Ration. Mech. Anal. 13).
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The free energy of conservation laws

For the sake of simplicity we assume f(0) = 0, b̄ = f(1) = 0, so that X̃t = Xt.

In our case, it turns out that
∂tpt = −GradF [pt]

with
F [p] =

1

2

∫

x∈R

σ2(H ∗ p(x))p(x) log p(x)dx+

∫

x∈R

f(H ∗ p(x))dx.

! Formal computation:

d

dt
F [pt] = −|GradF [pt]|

2 ≤ 0,

free energy is a Lyapunov functional, pt converges to local minimisers.
! Uniqueness of minimiser (with prescribed expectation) provided by convexity of

F along geodesics.
! Existence of an explicit minimiser: the viscous profile ũ∞!

The ‘free energy’ approach allows to recover the classical stability results.

Rates of convergence depend on curvature of F : currently under investigation.
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Kruzkov’s Theorem

We let the viscosity be A(u) = 2ϵu, and call uϵ the solution to the Cauchy problem
{

∂tu
ϵ + ∂xf(u

ϵ) = ϵ∂xxu
ϵ,

uϵ(0, x) = u0(x).

When ϵ ↓ 0, uϵ should converge to a weak solution to
{

∂tu+ ∂xf(u) = 0,

u(0, x) = u0(x),

but such solutions are not unique in general.

Entropy solution

An entropy solution is a function u : [0,+∞)× R → [0, 1] satisfying

∂tE(u) + ∂xF (u) ≤ 0

in the distributional sense, for all pair of entropy-entropy flux functions (E,F ) such
that E is convex and F ′ = f ′E′.

Kruzkov’s Theorem (Mat. Sb. 70)

In the vanishing viscosity limit ϵ ↓ 0, uϵ converges to the unique entropy solution u.
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The vanishing viscosity limit in the scalar case I

We have the following diagram:

Rank-based diffusions Parabolic PDE

Hyperbolic PDE
(entropy solution)

n → +∞

ϵ ↓ 0
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The vanishing viscosity limit in the scalar case I

We have the following diagram:

Rank-based diffusions Parabolic PDE

Hyperbolic PDE
(entropy solution)

n → +∞

ϵ ↓ 0

?

Can we go the other way around?

Julien Reygner Conservation laws and optimal transport in one dimension



Scalar case with viscosity: stability of traveling waves
The inviscid limit: sticky particle dynamics

Wasserstein stability estimates for hyperbolic systems

Sticky particle dynamics in the scalar case
Approximation of hyperbolic systems

Small noise limit of rank-based diffusions

Toy example of 2 particles with ‘converging’ drifts b− > b+:

0.0 0.5 1.0 1.5 2.0 2.5 3.0
−1.0

−0.5

0.0

0.5

1.0

1.5

! After first collision, particles remain confined around centre of mass.
! Average velocity of centre of mass is (b− + b+)/2.
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Small noise limit of rank-based diffusions

Toy example of 2 particles with ‘converging’ drifts b− > b+:

0.0 0.5 1.0 1.5 2.0 2.5 3.0
−1.0

−0.5

0.0

0.5

1.0

1.5

! After first collision, particles remain confined around centre of mass.
! Average velocity of centre of mass is (b− + b+)/2.
! Small noise limit: particle stick together and form a cluster.
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Sticky particle dynamics

The sample-paths of the rank-based system converge to the sticky particle dynamics:
! the particle in k-th position has initial velocity b(k/n),
! particles stick together into clusters at collisions, with preservation of mass and

momentum but dissipation of kinetic energy.

t

x
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Sticky particle dynamics

The sample-paths of the rank-based system converge to the sticky particle dynamics:
! the particle in k-th position has initial velocity b(k/n),
! particles stick together into clusters at collisions, with preservation of mass and

momentum but dissipation of kinetic energy.

t

x

x1(0)

x2(0)
x3(0)

x4(0)
x5(0)

x6(0)
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Sticky particle dynamics

The sample-paths of the rank-based system converge to the sticky particle dynamics:
! the particle in k-th position has initial velocity b(k/n),
! particles stick together into clusters at collisions, with preservation of mass and

momentum but dissipation of kinetic energy.

t

x

x1(0)

x2(0)
x3(0)

x4(0)
x5(0)

x6(0)

b(1/n)
b(2/n)
b(3/n)

b(4/n)
b(5/n)

b(6/n)
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Sticky particle dynamics

The sample-paths of the rank-based system converge to the sticky particle dynamics:
! the particle in k-th position has initial velocity b(k/n),
! particles stick together into clusters at collisions, with preservation of mass and

momentum but dissipation of kinetic energy.

t

x

x1(0)

x2(0)
x3(0)

x4(0)
x5(0)

x6(0)

Velocity of the cluster: 1

5
(b(1/n) + · · · + b(5/n))

Adhesive dynamics introduced in physics (motion of large structure in the universe,
pressureless gases), see in particular E, Rykov, Sinai (Comm. Math. Phys. 96).
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Sticky particle dynamics: large scale behaviour

The Sticky Particle Dynamics defines a flow (x1(t), . . . , xn(t))t≥0 in the polyhedron

Dn := {(x1, . . . , xn) ∈ R
n : x1 ≤ · · · ≤ xn}.

Large scale behaviour: Brenier, Grenier (SIAM J. Numer. Anal. 98)

If the initial positions (x1(0), . . . , xn(0)) ∈ Dn satisfy

u0,n(x) :=
1

n

n
∑

k=1

1{xk(0)≤x} → u0(x), dx-a.e.,

then for all t ≥ 0,

un(t, x) :=
1

n

n
∑

k=1

1{xk(t)≤x} → u(t, ·), dx-a.e.,

where u is the entropy solution of the conservation law with initial condition u0.

Jourdain, R. (arXiv:1507.01085): L1 rate of convergence in ∥u0,n − u0∥L1(R) + Ct/n if
b = f ′ is Lipschitz continuous.
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The vanishing viscosity limit in the scalar case II

We can complete the diagram:

Rank-based diffusions Parabolic PDE

Hyperbolic PDE
(entropy solution)

n → +∞

ϵ ↓ 0

Sticky particle dynamics

Can we now extend this to the case of systems?
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Hyperbolic systems: existence and uniqueness theory

We now take d ≥ 2 and address the system of conservation laws

∂tu+ ∂xf(u) = 0,

with u = (u1, . . . , ud) and f : Rd → Rd. Under nonconservative form,

∂tu+ b(u)∂xu = 0,

with b(u) being the Jacobian matrix of f . The system is hyperbolic when b(u) has real
eigenvalues

λ1(u) ≥ · · · ≥ λd(u),

and strictly hyperbolic if λ1(u) > · · · > λd(u).

! Existence of weak solutions goes back to Glimm (Comm. Pure Appl. Math. 65).
! No theory of uniqueness / identification of the vanishing viscosity limit before

Bianchini, Bressan (Ann. of Math. 05).
! Framework of Bianchini-Bressan theory: strictly hyperbolic system, data u0 with

small total variation on the line.
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Diagonalisation

In some cases, the system can be written under the diagonal form

∀γ ∈ {1, . . . , d}, ∂tuγ + λγ(u)∂xuγ = 0.

We take the probabilistic data

∀γ ∈ {1, . . . , d}, uγ(0, x) = uγ
0 (x),

with uγ
0 = H ∗mγ , mγ ∈ P(R).

Remark: data do not have a small total variation; we recover the Bianchini-Bressan
framework under the uniformly strict hyperbolicity (USH) assumption

∀γ ∈ {1, . . . , d− 1}, inf
u∈[0,1]d

λγ(u) > sup
v∈[0,1]d

λγ+1(v).

! Can we define a particle system that approaches solutions to the system?
! Can we derive contraction or stability estimates?
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The Multitype Sticky Particle Dynamics

Scalar case: ∂tu+ b(u)∂xu = 0, system case: ∂tuγ + λγ(u)∂xuγ = 0.

We have d CDFs u1, . . . , ud to approximate.
! We introduce d systems of n particles on the line.
! Each system is associated with a type γ ∈ {1, . . . , d}.

The k-th particle of type γ has an initial velocity

λγ
(

k1

n
, . . . ,

kd

n

)

,

where kδ is the rank of the particle in the system of type δ.
! To reproduce the entropic behaviour of the scalar case, each system evolves

according to the typewise sticky particle dynamics in Dn.
! At collisions between clusters of different types: update of the velocities according

to post-collisional order.
! Assumption USH ensures that post-collisional is prescribed without ambiguity.

The configuration space is Dd
n = Dn × · · ·×Dn with typical elements

x = {xγ
k ∈ R : 1 ≤ k ≤ n, 1 ≤ γ ≤ d},

and the MSPD defines a continuous flow x(t) ∈ Dd
n.
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A trajectory of the Multitype Sticky Particle Dynamics

d = 4 types, n = 10 particles.
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A compactness result

Approximation of solutions by the MSPD

Assume USH and that λ1, . . . ,λd are continuous on [0, 1]d. If the sequence of initial
configurations x(0) ∈ Dd

n is such that

∀γ ∈ {1, . . . , d},
1

n

n
∑

k=1

δxγ
k
(0) → mγ ,

then any subsequence of the sequence of empirical CDFs un has a converging
subsequence and its limit is a weak solution to the diagonal hyperbolic system with
initial data uγ

0 = H ∗mγ .

Proof by a tightness argument on the measure

1

n

n
∑

k=1

δ(x1

k
(t),...,xd

k
(t))t≥0

in P(C([0,+∞);Rd)), see Jourdain, R. (arXiv:1501.01498).
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Stability estimates

Purpose of this section: establish stability estimates of the form

dist(u(t, ·),v(t, ·)) ≤ L× dist(u0,v0),

where u and v denote two solutions of:
! either scalar conservation law,
! or hyperbolic system in diagonal form,

with initial conditions u0 and v0.

We shall proceed by establishing a uniform discrete stability estimate first on the
associated particle system

dist(un(t, ·),vn(t, ·)) ≤ L× dist(u0,n,v0,n),

with L that does not depend on n.

An appropriate choice of distance is the Wasserstein distance between coordinates uγ

and vγ .
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The Wasserstein distance in one dimension

We recall that Wp(µ, ν) := inf (E[|X − Y |p])1/p, with X ∼ µ, Y ∼ ν in Rq .

Explicit optimal coupling

If q = 1, then an explicit optimal coupling is provided by

(X, Y ) = (H ∗ µ−1(U), H ∗ ν−1(U)), U ∼ Unif[0, 1],

where F−1(u) := inf{x ∈ R : F (x) ≥ u}.

As a consequence,

W p
p (µ, ν) =

∫ 1

u=0
|H ∗ µ−1(u) −H ∗ ν−1(u)|pdu.

In particular if

µn =
1

n

n
∑

k=1

δxk , νn =
1

n

n
∑

k=1

δyk ,

with x1 ≤ · · · ≤ xn and y1 ≤ · · · ≤ yn in Rn, then

W p
p (µ

n, νn) =
1

n

n
∑

k=1

|xk − yk|
p.
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Contraction for SPD

Given two initial configurations x1(0) ≤ · · · ≤ xn(0) and y1(0) ≤ · · · ≤ yn(0), the
empirical CDFs un and vn satisfy

∀t ≥ 0, W p
p (un(t, ·), vn(t, ·)) =

1

n

n
∑

k=1

|xk(t) − yk(t)|
p.

Define φ(t),ψ(t) ∈ Rn by

dt-a.e., ẋk(t) = b(k/n) + φk(t), ẏk(t) = b(k/n) + ψk(t),

so that φ and ψ stand for the constraint of remaining in Dn.

! Elementary computations show that φ(t), ψ(t) are orthogonal to ∂Dn, dt-a.e.,
! convexity of Dn then implies that ℓp distance is nonincreasing between

configurations.

∂Dn

b
•

x(t)

ψ(t)
•
y(t)

Here with p = 2:

d

dt
|x(t) − y(t)|2 = 2⟨x(t) − y(t),−ψ(t)⟩ ≤ 0.
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Contraction in Wasserstein distance for scalar case

We deduce that for all t ≥ 0, Wp(un(t, ·), vn(t, ·)) ≤ Wp(un(0, ·), vn(0, ·)).

Taking the limit when n → +∞, we obtain:

Contraction in Wasserstein distance

For all p ∈ [1,+∞), the entropy solutions u and v to scalar conservation law with initial
condition u0, v0 CDFs on R, satisfy

∀t ≥ 0, Wp(u(t, ·), v(t, ·)) ≤ Wp(u0, v0).

! See also Bolley, Brenier, Loeper (J. Hyperbolic Differ. Equ. 05) for a different proof.
! When p = 1,

W1(u, v) = ∥u−1 − v−1∥L1(0,1) = ∥u− v∥L1(R),

i.e. we recover classical L1 stability

∀t ≥ 0, ∥u(t, ·)− v(t, ·)∥L1(R) ≤ ∥u0 − v0∥L1(R).
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ℓp stability of MSPD

Purpose: obtain ℓp stability estimates as in the scalar case. We assume USH and
λ1, . . . , λd are Lipschitz continuous on [0, 1]d.

Take x(0) ∈ Dd
n and y(0) = x(0) + δx(0), small perturbation.

! Trajectories x(t) and y(t) very similar.
! Most of the time, both configurations are in the same order: ℓp distances are

nonincreasing under typewise sticky particle dynamics.
! On collision intervals: elementary geometric arguments yield

|xγ
k − yγk |after collision ≤

(

1 +
C

n

)

|xγ
k − yγk |before collision + lower order terms,

and since each particle sees at most n(d− 1) collisions, we conclude that there
exists Lp ∈ [1,+∞) uniform in n and x(0), y(0) such that

d
∑

γ=1

n
∑

k=1

|xγ
k(t) − yγk (t)|

p ≤ Lp
p

d
∑

γ=1

n
∑

k=1

|xγ
k(0) − yγk (0)|

p.

The inequality is made global in x(0),y(0) by interpolation procedure.
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Global convergence result for MSPD

Taking the limit n → +∞ in discrete stability estimates, we finally obtain the following
main result.

Theorem: convergence of MSPD, Jourdain, R. (arXiv:1501.01498)

Assume USH and Lipschitz continuity.
! The empirical CDFs un of the MSPD converge to the unique Bianchini-Bressan

solution to the diagonal hyperbolic system.
! This solution induces a semigroup on P(R)d.
! It satisfies the Wasserstein stability estimates

∀t ≥ 0,
d

∑

γ=1

W p
p (u

γ(t, ·), vγ (t, ·)) ≤ Lp
p

d
∑

γ=1

W p
p (u

γ
0 , v

γ
0 ).

! Natural probabilistic construction of solutions in the framework ‘large data +
USH’, alternative to known methods.

! Novel Wasserstein stability estimates.
! MSPD naturally leads to numerical schemes for simulations, error estimates

derived in Jourdain, R. (arXiv:1507.01085).
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