A Singular Journey In Optimisation problems Involving Index Processes

Probability, Control, Finance Conference In honor of Karatzas Birthday Columbia 9 Juin 2012

by Nicole El Karoui Université Pierre et Marie Curie, Ecole Polytechnique, Paris email : elkaroui@gmail.com

1

The Magic world of optimisation

- At the end of 80'st, Ioannis introduces me at new (for me) optimization problem :
- Singular control problem
- Finite fuel
- Multi armed Bandit problem
- All had in common the same type of methodology :
 - their are convex problems with respsect to some (eventually artificial parameter)
 - the derivatives of the value function with respect to this parameter is easy to compute
 - Come back to the primitive problem by simple integration give new and useful representation

Reply to Remarks IT NICOLE (dated 30 AUR '93) on our CONTINUOUS-TIME DYNAMIC ALLOCATION Paper Have changed everything accordingly. o(t;m) 0 02 O1 m t $M(t, \theta_i)$ $M(t, \theta_2)$ M(t; 0) $\{\mathcal{I}_{M} \mid \sigma(t; m) > \theta_{2}\} = [O, \underline{M}(t, \theta_{2})), Same For \theta_{1}$ It seems to we that, for this to work, are need to take M(t,.) right - cartineous, as in the picture (looked at, of course, from the other side of the paper !). This M(t,) is indeed characterised by $\underline{M}(t,0) = \sup\{m \ge 0/\sigma(t,m) > 0\} = \inf\{m \ge 0/\sigma(t,m) \le 0\}$ and I am making this correction. 10,00 (0,1

Juin 2012

B

Introduction to Bandit Problem

What is a Multi-Armed bandit problem?

- There are *d*-independent projects (investigations, arms) among which effort to be allocated.
- By engaging one project, a stochastic reward is accrued, influencing the time-allocation strategy
- \Rightarrow Trade-off between exploration (trying out each arm to find the best one) and exploitation (playing the arm believed to give the best payoff)
- Discrete-time version is well-understood for a long time (Gittins (74-79), Whittle (1980))
- Continuous-time version received also a lot of attention (Karatzas (84), Mandelbaum (87), Menaldi-Robin (90), Tsitsiklis (86), NEK-Karatzas (93,95,97)

Introduction II

Renewed interest in Economy

- RD problems (Weitzman &...(1979,81)
- Strategic experimentation with learning on the quality of some project (Poisson uncertainty) (Keller, Rady, Cripps (2005))
- Learning in matching markets such as labor and consumer good markets : Jovanovic (1979) applies a bandit problem to a competitive labor markets.
- Strategic Trading and Learning about Liquidity (Hong& Rady(2000))

Principle of the solution (Gittins,Whittle)

- \Rightarrow To associate to each projet some rate of performance (Gittins index)
- ⇒ To maximize Gittins indices over all projects and at any time engaged a project with maximal current Gittins index
- \Rightarrow The essential idea is that the evolution of each arm does not depends on the running time of the other arms.

General Framework

Several projects (i = 1, ...d) are competing for the attention of a single investigator

- $T_i(t)$ is the total time allocated to project *i* during the time *t*, with $\sum_{i=1}^{d} T_i(t) = (\leq)t$
- By engaging project i at time t, the investigator accrues a certain reward $h_i(T_i(t))$ per unit time,
- discounted at the rate $\alpha > 0$ and multiplied by the intensity $i(t) = dT_i(t)/dt$ with which the project is engaged.
- $h_i(t)$ is a progressive process adapted to the filtration \mathcal{F}_i , independent of the other.
- \Rightarrow The objective is to allocate sequentially the time between these projects optimally

$$\Phi := \sup_{(T_i)} \mathbb{E} \Big[\sum_{i=1}^d \int_0^\infty e^{-\alpha t} h_i(T_i(t)) dT_i(t) \Big].$$

Decreasing Rewards

Pathwise solution without probability

Deterministic case and concave analysis (modified pay-off with $\alpha = 0$, and finite horizon T)

- Let $(\underline{\mathbf{h}}_i)$ be the family of right-continuous decreasing positive pay-offs, with $\underline{\mathbf{h}}_i(0) > 0$ $(\underline{\mathbf{h}}_i(t) = 0$ for $t \ge \zeta$. and $H_i(t)$ the primitive of h_i with $H_i(0) = 0$, assumed to be constant after some date ζ .
- H_i is a concave increasing function, with convex decreasing Fenchel conjuguate $G_i(m) = \sup_{t \leq T} \{H_i(t) - tm\}$ with derivative $G'_i(m) = \sigma_i(m)$. $\mathbf{H}_i(\mathbf{t}) = \int_0^\infty \mathbf{t} \wedge \sigma_i(\mathbf{m}) \mathbf{d}\mathbf{m}$.
- The criterium is now

$$\Phi_T := \sup_{(T_i)} \sum_{i=1}^d \int_0^T \underline{\mathbf{h}}_i(T_i(t)) dT_i(t) = \sup J_T(\mathcal{T})$$

over all strategies : $\mathcal{T} = (T_i)$ with $\sum_{i=1}^{d} T_i(t) = t$.

Criterium Transformation

$$\mathbf{J}_{\mathbf{T}}(\mathcal{T}) := \sum_{i=1}^{d} \int_{0}^{T} \underline{\mathbf{h}}_{i}(T_{i}(t)) dT_{i}(t) = \sum_{\mathbf{i}=1}^{\mathbf{d}} \mathbf{H}_{\mathbf{i}}(\mathbf{T}_{\mathbf{i}}(\mathbf{T}))$$

Proof

•
$$\underline{\mathbf{h}}_{i}(T_{i}(t)) = \int_{0}^{\infty} \mathbf{1}_{\{m < \underline{\mathbf{h}}_{i}(T_{i}(t))\}} dm = \int_{0}^{\infty} \mathbf{1}_{\{T_{i}(t)\} < \sigma_{i}(m)\}} dm$$

•
$$\sum_{i=1}^{d} \mathbf{1}_{\{T_{i}(t)\} < \sigma_{i}(m)\}} dT_{i}(t) = \sum_{i=1}^{d} d(T_{i}(t) \land \sigma'_{i}(m))$$

$$\Rightarrow J_{T}(\mathcal{T}) = \int_{0}^{\infty} dm \int_{0}^{T} d(T_{i}(t) \land \sigma_{i}(m)) = \int_{0}^{\infty} dm T_{i}(T) \land \sigma_{i}(m)$$

Remark : Assume that the reward functions (h_i) are not decreasing. The same properties hold true by using the **concave envelope** of $\int_0^t h_i(s)ds$, defined through its conjugate $G_i(m) = \sup_t \{\int_0^t (h_i(s) - m)ds\}.$

Max-convolution problem

New formulations

• The **bandit problem** becomes

$$\Phi_T := \sup\{\sum_{i=1}^d H_i(T_i(T)) | T_i \text{ increasing, and } \sum_{i=1}^d T_i(t) = t, \forall t \le T\}$$

• The Max-Convolution problem with value function V(t) is :

$$V(t) := \sup_{(\theta_i(t))} \{ \sum_{i=1}^d H_i(\theta_i(t)) | \sum_{i=1}^d \theta_i(t) = t, \}$$

• Showing that the problems are equivalent is obtained by constructing a monotone optimal solution for the Max-convolution problem.

Optimal Time Allocation in Max-Convolution Pb

- Main property The conjugate U(m) of the Max-Convolate V(t) is the sum of the conjugate functions $U(m) = \sum_{i=1}^{d} G_i(m)$, with derivative $\tau(m) = \sum_{i=1}^{d} \sigma_i(m)$.
- $V(\tau(m)) = \tau(m)m U(m) = \sum_{i=1}^{d} (m\sigma_i(m) G_i(m)) = \sum_{i=1}^{d} H_i(\sigma_i(m))$

Optimal time allocation

- Let $V'(t) = \underline{M}_t$ be the decreasing derivative of V, also the inverse of $\tau(m)$, and called the **Gittins Index** of the problem.
- The optimal time allocation is the increasing process $\theta_i^*(t) = \sigma_i(V'(t))$
- The optimal allocation is **of Index type**, i.e. maximizing the index $V'(t) = \sup_i \underline{h}_i(\theta_i^*(t)) = \sup_i \underline{h}_i(\sigma_i(V'(t))).$

In the case of strictly decreasing continuous pay-offs, all projects may be engaged at the same time.

The Stochastic Decreasing case

Pathwise static problem

- Assume the decreasing pay-off as $\underline{h}_i(t, \omega) = \inf_{0 \le u \le t} k_i(u, \omega)$ where $k_i(t)$ is $\mathcal{F}_i(t)$ -adapted.
- The inverse process of $\underline{\mathbf{h}}_i(t)$ is given by the stopping time $\sigma_i(m) = \sup\{t \mid \underline{\mathbf{h}}_i(t) \leq m\}$
- The strategic allocation $T_i(t)$ is an $\mathcal{F}_i(t)$ -adapted non decreasing cadlag process.
- All the previous results hold true, but the optimality is more difficult to establish, because the $\mathcal{F}_i(t)$ -mesurability constraint.
- We have to use multi-parameter stochastic calculus, as Mandelbaum (92), Nek.Karatzas(93-97)

Today, we are concerned by the one- dimensional problem, which consists in replacing any adapted and positive process h_i by a decreasing process $\underline{M}_i(t) = \sup_{s < t} M_i(s)$ where M_i is called **the Index process**.

Max-Plus decomposition

Different Type of Max-Plus decomposition

• In our context, the problem is to find an adapted Index process M(t)

$$V_t = \mathbb{E}\left[\int_t^\infty e^{-\alpha s} h(s) ds | \mathcal{F}_t\right] = \mathbb{E}\left[\int_t^\infty e^{-\alpha s} \sup_{t < u < s} M(u) ds | \mathcal{F}_t\right] = \mathbb{E}\left[\int_t e^{-\alpha s} \underline{M}_{t,s} ds | \mathcal{F}_t\right]$$

 More generally, in a Markov framework (Foellmer -Nek (05), (Foellmer, Riedel), the problem is to represent any fonction u(x) as

$$u(x) = \mathbb{E}_x \left[\int_0^{\zeta} \sup_{0 < u < t} f(X_t) dB_t \right], \quad B \text{ additive fonctional}$$

• In Bank-Nek (04), Bank-Riedel (01) the problem motivated by consumption problem is to solve for "any " adapted process X

$$X_t = \mathbb{E}\left[\int_t^{\infty} G(s, \sup_{t < u < s} L_s) ds | \mathcal{F}_t\right], \quad G(s, l) \text{ decreasing in } l$$

The class of supermartingale decomposition II

- Nek-Meziou (2002,2005) for general process
- Foellmer Knispel (2006)

See P. Bank, H. Follmer (02), American Options, Multi-armed Bandits, and Optimal Consumption Plans : A Unifying View, Paris-Princeton Lectures on Mathematical Finance 2002, Lecture Notes in Math. no. 1814, Springer, Berlin, 2003, 1-42.

Max-plus algebra Calculus

It is an idempotent **semiring** :

- $\Rightarrow \oplus = \max \text{ is a commutative, associative and idempotent operation : } a \oplus a = a,$ the zero = ϵ , is given by $\epsilon = -\infty$,
- \Rightarrow \otimes is an associative **product** distributive over addition, with a unit element
 - e = 0. ϵ is absorbing for $\otimes : \epsilon \otimes a = a \otimes \epsilon = \epsilon, \forall a$.

 $\Rightarrow \mathbb{R}_{\max}$ can be equipped with the natural order relation :

$$a \succeq b \iff a = a \oplus b.$$

 \Rightarrow Linear Equation. The set of solutions x of $z \oplus x = m$ is empty if $m \leq z$. If not, the set has a greatest element x = m.

Max-Plus Supermartingale Decomposition

Let Z be a càdlàg supermartingale in the class (\mathcal{D}) defined on $[, \zeta]$.

• There exists $L = (L_t)_{\leq t \leq \zeta}$ adapted, with upper-right continuous paths with **running supremum** $L_{t,s}^* = \sup_{t \leq u \leq s} L_u$, s.t.

$$\mathbf{Z}_{\mathbf{t}} = \mathbb{E}\left[(\sup_{t \le u \le \zeta} L_u) \lor Z_{\zeta} | \mathcal{F}_t\right] = \mathbb{E}\left[L_{t,\zeta}^* \oplus Z_{\zeta} | \mathcal{F}_t\right] = \mathbb{E}\left[\oint_{\mathbf{t}}^{\zeta} \mathbf{L}_{\mathbf{u}} \oplus \mathbf{Z}_{\zeta} | \mathcal{F}_t\right]$$

• Let M^{\oplus} be the martingale : $\mathbf{M}^{\oplus}_{\mathbf{t}} := \mathbb{E}[L^*_{\mathbf{0},\zeta} \oplus Z_{\zeta} | \mathcal{F}_t)]$. Then,

$$M_t^{\oplus} \ge \max(Z_t, L_{\mathbf{0},t}^*) = Z_t \oplus L_{\mathbf{0},t}^* \le t \le \zeta$$

and the equality holds at times when L^* increases or at maturity ζ :

$$M_S^{\oplus} = \max(Z_S, L_{\mathbf{0},S}^*) = Z_S \oplus L_{\mathbf{0},S}^* \quad \text{for all stopping times } S \in \mathcal{A}_{L^*} \cup \{\zeta\}.$$

Uniqueness in the Max-Plus decomposition

Let $Z \in \mathcal{D}$ be a cadlag **supermartingale** and assume that

- there exist two increasing adapted processes Λ_t^1 and Λ_t^2 ($\Lambda_{-0}^i = -\infty$) and two u.i. martingales M^1 and M^2 such that $\mathbf{M}_{\zeta}^{\mathbf{i}} = \mathbf{\Lambda}_{\zeta}^{\mathbf{i}} \vee \mathbf{Z}_{\zeta}$ and $\mathbf{M}_{\mathbf{0}}^{\mathbf{i}} = \mathbf{Z}_{\mathbf{0}}$
- Λ^i only increases at times when the martingale M^i hits the supermartingale Z, (flat-off condition)

$$\int_{[0,\boldsymbol{\zeta}]} (M_t^i - Z_t^i) d\Lambda_t^i = 0$$

• (M^i, Λ^i) are two (max-+) decompositions of Z ($\oplus = \lor = \max$)

 $\mathbf{M}_{\mathbf{t}}^{\mathbf{1}} \geq \mathbf{Z}_{\mathbf{t}} \oplus \mathbf{\Lambda}_{\mathbf{t}}^{\mathbf{1}}, \quad \mathbf{M}_{\mathbf{t}}^{\mathbf{2}} \geq \mathbf{Z}_{\mathbf{t}} \oplus \mathbf{\Lambda}_{\mathbf{t}}^{\mathbf{2}}.$

- $\Rightarrow M^1$ and M^2 are **indistinguishable** processes.
- \Rightarrow Given such a martingale M^{\oplus} , the set \mathcal{K} of Λ satisfying the above conditions has a **maximal** element Λ^{\max} which is also in \mathcal{K} .

If Z is bounded by below, Λ^{\max} is also bounded by below with the same constant.

Sketch of the proof when Z and Λ are bounded by below

Recall the assumption $\int_0^{\zeta} (M_s^i - Z_s) d\Lambda_s^i = 0$ with $\Lambda_{\zeta}^i \ge Z_{\zeta}$ Then, for any regular **convex** function (\mathcal{C}^2 with linear growth)g, $\mathbf{g}(\mathbf{0}) = \mathbf{0}$.

$$g(\mathbf{M}_{\zeta}^{1} - \mathbf{M}_{\zeta}^{2}) \leq g'(\mathbf{M}_{\zeta}^{1} - \mathbf{M}_{\zeta}^{2})(M_{\zeta}^{1} - M_{\zeta}^{2}) = g'(\mathbf{\Lambda}_{\zeta}^{1} - \mathbf{\Lambda}_{\zeta}^{2})(M_{\zeta}^{1} - M_{\zeta}^{2})$$
$$\mathbb{E}\left[g(\mathbf{M}_{\zeta}^{1} - \mathbf{M}_{\zeta}^{2})\right] \leq$$

$$\mathbb{E}\left[g'(\Lambda_{\mathbf{0}}^{1}-\Lambda_{\mathbf{0}}^{2})(\mathbf{M}_{\zeta}^{1}-\mathbf{M}_{\zeta}^{2})\right] + \mathbb{E}\left[(M_{\zeta}^{1}-M_{\zeta}^{2})\int_{0}^{\zeta}g''_{d}(\Lambda_{t}^{1}-\Lambda_{t}^{2})(d\Lambda_{t}^{1}-\Lambda_{t}^{2})\right]$$
$$=\mathbb{E}\left[\int_{0}^{\zeta}(M_{\mathbf{t}}^{1}-M_{\mathbf{t}}^{2})g''_{d}(\Lambda_{t}^{1}-\Lambda_{t}^{2})(d\Lambda_{t}^{1}-\Lambda_{t}^{2})\right]$$
$$=\mathbb{E}\left[\int_{0}^{\zeta}(\mathbf{Z}_{t}-M_{t}^{2})g''_{d}(\Lambda_{t}^{1}-\Lambda_{t}^{2})d\Lambda_{t}^{1}-\int_{0}^{\zeta}(M_{t}^{1}-\mathbf{Z}_{t})g''_{d}(\Lambda_{t}^{1}-\Lambda_{t}^{2})d\Lambda_{t}^{2}\right] \leq \mathbf{0}$$

by the flat condition and the convexity of g. In particular, $\mathbb{E}\left[g(\mathbf{M}_{\zeta}^{1} - \mathbf{M}_{\zeta}^{2})\right] = 0$ for $\mathbf{g}(\mathbf{x}) = \mathbf{x}^{+}$

Darling, Ligget, Taylor Point of View, (1972)

Introduction DLT have studied American Call options with infinite horizon on discrete time supermartingale, sum of iid r.v. with negative expectation. They gave a large place to the running supremum of these variables.

- Z is a supermartingale on $[0, \zeta]$ and $\mathbb{E}[|Z_{0,\zeta}^*|] < +\infty \mathbb{E}[|Z_{t,\zeta}^*|] < +\infty$
- Assume Z to be a conditional expectation of some running supremum process L^{*}_{s,t} = sup_{s≤u≤t} L_u, such that E[|L^{*}_{0,ζ}|] < +∞ and Z_t = E[L^{*}_{t,ζ}|F_t]
 American Call options Let C_t(Z, m) be the American Call option with strike m,
 C_t(Z, m) = ess sup_{t≤S≤ζ} E[(Z_S m)⁺|F_t]. Then

$$\mathbf{C_t}(\mathbf{Z},\mathbf{m}) = \mathbb{E}ig[ig(\mathbf{L^*_{t,\zeta}} ee \mathbf{Z}_{\zeta} - \mathbf{m}ig)^+ | \mathcal{F_t}ig]$$

and the stopping time $\mathbf{D}_{\mathbf{t}}(\mathbf{m}) = \inf\{s \in [t, \zeta]; L_s \ge m\}$ is optimal.

Proof

- $\Rightarrow \mathbb{E}[(L_{t,\zeta}^* m)^+ | \mathcal{F}_t] \text{ is a supermatting ale dominating } \mathbb{E}[L_{t,\zeta}^* | \mathcal{F}_t] m = Z_t m,$ and so $C_t(Z,m)$
- ⇒ Conversely, since on $\{\theta = D_t(m) < \infty\}$, $L_{\theta,\zeta}^* \ge m$, at time $\theta = D_t(m)$, we can omit the sign +, and replace $(L_{\theta,\zeta}^* m)$ by its conditional expectation $Z_{D_t(m)} m$, still nonnegative.

Main question :

To find numerical method to calculate a Max-Plus Index

- Directly by using AY-martingale (elementary)
- By characterization through optimization problems (Gittins, Karatzas, Foellmer)

based on Azéma-Yor martingales –

Closed Formulae based on Azéma-Yor martingales

Azéma-Yor Martingales (1979)

Definition Let X be a càdlàg local semimartingale with $X_0 = a$ and $X_t^* = \sup_{0 \le s \le t} X_s$ its running supremum assumed to be nonnegative. Then for any finite variation function u, with locally integrable right-hand derivative u', the process $M^{\mathbf{u}}(X)$

$$M_t^{\mathbf{u}}(X) = u(X_t^*) + u'(X_t^*)(X_t - X_t^*)$$

is a local martingale, called the **Azéma-Yor** martingale associated with (u, X). Main properties

- $\Rightarrow M_t^{\mathbf{u}}(X) = M_0^{\mathbf{u}}(X) + \int_0^t u'(X_t^*) \, dX_s, \tag{1}$
- ⇒ If u' is only defined on [a, b), $M^{\mathbf{u}}(X)$ may be defined up to the exit time ζ of [a, b) by X.
- ⇒ Assume u' to be non negative. Then the running supremum of $M^{\mathbf{u}}(X)$ is given by $u(N_t^*)$

Bachelier equation

First introduced by Bachelier in 1906.

Def: Let $\phi : [a^*, \infty)$ be a locally bounded away from 0 function and X a local martingale with continuous running supremum. The Bachelier equation is

 $dY_t = \phi(Y_t^*)dX_t$

Example Let u be a increasing function, v the inverse function of u, and $\phi = u' \circ v = 1/v'$. Then $M^u(X)$ the AY-martingale associated with u is a solution of the Bachelier equation.

Bachelier equation, (suite)

Th: Let $\phi : [a^*, \infty) \to (0, \infty)$ be a Borel function locally bounded away from zero, and $(X_t : t \ge 0), X_0 = a$, a càdlàg semimartingale as before.

• Define $v(y) = a + \int_{a^*}^{y} \frac{ds}{\phi(s)}$ and $u(x) = v^{-1}(x)$. So $u'(x) = (v^{-1})'(x) = \phi \circ v(x)$. \Rightarrow Then the Bachelier equation

$$dY_t = \phi(Y_t^*) \, dX_t, \quad Y_0 = a^*$$
 (1)

has a strong, pathwise unique, solution defined up to its explosion time

 $\zeta_Y = T_{V(\infty)}.$

• The solution is given by $\mathbf{Y}_{\mathbf{t}} = \mathbf{M}_{\mathbf{t}}^{\mathbf{u}}(\mathbf{X}), t < T_{V(\infty)}.$

For any process X as before, and any increasing function u function (with locally bounded derivative) with inverse function v, we have

 $\mathbf{X_t} = \mathbf{M_t^u}(\mathbf{M^v}(\mathbf{X}))$

Maximum distribution

Well-known result.

Th: Let (N_t) , $N_0 = 1$ be a non-negative local martingale with a continuous running supremum and with $N_t \to 0$ a.s. Then $1/N_{\infty}^*$ has a uniform distribution on [0, 1].

Proof: Let u(x) = (K - x)+ the "Put "function. Then, $M^U(N)$ is bounded and u.i. martingale, such that

$$\mathbb{E}((K - N_{\infty}^{*})^{+} + \mathbf{1}_{\{K > N_{\infty}^{*}\}} N_{\infty}^{*} big) = K\mathbb{P}(K \ge N_{\infty}^{*}) = K - 1$$

• Moreover if $b \ge 1$ is a constant such that for $\zeta = T_b$, $N_{\zeta} \in \{0, b\}$, then $\mathbb{P}(N_{\zeta}^* = b) = 1/b$ and conditionally to $\{N_{\zeta}^* < b\}$, $1/\mathbb{N}_{\zeta}^*$ is uniformly distributed on [1/b, 1].

Surmartingale decomposition and running supremum

- Let N be a local martingale with continuous running supremum, and going to 0 at ß
- Let u be a increasing convave function, such that $\mathbb{E}(|u(N)|_{\infty}^{*}) < \infty$
- ⇒ The supermartingale $\mathbf{u}(\mathbf{N}_t)$ is the conditional expectation of the running supremum between t and ∞ of $L_t = v(N_t)$ where v(x) = u(x) - x u'(x) is an non decreasing function, that is

$$\mathbf{Z}_{\mathbf{t}} = \mathbf{u}(\mathbf{N}_{\mathbf{t}}) = \mathbb{E}(\sup_{\mathbf{t},\infty} \mathbf{v}(\mathbf{N}_{\mathbf{u}})|\mathcal{F}_{\mathbf{t}})$$

- More generally, g is a continuous increasing function on R⁺ whose increasing concave envelope u is finite.
- Galtchouk, Mirochnitchenko Result (1994) : The process $\mathbf{Z}_t = u(N_t)$ is the Snell envelope of Y = g(N).

Concave envelop of $u \lor m$

Max-Plus decomposition of Supermartingales with Independent Increments

Continuous case Let N be a geometric Brownian motion with return=0 and volatility to be specified. Let Z be a supermartingale defined on $[0, \infty]$ such that

• a **geometric** Brownian motion with **negative drift** ,

$$\frac{dZ_t}{Z_t} = -rdt + \sigma dW_t, \quad Z_0 = z > 0.$$

- Setting $\gamma = 1 + \frac{2r}{\sigma^2}$, $N_t = Z_t^{\gamma}$ is a local martingale, with volatility $\gamma \sigma$
- $Z_t = u(N_t)$ where u is the increasing concave function $u(x) = x^{1/\gamma}$.

•
$$v(x) = u(x) - xu'(x) = \frac{\gamma - 1}{\gamma} x^{1/\gamma} = \frac{\gamma - 1}{\gamma} z$$

- Let Z be a **Brownian motion** with negative drift $-(r + \frac{1}{2}\sigma^2) \ge 0$ $dZ_t = -(r + \frac{1}{2}\sigma^2)dt + \sigma dW_t, \quad Z_0 = z.$ Then $Z_t = \frac{1}{\gamma}\ln(N_t), v(z) = z - \frac{1}{\gamma}$ and the Call American boundary is $y^*(m) = m + \frac{1}{\gamma}.$
- the exponentional of a Lévy process with jumps

Assume Z to be a supermartingale with a continuous and integrable supremum.

Then the same result holds with a modified coefficient γ_{Levy} , such that $Z_t^{\gamma_{Levy}}$ defines a local martingale that goes to 0 at ∞ .

• Finite horizon T without Azéma-Yor martingale

Same kind of solution : we have to find a function b(.) such that at any time t

$$Z_t = \mathbb{E}\Big[\sup_{t \le u \le T} \mathbf{b}(\mathbf{T} - \mathbf{u}) Z_u \big| \mathcal{F}_t\Big]$$

Can we find a direct and efficient method to calculate the boundary b(T-t)?.

References : Previous papers are relative to processes with independent increments (E. Mordecki (2001) - S. Asmussen, F. Avram and M. Pistorius (2004) - L. Alili and A. E. Kiprianou (2005)).

Universal Index and Pricing Rule

Framework : Let Z = u(N) be a increasing concave function of the cadlag local martingale N going to 0 at infinity, with continuous running supremum. Assume $\mathbb{E}[|Z_{0,\infty}^*|] < +\infty.$

• Let φ be the increasing convex, inverse function of u, such that $\varphi(Z) = N$ is a local martingale and $\psi(\mathbf{z}) = \mathbf{v} \mathbf{o} \varphi(\mathbf{z}) = \mathbf{z} - \frac{\phi(\mathbf{z})}{\phi'(\mathbf{z})}$. Then

$$Z_t = \mathbb{E}[\psi(Z_{t,\infty}^*)|\mathcal{F}_t], \qquad C_t^Z(m) = \mathbb{E}[(\psi(Z_{t,\infty}^*) - m)^+|\mathcal{F}_t]$$

$$y^{*}(m) = \psi^{-1}(m) = m + \frac{\varphi(y^{*}(m))}{\varphi'(y^{*}(m))}$$
$$C_{t}^{Z}(m) = \begin{cases} (Z_{t} - m) & \text{if } Z_{t} \ge y^{*}(m) \\ \frac{y^{*}(m) - m}{\varphi(y^{*}(m))} \varphi(Z_{t}) & \text{if } Z_{t} \le y^{*}(m) \end{cases}.$$

Optimality of Azema-Yor martingale

Martingale optimization problem

The optimization problem

Let $Y_t = g(N_t)$ be a floor process and $Z_t^Y = u(N_t)$ the Snell envelope of Y where u is the concave envelope of g.

The following problem is motivated by portfolio insurance :

- $\mathcal{M}(x) = \left\{ (M_t)_{t \ge 0} \text{ u.i.martingale } | M_0 = x \text{ and } \mathbf{M}_t \ge \mathbf{g}(\mathbf{N}_t) \ \forall t \in [0, \zeta] \right\}$
- We aim at finding a martingale (M_t^*) in $\mathcal{M}(x)$ such that for all martingales (M_t) in $\mathcal{M}(x)$, and for any utility function,(concave, increasing) V such that the following quantities have sense

$\mathbb{E}(\mathbf{V}(\mathbf{M}_{\zeta}^*)) \geq \mathbb{E}(\mathbf{V}(\mathbf{M}_{\zeta}))$

• The initial value of any martingale dominating Y must be **at least** equal to the one of the Snell envelope Z^Y , that is $u(N_0)$.

The *u*-Azéma-Yor martingale is optimal

The martingale $M_t^{AY} = u(N_t^*) + u'((N_t^*)(N_t - N_t^*))$ martingale is optimal for the concave order of the terminal value.

In particular, $dM_{\zeta}^{Y,\oplus} = u'(N_t^*)dN_t$ is less variable than the martingale of the Doob Meyer Decomposition $dM^{DM} = u'(N_t)dN_t$.

Sketch of proof: Let M be in $\mathcal{M}^Y(Z_0^Y)$. Since M dominates Z^Y , the American Call option $C_t(M, m)$ also dominates $C_t(Z^Y, m)$. By convexity,

$$C_t(M,m) = \mathbb{E}\left[(M_{\zeta} - m)^+ | \mathcal{F}_S \right] \ge \mathbb{E}\left[(L_{S,\zeta}^{Y,*} \vee Y_{\zeta} - m)^+ | \mathcal{F}_S \right] \quad \forall S \in \mathcal{T}.$$

More generally, this inequality holds true for any convex function g, and

$$\mathbb{E}\left[g\left(M_{\zeta}\right)\right] \geq \mathbb{E}\left[g\left(L_{0,\zeta}^{Y,*} \lor Y_{\zeta}\right)\right] = \mathbb{E}\left[g(M_{\zeta}^{Y,\oplus})\right]$$

Initial condition $x \ge Z_0^Y$ Same result by using $L^{Y,*}S, \zeta \lor m$ in place of $L_{S,\zeta}^{Y,*}$.

Skew Brownian Motion

Strategic Process

Mandelbaum (1993), Nek. Karatzas (1997)

Framework : Two arms Brownian Bandit

- With two independent Brownian motions (W^1, W^2) we associate two pay-off strictly increasing functions $\eta^i(W_t^i)$ and their Gittins Index $\nu^i(W^i)$
- ν^i is also positive strictly increasing, with inverse function μ^i (assumed to have the same domain.)
- Let $\sigma^i(m) = \inf\{t; \nu^i(W_t^i) \le m\}, \ \gamma^i(\alpha) = \inf\{t; W_t^i \le \alpha\}((\alpha \le 0), \sigma^i(m) = \gamma^i(\mu^i(m)).$
- The minimum rewards : $\underline{W}^{i}(t) = \inf_{u \leq t} W^{i}(u)$ is the inverse function of $\gamma^{i}(\alpha)$, and is flat on the excursions of the reflected Brownian motion $\mathcal{R}(W^{i})(t) = W^{i}(t) - \underline{W}^{i}(t)$
- $\underline{\mathbf{M}}_{t}^{i} = \inf_{u \leq t} \nu^{i}(W_{u}^{i}) = \nu^{i}(\underline{\mathbf{W}}^{i}(t))$ is the inverse function of σ^{i}

A reflected Brownian motion

Optimal strategies

- Let $\underline{\mathbf{M}}$ the continuous inverse of $\sigma^1(m) + \sigma^2(m)$, $T^i(t) = \sigma^i(\underline{\mathbf{M}}(t))$ when t is a decreasing time of $\underline{\mathbf{M}}$, and $\underline{\mathbf{M}}(t) = \underline{\mathbf{M}}^i(T^i(t))$ i = 1, 2 at any time.
- Let $S^i = \mathcal{R}(W^i)(T_i) = W^i(T_i) \underline{W}^i(T_i) = \mu^i(M_i(T_i)) \mu^i(\underline{M}) \ge 0$. Then $S^i(t) > 0$ if $T_i(t)$ belongs to an excursion of $\mathcal{R}(W^i)$, and does not belongs to the support of \underline{M} .
- $\Rightarrow \text{ Lemma Let } \nu \text{ the inverse function of } \mu^1 + \mu^2 \text{ and } \mu \text{ the inverse function of } \nu.$ Put $\mathcal{S}(t) = S^1(t) + S^2(t) = W_t + L_t^W$. Then $W(t) = W^1(T_1(t)) + W^2(T_2(t))$ is a $\mathcal{G} = \mathcal{F}^1 \vee \mathcal{F}^2$ -Brownian motion, and $L^W = -\sum_{i=1}^2 \mu^i(\underline{M}) = -\mu(\underline{M}).$
- By the previous remarks, L^W only increases when S(t) = 0 and $S(t) = S^1(t) + S^2(t)$ is a reflected Brownian motion;
- by uniqueness of the Skohorod problem $\mu(\underline{\mathbf{M}})(t) = \inf_{u \leq t} W^1(T_1(t)) + W^2(T_2(t)).$ By classical result, the distribution of L_t^W is well-known.

Skew Brownian motion

Pathwise construction

• Let $\mathbf{X} = \mathbf{S^1} - \mathbf{S^2} = \mathbf{B} + \mathbf{V}$ where $B = W^1(T_1) - W^2(T_2)$ is a Brownian motion, and $V = \mu^1(\underline{\mathbf{M}}) - \mu^2(\underline{\mathbf{M}}) = \phi(L^W)$ where

$$\phi(\mathbf{l}) = (\mu^1 - \mu^2)(\nu)(-l) = (\mu^1 - \mu^2)((\mu^1 + \mu^2)^{-1})(-l).$$

- Because $S_t^1 S_t^2 = 0$, $S^1 = X^+$ and $S^2 = X^-$, and |X| = S is a reflected Brownian motion, with local time $L^X = L^W$. Then, X is solution of the following problem, involving the local time L^X , where the function $\phi \in \mathcal{C}^1$ and $|\phi| \leq 1$

$$X_t = \phi(L^X)_t + B_t$$

• Examples :

- $\nu^1 = \nu^2$, $\phi \equiv 0$, and X is a Brownian motion
- $\nu^1(x) = \nu^2(\alpha x), \ \alpha \in (0,1]$, then $\phi(l) = \beta l$ with $\beta = \frac{1-\alpha}{1+\alpha}$, and X is the Skew Brownian motion (Harrison Kreps(1981), Walsh(78))

Multidimensional case

Assume a bandit problems with d projects

- By the same way, we still have that $S^{i}(t) > 0$ only outside of the open support of \underline{M} , and $\mathcal{S}(t) = \sum_{i=0}^{d} S^{j}(t)$ is a reflected Brownian motion, with intrinsic local time $-\mu(\underline{M})$
- How describe the muti-dimensional process S which are reflected independent Brownian motions with different scales of times

To finish...

- In 1993, my daughter Imen (6 years) asks me :
 but Mom, why do you argue with Ioannis always bandit problems with multiple guns, you are not police ?
 She was really surprised.
- Explanation : in french the word bandit is the same, but **the word arm means** weapon

Thank you Ioannis for these moments so stimulating and friendly Happy Birthday Next Year in Paris