A Singular Journey In Optimisation problems
 Involving Index Processes

Probability, Control, Finance Conference
In honor of Karatzas Birthday
Columbia 9 Juin 2012
by Nicole El Karoui
Université Pierre et Marie Curie, Ecole Polytechnique, Paris email : elkaroui@gmail.com

The Magic world of optimisation

- At the end of 80 'st, Ioannis introduces me at new (for me) optimization problem :
- Singular control problem
- Finite fuel
- Multi armed Bandit problem
- All had in common the same type of methodology :
- their are convex problems with respsect to some (eventually artificial parameter)
- the derivatives of the value function with respect to this parameter is easy to compute
- Come back to the primitive problem by simple integration give new and useful representation

$\left\{m \mid \sigma(t ; m)>\theta_{2}\right\}=\left[0, \underline{M}\left(t, \theta_{2}\right)\right)$. Same for θ_{1}.
It seem to me that, for this to work, are need to take $M(t, \cdot)$ right -continuous, as in the picture looked at, of course, from the other side of the paper!).
This $\underline{M}(t, \cdot)$ is indeed characterised by

$$
\underline{M}(t, \theta)=\quad \sup \{m \geqslant 0 / \sigma(t ; m)>\theta\}=\operatorname{in} f\{m \geqslant 0 / \sigma(t, m) \leqslant \theta\}
$$

[B] On note $\underline{H}(t)=\operatorname{unf}\left\{m ; \sigma_{1}(m)+\sigma_{2}(m) \leqslant t\right\}=\operatorname{uff}\left\{m ; \gamma_{1}\left[\varphi_{1}^{-1}(m)\right]+\gamma_{2}\left[\varphi_{2}^{-1}(m)\right] \leqslant t\right\}$

$$
T_{1}(t)=\sigma_{1}(\underline{N}(t)) \quad T_{2}(t)=\sigma_{2}(M(t)) .
$$

$T_{1}(t)+T_{2}(t)=t$. cela est fauk., car il faut farie altention aus patien de $H(t)$.
On a identiquement

$$
\underline{M}^{1}\left(T_{1}(t)\right)=\underline{M}_{1} \circ \sigma_{1}(\underline{M}(t))=\underline{M}(t)=\underline{M}^{2} \cdot\left(T_{2}(t)\right)
$$

et $\underline{H}(t)=\varphi^{1}\left(W^{1} T_{1}(t)\right)$ en un point do corissanc de $T_{1}(t):\left(\varphi^{1}\right)^{-1}\left(\underline{H}_{t}\right)=\omega_{T_{d / t}}^{1}$
Pas suite

$$
\underline{H}(t)=\sup \left(\varphi^{1}\left(\omega_{T_{1}(t)}^{1}\right), \varphi^{2}\left(\omega_{T_{2}(t)}^{2}\right)\right)
$$

On traduit de ceth manière que la stategre $\left(T_{1}(t), T_{2}(t)\right)$ arit lindice.
Par suite

$$
\underline{H}(t)-\varphi^{1}\left(\omega_{T_{1}(+1)}^{1}\right) \geqslant 0 \quad \text { er } \quad H_{t}-\varphi^{2}\left(\omega_{T_{2}(t)}^{2}\right) \geqslant 0 \text {. }
$$

Posone

$$
S^{+}(t)=\varphi_{1}^{-1}\left(M_{t}\right)-\omega_{T_{1}(t)}^{1} \geqslant 0 \quad S^{-}(t)=\varphi_{2}^{-1}\left(\underline{N}_{t}\right)-\omega_{T_{2}(t)}^{2} \geqslant 0
$$

Introduction to Bandit Problem

What is a Multi-Armed bandit problem?

- There are d-independent projects (investigations, arms) among which effort to be allocated.
- By engaging one project, a stochastic reward is accrued, influencing the time-allocation strategy
\Rightarrow Trade-off between exploration (trying out each arm to find the best one) and exploitation (playing the arm believed to give the best payoff)
- Discrete-time version is well-understood for a long time (Gittins (74-79), Whittle (1980))
- Continuous-time version received also a lot of attention (Karatzas (84), Mandelbaum (87), Menaldi-Robin (90), Tsitsiklis (86), NEK-Karatzas (93,95,97)

Introduction II

Renewed interest in Economy

- RD problems (Weitzman \&... $(1979,81)$
- Strategic experimentation with learning on the quality of some project (Poisson uncertainty) (Keller, Rady, Cripps (2005))
- Learning in matching markets such as labor and consumer good markets : Jovanovic (1979) applies a bandit problem to a competitive labor markets.
- Strategic Trading and Learning about Liquidity (Hong\& Rady(2000))

Principle of the solution (Gittins,Whittle)

\Rightarrow To associate to each projet some rate of performance (Gittins index)
\Rightarrow To maximize Gittins indices over all projects and at any time engaged a project with maximal current Gittins index
\Rightarrow The essential idea is that the evolution of each arm does not depends on the running time of the other arms.

General Framework

Several projects $(i=1, \ldots d)$ are competing for the attention of a single investigator

- $T_{i}(t)$ is the total time allocated to project i during the time t, with $\sum_{i=1}^{d} T_{i}(t)=(\leq) t$
- By engaging project i at time t, the investigator accrues a certain reward $h_{i}\left(T_{i}(t)\right)$ per unit time,
- discounted at the rate $\alpha>0$ and multiplied by the intensity $i(t)=d T_{i}(t) / d t$ with which the project is engaged.
- $h_{i}(t)$ is a progressive process adapted to the filtration \mathcal{F}_{i}, independent of the other.
\Rightarrow The objective is to allocate sequentially the time between these projects optimally

$$
\Phi:=\sup _{\left(T_{i}\right)} \mathbb{E}\left[\sum_{i=1}^{d} \int_{0}^{\infty} e^{-\alpha t} h_{i}\left(T_{i}(t)\right) d T_{i}(t)\right] .
$$

Decreasing Rewards

Pathwise solution without probability

Deterministic case and concave analysis (modified pay-off with $\alpha=0$, and finite horizon T)

- Let $\left(\underline{\mathrm{h}}_{i}\right)$ be the family of right-continuous decreasing positive pay-offs, with $\underline{\mathrm{h}}_{i}(0)>0\left(\underline{\mathrm{~h}}_{i}(t)=0\right.$ for $t \geq \zeta$. and $H_{i}(t)$ the primitive of h_{i} with $H_{i}(0)=0$, assumed to be constant after some date ζ.
- H_{i} is a concave increasing function, with convex decreasing Fenchel conjuguate $G_{i}(m)=\sup _{t \leq T}\left\{H_{i}(t)-t m\right\}$ with derivative $G_{i}^{\prime}(m)=\sigma_{i}(m)$. $\mathbf{H}_{\mathbf{i}}(\mathbf{t})=\int_{0}^{\infty} \mathbf{t} \wedge \sigma_{\mathbf{i}}(\mathbf{m}) \mathbf{d m}$.
- The criterium is now

$$
\Phi_{T}:=\sup _{\left(T_{i}\right)} \sum_{i=1}^{d} \int_{0}^{T} \underline{\mathrm{~h}}_{i}\left(T_{i}(t)\right) d T_{i}(t)=\sup J_{T}(\mathcal{T})
$$

over all strategies : $\mathcal{T}=\left(T_{i}\right)$ with $\quad \sum_{i=1}^{d} T_{i}(t)=t$.

Criterium Transformation

$$
\mathbf{J}_{\mathbf{T}}(\mathcal{T}):=\sum_{i=1}^{d} \int_{0}^{T} \underline{\mathrm{~h}}_{i}\left(T_{i}(t)\right) d T_{i}(t)=\sum_{\mathbf{i}=\mathbf{1}}^{\mathbf{d}} \mathbf{H}_{\mathbf{i}}\left(\mathbf{T}_{\mathbf{i}}(\mathbf{T})\right)
$$

Proof

- $\underline{\mathrm{h}}_{i}\left(T_{i}(t)\right)=\int_{0}^{\infty} \mathbf{1}_{\left\{m<\underline{\mathrm{h}}_{i}\left(T_{i}(t)\right)\right\}} d m=\int_{0}^{\infty} \mathbf{1}_{\left.\left\{T_{i}(t)\right)<\sigma_{i}(m)\right\}} d m$
- $\sum_{i=1}^{d} \mathbf{1}_{\left.\left\{T_{i}(t)\right)<\sigma_{i}(m)\right\}} d T_{i}(t)=\sum_{i=1}^{d} d\left(T_{i}(t) \wedge \sigma_{i}^{\prime}(m)\right)$
$\Rightarrow J_{T}(\mathcal{T})=\int_{0}^{\infty} d m \int_{0}^{T} d\left(T_{i}(t) \wedge \sigma_{i}(m)=\int_{0}^{\infty} d m T_{i}(T) \wedge \sigma_{i}(m)\right.$

Remark : Assume that the reward functions $\left(h_{i}\right)$ are not decreasing. The same properties hold true by using the concave envelope of $\int_{0}^{t} h_{i}(s) d s$, defined through its conjugate $G_{i}(m)=\sup _{t}\left\{\int_{0}^{t}\left(h_{i}(s)-m\right) d s\right\}$.

Max-convolution problem

New formulations

- The bandit problem becomes

$$
\Phi_{T}:=\sup \left\{\sum_{i=1}^{d} H_{i}\left(T_{i}(T)\right) \mid T_{i} \text { increasing, and } \sum_{i=1}^{d} T_{i}(t)=t, \forall t \leq T\right\}
$$

- The Max-Convolution problem with value function $\mathrm{V}(\mathrm{t})$ is :

$$
V(t):=\sup _{\left(\theta_{i}(t)\right)}\left\{\sum_{i=1}^{d} H_{i}\left(\theta_{i}(t)\right) \mid \sum_{i=1}^{d} \theta_{i}(t)=t,\right\}
$$

- Showing that the problems are equivalent is obtained by constructing a monotone optimal solution for the Max-convolution problem.

Optimal Time Allocation in Max-Convolution Pb

- Main property The conjugate $U(m)$ of the Max-Convolate $V(t)$ is the sum of the conjugate functions $U(m)=\sum_{i=1}^{d} G_{i}(m)$, with derivative $\tau(m)=\sum_{i=1}^{d} \sigma_{i}(m)$.
- $V(\tau(m))=\tau(m) m-U(m)=\sum_{i=1}^{d}\left(m \sigma_{i}(m)-G_{i}(m)=\sum_{i=1}^{d} H_{i}\left(\sigma_{i}(m)\right)\right.$

Optimal time allocation

- Let $V^{\prime}(t)=\underline{\mathrm{M}}_{t}$ be the decreasing derivative of V, also the inverse of $\tau(m)$, and called the Gittins Index of the problem.
- The optimal time allocation is the increasing process $\theta_{\mathbf{i}}^{*}(\mathbf{t})=\sigma_{\mathbf{i}}\left(\mathbf{V}^{\prime}(\mathbf{t})\right)$
- The optimal allocation is of Index type, i.e. maximizing the index $V^{\prime}(t)=\sup _{i} \underline{\mathrm{~h}}_{i}\left(\theta_{i}^{*}(t)\right)=\sup _{i} \underline{\mathrm{~h}}_{i}\left(\sigma_{i}\left(V^{\prime}(t)\right)\right.$.
In the case of strictly decreasing continuous pay-offs, all projects may be engaged at the same time.

The Stochastic Decreasing case

Pathwise static problem

- Assume the decreasing pay-off as $\underline{\mathrm{h}}_{i}(t, \omega)=\inf _{0 \leq u \leq t} k_{i}(u, \omega)$ where $k_{i}(t)$ is $\mathcal{F}_{i}(t)$-adapted.
- The inverse process of $\underline{h}_{i}(t)$ is given by the stopping time $\sigma_{i}(m)=\sup \left\{t \mid \underline{\mathrm{h}}_{i}(t) \leq m\right\}$
- The strategic allocation $T_{i}(t)$ is an $\mathcal{F}_{i}(t)$-adapted non decreasing cadlag process.
- All the previous results hold true, but the optimality is more difficult to establish, because the $\mathcal{F}_{i}(t)$-mesurability constraint.
- We have to use multi-parameter stochastic calculus, as Mandelbaum (92), Nek.Karatzas(93-97)
Today, we are concerned by the one- dimensional problem, which consists in replacing any adapted and positive process h_{i} by a decreasing process $\underline{\mathrm{M}}_{i}(t)=\sup _{s<t} M_{i}(s)$ where M_{i} is called the Index process.

Max-Plus decomposition

Different Type of Max-Plus decomposition

- In our context, the problem is to find an adapted Index process $M(t)$

$$
V_{t}=\mathbb{E}\left[\int_{t}^{\infty} e^{-\alpha s} h(s) d s \mid \mathcal{F}_{t}\right]=\mathbb{E}\left[\int_{t}^{\infty} e^{-\alpha s} \sup _{t<u<s} M(u) d s \mid \mathcal{F}_{t}\right]=\mathbb{E}\left[\int_{t} e^{-\alpha s} \underline{\mathrm{M}}_{t, s} d s \mid \mathcal{F}_{t}\right]
$$

- More generally, in a Markov framework (Foellmer -Nek (05), (Foellmer, Riedel), the problem is to represent any fonction $u(x)$ as

$$
u(x)=\mathbb{E}_{x}\left[\int_{0}^{\zeta} \sup _{0<u<t} f\left(X_{t}\right) d B_{t}\right], \quad B \text { additive fonctional }
$$

- In Bank-Nek (04), Bank-Riedel (01) the problem motivated by consumption problem is to solve for "any " adapted process X

$$
X_{t}=\mathbb{E}\left[\int_{t}^{\infty} G\left(s, \sup _{t<u<s} L_{s}\right) d s \mid \mathcal{F}_{t}\right], \quad G(s, l) \text { decreasing in l }
$$

The class of supermartingale decomposition II

- Nek-Meziou $(2002,2005)$ for general process
- Foellmer Knispel (2006)

See P. Bank, H. Follmer (02), American Options, Multi-armed Bandits, and Optimal Consumption Plans : A Unifying View, Paris-Princeton Lectures on Mathematical Finance 2002, Lecture Notes in Math. no. 1814, Springer, Berlin, 2003, 1-42.

Max-plus algebra Calculus

It is an idempotent semiring :
$\Rightarrow \oplus=\max$ is a commutative, associative and idempotent operation : $a \oplus a=a$, the zero $=\epsilon$, is given by $\epsilon=-\infty$,
$\Rightarrow \otimes$ is an associative product distributive over addition, with a unit element
$e=0 . \epsilon$ is absorbing for $\otimes: \epsilon \otimes a=a \otimes \epsilon=\epsilon, \forall a$.
$\Rightarrow \mathbb{R}_{\max }$ can be equipped with the natural order relation :

$$
a \succeq b \Longleftrightarrow a=a \oplus b
$$

\Rightarrow Linear Equation. The set of solutions x of $z \oplus x=m$ is empty if $m \leq z$. If not, the set has a greatest element $x=m$.

Max-Plus Supermartingale Decomposition

Let Z be a càdlàg supermartingale in the class (\mathcal{D}) defined on $[, \zeta]$.

- There exists $L=\left(L_{t}\right)_{\leq t \leq \zeta}$ adapted, with upper-right continuous paths with running supremum $L_{t, s}^{*}=\sup _{t \leq u \leq s} L_{u}$, s.t.

$$
\mathbf{Z}_{\mathbf{t}}=\mathbb{E}\left[\left(\sup _{t \leq u \leq \zeta} L_{u}\right) \vee Z_{\zeta} \mid \mathcal{F}_{t}\right]=\mathbb{E}\left[L_{t, \zeta}^{*} \oplus Z_{\zeta} \mid \mathcal{F}_{t}\right]=\mathbb{E}\left[\oint_{\mathbf{t}}^{\zeta} \mathbf{L}_{\mathbf{u}} \oplus \mathbf{Z}_{\zeta} \mid \mathcal{F}_{\mathbf{t}}\right]
$$

- Let M^{\oplus} be the martingale $\left.: \mathbf{M}_{\mathbf{t}}^{\oplus}:=\mathbb{E}\left[L_{0, \zeta}^{*} \oplus Z_{\zeta} \mid \mathcal{F}_{t}\right)\right]$.Then,

$$
M_{t}^{\oplus} \geq \max \left(Z_{t}, L_{0, t}^{*}\right)=Z_{t} \oplus L_{0, t}^{*} \quad \leq t \leq \zeta
$$

and the equality holds at times when L^{*} increases or at maturity ζ :

$$
M_{S}^{\oplus}=\max \left(Z_{S}, L_{0, S}^{*}\right)=Z_{S} \oplus L_{0, S}^{*} \quad \text { for all stopping times } S \in \mathcal{A}_{L^{\star}} \cup\{\zeta\}
$$

Uniqueness in the Max-Plus decomposition

Let $Z \in \mathcal{D}$ be a cadlag supermartingale and assume that

- there exist two increasing adapted processes Λ_{t}^{1} and $\Lambda_{t}^{2}\left(\Lambda_{-0}^{i}=-\infty\right)$ and two u.i. martingales M^{1} and M^{2} such that $\mathbf{M}_{\zeta}^{\mathbf{i}}=\Lambda_{\zeta}^{\mathbf{i}} \vee \mathbf{Z}_{\zeta}$ and $\mathbf{M}_{0}^{\mathbf{i}}=\mathbf{Z}_{0}$
- Λ^{i} only increases at times when the martingale M^{i} hits the supermartingale Z, (flat-off condition)

$$
\int_{[0, \zeta]}\left(M_{t}^{i}-Z_{t}^{i}\right) d \Lambda_{t}^{i}=0
$$

- $\left(M^{i}, \Lambda^{i}\right)$ are two (max-+) decompositions of $\mathrm{Z}(\oplus=\vee=\max)$

$$
\mathbf{M}_{\mathbf{t}}^{1} \geq \mathbf{Z}_{\mathbf{t}} \oplus \Lambda_{\mathrm{t}}^{1}, \quad \mathbf{M}_{\mathrm{t}}^{2} \geq \mathbf{Z}_{\mathbf{t}} \oplus \Lambda_{\mathrm{t}}^{2}
$$

$\Rightarrow M^{1}$ and M^{2} are indistinguishable processes.
\Rightarrow Given such a martingale M^{\oplus}, the set \mathcal{K} of Λ satisfying the above conditions has a maximal element $\Lambda^{\max }$ which is also in \mathcal{K}.
If Z is bounded by below, $\Lambda^{\max }$ is also bounded by below with the same constant.

Sketch of the proof when Z and Λ are bounded by below

Recall the assumption $\int_{0}^{\zeta}\left(M_{s}^{i}-Z_{s}\right) d \Lambda_{s}^{i}=0$ with $\Lambda_{\zeta}^{i} \geq Z_{\zeta}$
Then, for any regular convex function (\mathcal{C}^{2} with linear growth) $g, \mathrm{~g}(\mathbf{0})=0$.

$$
\begin{aligned}
& g\left(\mathbf{M}_{\zeta}^{1}-\mathbf{M}_{\zeta}^{2}\right) \leq g^{\prime}\left(\mathbf{M}_{\zeta}^{1}-\mathbf{M}_{\zeta}^{2}\right)\left(M_{\zeta}^{1}-M_{\zeta}^{2}\right)=g^{\prime}\left(\mathbf{\Lambda}_{\zeta}^{1}-\mathbf{\Lambda}_{\zeta}^{2}\right)\left(M_{\zeta}^{1}-M_{\zeta}^{2}\right) \\
& \mathbb{E}\left[g\left(\mathbf{M}_{\zeta}^{1}-\mathbf{M}_{\zeta}^{2}\right)\right] \leq \\
& \mathbb{E}\left[g^{\prime}\left(\Lambda_{0}^{1}-\Lambda_{0}^{2}\right)\left(\mathbf{M}_{\zeta}^{1}-\mathbf{M}_{\zeta}^{2}\right)\right]+\mathbb{E}\left[\left(M_{\zeta}^{1}-M_{\zeta}^{2}\right) \int_{0}^{\zeta} g_{d}^{\prime \prime}\left(\Lambda_{t}^{1}-\Lambda_{t}^{2}\right)\left(d \Lambda_{t}^{1}-\Lambda_{t}^{2}\right)\right] \\
& =\mathbb{E}\left[\int_{0}^{\zeta}\left(M_{\mathrm{t}}^{1}-M_{\mathrm{t}}^{2}\right) g_{d}^{\prime \prime}\left(\Lambda_{t}^{1}-\Lambda_{t}^{2}\right)\left(d \Lambda_{t}^{1}-\Lambda_{t}^{2}\right)\right] \\
& =\mathbb{E}\left[\int_{0}^{\zeta}\left(\mathbf{Z}_{t}-M_{t}^{2}\right) g_{d}^{\prime \prime}\left(\Lambda_{t}^{1}-\Lambda_{t}^{2}\right) d \Lambda_{t}^{1}-\int_{0}^{\zeta}\left(M_{t}^{1}-\mathbf{Z}_{t}\right) g_{d}^{\prime \prime}\left(\Lambda_{t}^{1}-\Lambda_{t}^{2}\right) d \Lambda_{t}^{2}\right] \leq \mathbf{0}
\end{aligned}
$$

by the flat condition and the convexity of g.
In particular, $\mathbb{E}\left[g\left(\mathbf{M}_{\zeta}^{1}-\mathbf{M}_{\zeta}^{2}\right)\right]=0$ for $\mathbf{g}(\mathbf{x})=\mathbf{x}^{+}$

Darling, Ligget, Taylor Point of View,(1972)

Introduction DLT have studied American Call options with infinite horizon on discrete time supermartingale, sum of iid r.v. with negative expectation. They gave a large place to the running supremum of these variables.

- Z is a supermartingale on $[0, \zeta]$ and $\mathbb{E}\left[\left|Z_{0, \zeta}^{*}\right|\right]<+\infty \mathbb{E}\left[\left|Z_{t, \zeta}^{*}\right|\right]<+\infty$
- Assume Z to be a conditional expectation of some running supremum process $L_{s, t}^{*}=\sup _{\{s \leq u \leq t\}} L_{u}$, such that $\mathbb{E}\left[\left|L_{0, \zeta}^{*}\right|\right]<+\infty$ and $\mathbb{Z}_{\mathbf{t}}=\mathbb{E}\left[L_{t, \zeta}^{*} \mid \mathcal{F}_{t}\right]$ American Call options Let $C_{t}(Z, m)$ be the American Call option with strike m, $\mathbf{C}_{\mathbf{t}}(\mathbf{Z}, \mathbf{m})={\operatorname{ess} \sup _{\mathrm{t} \leq \mathrm{S} \leq \zeta} \mathbb{E}\left[\left(\mathbf{Z}_{\mathbf{S}}-\mathrm{m}\right)^{+} \mid \mathcal{F}_{\mathrm{t}}\right] \text {. Then }}$

$$
\mathbf{C}_{\mathbf{t}}(\mathbf{Z}, \mathbf{m})=\mathbb{E}\left[\left(\mathbf{L}_{\mathbf{t}, \zeta}^{*} \vee \mathbf{Z}_{\zeta}-\mathbf{m}\right)^{+} \mid \mathcal{F}_{\mathbf{t}}\right]
$$

and the stopping time $\mathbf{D}_{\mathbf{t}}(\mathbf{m})=\inf \left\{s \in[t, \zeta] ; L_{s} \geq m\right\}$ is optimal.

Proof

$\Rightarrow \mathbb{E}\left[\left(L_{t, \zeta}^{*}-m\right)^{+} \mid \mathcal{F}_{t}\right]$ is a supermartingale dominating $\mathbb{E}\left[L_{t, \zeta}^{*} \mid \mathcal{F}_{t}\right]-m=Z_{t}-m$, and so $C_{t}(Z, m)$
\Rightarrow Conversely, since on $\left\{\theta=D_{t}(m)<\infty\right\}, L_{\theta, \zeta}^{*} \geq m$, at time $\theta=D_{t}(m)$, we can omit the sign + , and replace $\left(L_{\theta, \zeta}^{*}-m\right)$ by its conditional expectation $Z_{D_{t}(m)}-m$, still nonnegative.

Main question :

To find numerical method to calculate a Max-Plus Index

- Directly by using AY-martingale (elementary)
- By characterization through optimization problems (Gittins, Karatzas, Foellmer)

Closed Formulae

 based on Azéma-Yor martingales
Azéma-Yor Martingales (1979)

Definition Let X be a càdlàg local semimartingale with $X_{0}=a$ and $X_{t}^{*}=\sup _{0 \leq s \leq t} X_{s}$ its running supremum assumed to be nonnegative. Then for any finite variation function u, with locally integrable right-hand derivative u^{\prime}, the process $M^{\mathbf{u}}(X)$

$$
M_{t}^{\mathbf{u}}(X)=u\left(X_{t}^{*}\right)+u^{\prime}\left(X_{t}^{*}\right)\left(X_{t}-X_{t}^{*}\right)
$$

is a local martingale, called the Azéma-Yor martingale associated with (u, X).
Main properties

$$
\begin{equation*}
\Rightarrow M_{t}^{\mathbf{u}}(X)=M_{0}^{\mathbf{u}}(X)+\int_{0}^{t} u^{\prime}\left(X_{t}^{*}\right) d X_{s} \tag{1}
\end{equation*}
$$

\Rightarrow If u^{\prime} is only defined on $[a, b), M^{\mathbf{u}}(X)$ may be defined up to the exit time ζ of $[a, b)$ by X.
\Rightarrow Assume u^{\prime} to be non negative. Then the running supremum of $M^{\mathbf{u}}(X)$ is given by $u\left(N_{t}^{*}\right)$

Bachelier equation

First introduced by Bachelier in 1906.
Def : Let $\phi:\left[a^{*}, \infty\right)$ be a locally bounded away from 0 function and X a local martingale with continuous running supremum. The Bachelier equation is

$$
d Y_{t}=\phi\left(Y_{t}^{*}\right) d X_{t}
$$

Example Let u be a increasing function, v the inverse function of u, and $\phi=u^{\prime} \circ v=1 / v^{\prime}$. Then $M^{u}(X)$ the AY-martingale associated with u is a solution of the Bachelier equation.

Bachelier equation, (suite)

Th : Let $\phi:\left[a^{*}, \infty\right) \rightarrow(0, \infty)$ be a Borel function locally bounded away from zero, and $\left(X_{t}: t \geq 0\right), X_{0}=a$, a càdlàg semimartingale as before.

- Define $v(y)=a+\int_{a^{*}}^{y} \frac{d s}{\phi(s)}$ and $u(x)=v^{-1}(x)$. So $u^{\prime}(x)=\left(v^{-1}\right)^{\prime}(x)=\phi \circ v(x)$.
\Rightarrow Then the Bachelier equation

$$
\begin{equation*}
d Y_{t}=\phi\left(Y_{t}^{*}\right) d X_{t}, \quad Y_{0}=a^{*} \tag{1}
\end{equation*}
$$

has a strong, pathwise unique, solution defined up to its explosion time $\zeta_{Y}=T_{V(\infty)}$.

- The solution is given by $\mathbf{Y}_{\mathbf{t}}=\mathbf{M}_{\mathbf{t}}^{\mathbf{u}}(\mathbf{X}), t<T_{V(\infty)}$.

For any process X as before, and any increasing function u function (with locally bounded derivative) with inverse function v, we have

$$
\mathbf{X}_{\mathbf{t}}=\mathbf{M}_{\mathbf{t}}^{\mathbf{u}}\left(\mathbf{M}^{\mathbf{v}}(\mathbf{X})\right)
$$

Maximum distribution

Well-known result.
Th : Let $\left(N_{t}\right), N_{0}=1$ be a non-negative local martingale with a continuous running supremum and with $N_{t} \rightarrow 0$ a.s. Then $1 / N_{\infty}^{*}$ has a uniform distribution on $[0,1]$.
Proof : Let $u(x)=(K-x)+$ the "Put "function. Then, $M^{U}(N)$ is bounded and u.i. martingale, such that

$$
\mathbb{E}\left(\left(K-N_{\infty}^{*}\right)^{+}+\mathbf{1}_{\left\{K>N_{\infty}^{*}\right\}} N_{\infty}^{*} b i g\right)=K \mathbb{P}\left(K \geq N_{\infty}^{*}\right)=K-1
$$

- Moreover if $b \geq 1$ is a constant such that for $\zeta=T_{b}, N_{\zeta} \in\{0, b\}$, then $\mathbb{P}\left(N_{\zeta}^{*}=b\right)=1 / b$ and conditionally to $\left\{N_{\zeta}^{*}<b\right\}, \mathbf{1} / \mathbf{N}_{\zeta}^{*}$ is uniformly distributed on $[1 / b, 1]$.

Surmartingale decomposition and running

supremum

- Let N be a local martingale with continuous running supremum, and going to 0 at β
- Let u be a increasing convave function, such that $\mathbb{E}\left(|u(N)|_{\infty}^{*}\right)<\infty$
\Rightarrow The supermartingale $\mathbf{u}\left(\mathbf{N}_{\mathbf{t}}\right)$ is the conditional expectation of the running supremum between t and ∞ of $L_{t}=v\left(N_{t}\right)$ where $v(x)=u(x)-x u^{\prime}(x)$ is an non decreasing function, that is

$$
\mathbf{Z}_{\mathbf{t}}=\mathbf{u}\left(\mathbf{N}_{\mathbf{t}}\right)=\mathbb{E}\left(\sup _{\mathbf{t}, \infty} \mathbf{v}\left(\mathbf{N}_{\mathbf{u}}\right) \mid \mathcal{F}_{\mathbf{t}}\right.
$$

- More generally, \mathbf{g} is a continuous increasing function on \mathbb{R}^{+}whose increasing concave envelope \mathbf{u} is finite.
- Galtchouk, Mirochnitchenko Result (1994) : The process $\mathbf{Z}_{\mathbf{t}}=u\left(N_{t}\right)$ is the Snell envelope of $Y=g(N)$.

Concave envelop of $u \vee m$

Max-Plus decomposition of Supermartingales with Independent Increments

Continuous case Let N be a geometric Brownian motion with return=0 and volatility to be specified. Let Z be a supermartingale defined on $[0, \infty]$ such that

- a geometric Brownian motion with negative drift,

$$
\frac{d Z_{t}}{Z_{t}}=-r d t+\sigma d W_{t}, \quad Z_{0}=z>0
$$

- Setting $\gamma=1+\frac{2 r}{\sigma^{2}}, N_{t}=Z_{t}^{\gamma}$ is a local martingale, with volatility $\gamma \sigma$
- $Z_{t}=u\left(N_{t}\right)$ where u is the increasing concave function $u(x)=x^{1 / \gamma}$.
- $v(x)=u(x)-x u^{\prime}(x)=\frac{\gamma-1}{\gamma} x^{1 / \gamma}=\frac{\gamma-1}{\gamma} z$,
- Let Z be a Brownian motion with negative drift $-\left(r+\frac{1}{2} \sigma^{2}\right) \geq 0$ $d Z_{t}=-\left(r+\frac{1}{2} \sigma^{2}\right) d t+\sigma d W_{t}, \quad Z_{0}=z$.
Then $Z_{t}=\frac{1}{\gamma} \ln \left(N_{t}\right), v(z)=z-\frac{1}{\gamma}$ and the Call American boundary is $y^{*}(m)=m+\frac{1}{\gamma}$.
- the exponentional of a Lévy process with jumps

Assume Z to be a supermartingale with a continuous and integrable supremum.

Then the same result holds with a modified coefficient $\gamma_{\text {Levy }}$, such that $Z_{t}^{\gamma_{\text {Levy }}}$ defines a local martingale that goes to 0 at ∞.

- Finite horizon T without Azéma-Yor martingale

Same kind of solution : we have to find a function $\mathrm{b}($.$) such that at any time t$

$$
Z_{t}=\mathbb{E}\left[\sup _{t \leq u \leq T} \mathbf{b}(\mathbf{T}-\mathbf{u}) Z_{u} \mid \mathcal{F}_{t}\right]
$$

Can we find a direct and efficient method to calculate the boundary $b(T-t)$?
References: Previous papers are relative to processes with independent increments (E. Mordecki (2001) - S. Asmussen, F. Avram and M. Pistorius (2004) L. Alili and A. E. Kiprianou (2005)).

Universal Index and Pricing Rule

Framework : Let $Z=u(N$.$) be a increasing concave function of the cadlag local$ martingale N going to 0 at infinity, with continuous running supremum. Assume $\mathbb{E}\left[\left|Z_{0, \infty}^{*}\right|\right]<+\infty$.

- Let φ be the increasing convex, inverse function of u, such that $\varphi(Z)=N$ is a local martingale and $\psi(\mathbf{z})=\mathbf{v} \mathbf{o} \varphi(\mathbf{z})=\mathbf{z}-\frac{\phi(\mathbf{z})}{\phi^{\prime}(\mathbf{z})}$. Then

$$
\begin{aligned}
& Z_{t}=\mathbb{E}\left[\psi\left(Z_{t, \infty}^{*}\right) \mid \mathcal{F}_{t}\right], \quad C_{t}^{Z}(m)=\mathbb{E}\left[\left(\psi\left(Z_{t, \infty}^{*}\right)-m\right)^{+} \mid \mathcal{F}_{t}\right] \\
& y^{*}(m)=\psi^{-1}(m)=m+\frac{\varphi\left(y^{*}(m)\right)}{\varphi^{\prime}\left(y^{*}(m)\right)} \\
& C_{t}^{Z}(m)=\left\{\begin{array}{ccc}
\left(Z_{t}-m\right) & \text { if } & Z_{t} \geq y^{*}(m) \\
\frac{y^{*}(m)-m}{\varphi\left(y^{*}(m)\right)} \varphi\left(Z_{t}\right) & \text { if } & Z_{t} \leq y^{*}(m)
\end{array}\right.
\end{aligned}
$$

Optimality of Azema-Yor martingale

Martingale optimization problem

The optimization problem

Let $Y_{t}=g\left(N_{t}\right)$ be a floor process and $Z_{t}^{Y}=u\left(N_{t}\right)$ the Snell envelope of Y where u is the concave envelope of g.
The following problem is motivated by portfolio insurance :
$\mathcal{M}(x)=\left\{\left(M_{t}\right)_{t \geq 0}\right.$ u.i.martingale $\mid M_{0}=x$ and $\left.\mathbf{M}_{\mathbf{t}} \geq \mathbf{g}\left(\mathbf{N}_{\mathbf{t}}\right) \forall t \in[0, \zeta]\right\}$

- We aim at finding a martingale $\left(M_{t}^{*}\right)$ in $\mathcal{M}(x)$ such that for all martingales $\left(M_{t}\right)$ in $\mathcal{M}(x)$, and for any utility function, (concave, increasing) V such that the following quantities have sense

$$
\mathbb{E}\left(\mathbf{V}\left(\mathbf{M}_{\zeta}^{*}\right)\right) \geq \mathbb{E}\left(\mathbf{V}\left(\mathbf{M}_{\zeta}\right)\right)
$$

- The initial value of any martingale dominating Y must be at least equal to the one of the Snell envelope Z^{Y}, that is $u\left(N_{0}\right)$.

The u-Azéma-Yor martingale is optimal

The martingale $M_{t}^{A Y}=u\left(N_{t}^{*}\right)+u^{\prime}\left(\left(N_{t}^{*}\right)\left(N_{t}-N_{t}^{*}\right)\right.$ martingale is optimal for the concave order of the terminal value.
In particular, $d M_{\zeta}^{Y, \oplus}=u^{\prime}\left(N_{t}^{*}\right) d N_{t}$ is less variable than the martingale of the Doob Meyer Decomposition $d M^{D M}=u^{\prime}\left(N_{t}\right) d N_{t}$.

Sketch of proof : Let M be in $\mathcal{M}^{Y}\left(Z_{0}^{Y}\right)$. Since M dominates Z^{Y}, the American Call option $C_{t}(M, m)$ also dominates $C_{t}\left(Z^{Y}, m\right)$. By convexity,

$$
C_{t}(M, m)=\mathbb{E}\left[\left(M_{\zeta}-m\right)^{+} \mid \mathcal{F}_{S}\right] \geq \mathbb{E}\left[\left(L_{S, \zeta}^{Y, *} \vee Y_{\zeta}-m\right)^{+} \mid \mathcal{F}_{S}\right] \quad \forall S \in \mathcal{T}
$$

More generally, this inequality holds true for any convex function g, and

$$
\mathbb{E}\left[g\left(M_{\zeta}\right)\right] \geq \mathbb{E}\left[g\left(L_{0, \zeta}^{Y, *} \vee Y_{\zeta}\right)\right]=\mathbb{E}\left[g\left(M_{\zeta}^{Y, \oplus}\right)\right]
$$

Initial condition $x \geq Z_{0}^{Y}$ Same result by using $L^{Y, *} S, \zeta \vee m$ in place of $L_{S, \zeta}^{Y, *}$.

Skew Brownian Motion

Strategic Process

Mandelbaum (1993), Nek.Karatzas (1997)

Framework : Two arms Brownian Bandit

- With two independent Brownian motions $\left(W^{1}, W^{2}\right)$ we associate two pay-off strictly increasing functions $\eta^{i}\left(W_{t}^{i}\right)$ and their Gittins Index $\nu^{i}\left(W^{i}\right)$
$-\nu^{i}$ is also positive strictly increasing, with inverse function μ^{i} (assumed to have the same domain.)
- Let $\sigma^{i}(m)=\inf \left\{t ; \nu^{i}\left(W_{t}^{i}\right) \leq m\right\}, \gamma^{i}(\alpha)=\inf \left\{t ; W_{t}^{i} \leq \alpha\right\}((\alpha \leq 0)$, $\sigma^{i}(m)=\gamma^{i}\left(\mu^{i}(m)\right)$.
- The minimum rewards : $\underline{\mathrm{W}}^{i}(t)=\inf _{u \leq t} W^{i}(u)$ is the inverse function of $\gamma^{i}(\alpha)$, and is flat on the excursions of the reflected Brownian motion
$\mathcal{R}\left(W^{i}\right)(t)=W^{i}(t)-\underline{W}^{i}(t)$
- $\underline{\mathrm{M}}_{t}^{i}=\inf _{u \leq t} \nu^{i}\left(W_{u}^{i}\right)=\nu^{i}\left(\underline{\mathrm{~W}}^{i}(t)\right)$ is the inverse function of σ^{i}

A reflected Brownian motion

Optimal strategies

- Let $\underline{\mathrm{M}}$ the continuous inverse of $\sigma^{1}(m)+\sigma^{2}(m), T^{i}(t)=\sigma^{i}(\underline{\mathrm{M}}(t))$ when t is a decreasing time of $\underline{\mathbf{M}}$, and $\underline{\mathbf{M}}(t)=\underline{\mathbf{M}}^{i}\left(T^{i}(t)\right) \quad i=1,2$ at any time.
- Let $S^{i}=\mathcal{R}\left(W^{i}\right)\left(T_{i}\right)=W^{i}\left(T_{i}\right)-\underline{\mathrm{W}}^{i}\left(T_{i}\right)=\mu^{i}\left(M_{i}\left(T_{i}\right)\right)-\mu^{i}(\underline{\mathrm{M}}) \geq 0$. Then $S^{i}(t)>0$ if $T_{i}(t)$ belongs to an excursion of $\mathcal{R}\left(W^{i}\right)$, and does not belongs to the support of M.
\Rightarrow Lemma Let ν the inverse fonction of $\mu^{1}+\mu^{2}$ and μ the inverse function of ν. Put $\mathcal{S}(t)=S^{1}(t)+S^{2}(t)=W_{t}+L_{t}^{W}$. Then $W(t)=W^{1}\left(T_{1}(t)\right)+W^{2}\left(T_{2}(t)\right)$ is a $\mathcal{G}=\mathcal{F}^{1} \vee \mathcal{F}^{2}$-Brownian motion, and $L^{W}=-\sum_{i=1}^{2} \mu^{i}(\underline{\mathrm{M}})=-\mu(\underline{\mathrm{M}})$.
- By the previous remarks, L^{W} only increases when $\mathcal{S}(t)=0$ and $\mathcal{S}(t)=S^{1}(t)+S^{2}(t)$ is a reflected Brownian motion;
- by uniqueness of the Skohorod problem $\mu(\underline{\mathrm{M}})(t)=\inf _{u \leq t} W^{1}\left(T_{1}(t)\right)+W^{2}\left(T_{2}(t)\right)$. By classical result, the distribution of L_{t}^{W} is well-known.

Skew Brownian motion

Pathwise construction

- Let $\mathbf{X}=\mathbf{S}^{\mathbf{1}}-\mathbf{S}^{\mathbf{2}}=\mathbf{B}+\mathbf{V}$ where $B=W^{1}\left(T_{1}\right)-W^{2}\left(T_{2}\right)$ is a Brownian motion, and $V=\mu^{1}(\underline{\mathrm{M}})-\mu^{2}(\underline{\mathrm{M}})=\phi\left(L^{W}\right)$ where

$$
\phi(\mathbf{l})=\left(\mu^{1}-\mu^{2}\right)(\nu)(-l)=\left(\mu^{1}-\mu^{2}\right)\left(\left(\mu^{1}+\mu^{2}\right)^{-1}\right)(-l) .
$$

- Because $S_{t}^{1} S_{t}^{2}=0, S^{1}=X^{+}$and $S^{2}=X^{-}$, and $|X|=\mathcal{S}$ is a reflected Brownian motion, with local time $L^{X}=L^{W}$. Then, X is solution of the following problem, involving the local time L^{X}, where the function $\phi \in \mathcal{C}^{1}$ and $|\phi| \leq 1$

$$
X_{t}=\phi\left(L^{X}\right)_{t}+B_{t}
$$

- Examples :
- $\nu^{1}=\nu^{2}, \phi \equiv 0$, and X is a Brownian motion
- $\nu^{1}(x)=\nu^{2}(\alpha x), \alpha \in(0,1]$, then $\phi(l)=\beta l$ with $\beta=\frac{1-\alpha}{1+\alpha}$, and X is the Skew Brownian motion (Harrison Kreps(1981), Walsh(78))

Multidimensional case

Assume a bandit problems with d projects

- By the same way, we still have that $S^{i}(t)>0$ only outside of the open support of $\underline{\mathrm{M}}$, and $\mathcal{S}(t)=\sum_{i=0}^{d} S^{j}(t)$ is a reflected Brownian motion, with intrinsic local time $-\mu(\underline{\mathrm{M}})$
- How describe the muti-dimensional process \mathcal{S} which are reflected independent Brownian motions with different scales of times

To finish...

- In 1993, my daughter Imen (6 years) asks me :
but Mom, why do you argue with Ioannis always bandit problems with multiple guns, you are not police?

She was really surprised.

- Explanation : in french the word bandit is the same, but the word arm means weapon

Thank you Ioannis for these moments

 so stimulating and friendlyHappy Birthday
Next Year in Paris

