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The Magic world of optimisation
• At the end of 80’st, Ioannis introduces me at new (for me) optimization problem :
– Singular control problem
– Finite fuel
– Multi armed Bandit problem
• All had in common the same type of methodology :
– their are convex problems with respsect to some (eventually artificial
parameter)

– the derivatives of the value function with respect to this parameter is easy to
compute

– Come back to the primitive problem by simple integration give new and useful
representation
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Introduction to Bandit Problem
What is a Multi-Armed bandit problem ?
• There are d-independent projects (investigations, arms) among which effort to be
allocated.
• By engaging one project, a stochastic reward is accrued, influencing the
time-allocation strategy
⇒ Trade-off between exploration (trying out each arm to find the best one) and
exploitation (playing the arm believed to give the best payoff)
• Discrete-time version is well-understood for a long time (Gittins (74-79), Whittle
(1980))
• Continuous-time version received also a lot of attention (Karatzas (84),
Mandelbaum (87), Menaldi-Robin (90), Tsitsiklis (86), NEK-Karatzas (93,95,97)
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Introduction II
Renewed interest in Economy

• RD problems ( Weitzman &...(1979,81)
• Strategic experimentation with learning on the quality of some project (Poisson
uncertainty) (Keller, Rady, Cripps (2005))
• Learning in matching markets such as labor and consumer good markets :
Jovanovic (1979) applies a bandit problem to a competitive labor markets.
• Strategic Trading and Learning about Liquidity (Hong& Rady(2000))

Principle of the solution (Gittins,Whittle)

⇒ To associate to each projet some rate of performance (Gittins index)
⇒ To maximize Gittins indices over all projects and at any time engaged a project
with maximal current Gittins index
⇒ The essential idea is that the evolution of each arm does not depends on the
running time of the other arms.
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General Framework
Several projects (i = 1, ...d) are competing for the attention of a single investigator
• Ti(t) is the total time allocated to project i during the time t, with∑d

i=1 Ti(t) = (≤)t

• By engaging project i at time t, the investigator accrues a certain reward
hi(Ti(t)) per unit time,

– discounted at the rate α > 0 and multiplied by the intensity i(t) = dTi(t)/dt with
which the project is engaged.

– hi(t) is a progressive process adapted to the filtration Fi, independent of the
other.
⇒ The objective is to allocate sequentially the time between these projects
optimally

Φ := sup
(Ti)

E
[ d∑
i=1

∫ ∞
0

e−αthi(Ti(t))dTi(t)
]
.
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Decreasing Rewards
Pathwise solution without probability
Deterministic case and concave analysis (modified pay-off with α = 0, and
finite horizon T )
– Let (hi) be the family of right-continuous decreasing positive pay-offs, with
hi(0) > 0 (hi(t) = 0 for t ≥ ζ . and Hi(t) the primitive of hi with Hi(0) = 0,
assumed to be constant after some date ζ.

– Hi is a concave increasing function, with convex decreasing Fenchel conjuguate
Gi(m) = supt≤T {Hi(t)− tm} with derivative G′i(m) = σi(m).
Hi(t) =

∫∞
0

t ∧ σi(m)dm.
– The criterium is now

ΦT := sup
(Ti)

d∑
i=1

∫ T

0

hi(Ti(t))dTi(t) = supJT (T )

over all strategies : T = (Ti) with
∑d
i=1 Ti(t) = t.
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Criterium Transformation

JT(T ) :=
d∑
i=1

∫ T

0

hi(Ti(t))dTi(t) =
d∑

i=1

Hi(Ti(T))

Proof
• hi(Ti(t)) =

∫∞
0

1{m<hi(Ti(t))}dm =
∫∞
0

1{Ti(t))<σi(m)}dm

• ∑d
i=1 1{Ti(t))<σi(m)}dTi(t) =

∑d
i=1 d(Ti(t) ∧ σ′i(m))

⇒ JT (T ) =
∫∞
0
dm
∫ T
0
d(Ti(t) ∧ σi(m) =

∫∞
0
dm Ti(T ) ∧ σi(m)

Remark : Assume that the reward functions (hi) are not decreasing. The same
properties hold true by using the concave envelope of

∫ t
0
hi(s)ds, defined through

its conjugate Gi(m) = supt{
∫ t
0
(hi(s)−m)ds}.
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Max-convolution problem
New formulations
• The bandit problem becomes

ΦT := sup{
d∑
i=1

Hi(Ti(T ))| Ti increasing, and
d∑
i=1

Ti(t) = t,∀t ≤ T}

• The Max-Convolution problem with value function V(t) is :

V (t) := sup
(θi(t))

{
d∑
i=1

Hi(θi(t))|
d∑
i=1

θi(t) = t, }

• Showing that the problems are equivalent is obtained by constructing a
monotone optimal solution for the Max-convolution problem.
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Optimal Time Allocation in Max-Convolution Pb
• Main property The conjugate U(m) of the Max-Convolate V (t) is the sum of
the conjugate functions U(m) =

∑d
i=1Gi(m), with derivative

τ(m) =
∑d
i=1 σi(m).

• V (τ(m)) = τ(m)m− U(m) =
∑d
i=1(mσi(m)−Gi(m) =

∑d
i=1Hi(σi(m))

Optimal time allocation
• Let V ′(t) = Mt be the decreasing derivative of V , also the inverse of τ(m), and
called the Gittins Index of the problem.
• The optimal time allocation is the increasing process θ∗i (t) = σi(V

′(t))

• The optimal allocation is of Index type, i.e. maximizing the index
V ′(t) = supi hi(θ∗i (t)) = supi hi(σi(V ′(t)).
In the case of strictly decreasing continuous pay-offs, all projects may be engaged
at the same time.
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The Stochastic Decreasing case
Pathwise static problem
• Assume the decreasing pay-off as hi(t, ω) = inf0≤u≤t ki(u, ω) where ki(t) is
Fi(t)-adapted.

– The inverse process of hi(t) is given by the stopping time
σi(m) = sup{t | hi(t) ≤ m}
• The strategic allocation Ti(t) is an Fi(t)-adapted non decreasing cadlag process.
• All the previous results hold true, but the optimality is more difficult to
establish, because the Fi(t)-mesurability constraint.
• We have to use multi-parameter stochastic calculus, as Mandelbaum (92),
Nek.Karatzas(93-97)

Today, we are concerned by the one- dimensional problem, which consists in
replacing any adapted and positive process hi by a decreasing process
Mi(t) = sups<tMi(s) where Mi is called the Index process.
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Max-Plus decomposition
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Different Type of Max-Plus decomposition
• In our context, the problem is to find an adapted Index process M(t)

Vt = E[

∫ ∞
t

e−αsh(s)ds|Ft] = E[

∫ ∞
t

e−αs sup
t<u<s

M(u)ds|Ft] = E[

∫
t

e−αsMt,sds|Ft]

• More generally, in a Markov framework (Foellmer -Nek (05), (Foellmer, Riedel),
the problem is to represent any fonction u(x) as

u(x) = Ex[

∫ ζ

0

sup
0<u<t

f(Xt)dBt], B additive fonctional

• In Bank-Nek (04), Bank-Riedel (01) the problem motivated by consumption
problem is to solve for "any " adapted process X

Xt = E[

∫ ∞
t

G(s, sup
t<u<s

Ls)ds|Ft], G(s, l) decreasing in l
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The class of supermartingale decomposition II

– Nek-Meziou (2002,2005) for general process

– Foellmer Knispel (2006)

See P. Bank, H. Follmer ( 02), American Options, Multi-armed Bandits, and
Optimal Consumption Plans : A Unifying View, Paris-Princeton Lectures on
Mathematical Finance 2002, Lecture Notes in Math. no. 1814, Springer, Berlin,
2003, 1-42.
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Max-plus algebra Calculus
It is an idempotent semiring :
⇒ ⊕ = max is a commutative, associative and idempotent operation : a⊕ a = a,
the zero = ε, is given by ε = −∞,
⇒ ⊗ is an associative product distributive over addition, with a unit element
e = 0. ε is absorbing for ⊗ : ε⊗ a = a⊗ ε = ε, ∀a.
⇒ Rmax can be equipped with the natural order relation :

a � b⇐⇒ a = a⊕ b.

⇒ Linear Equation. The set of solutions x of z ⊕ x = m is empty if m ≤ z. If
not, the set has a greatest element x = m.
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Max-Plus Supermartingale Decomposition
Let Z be a càdlàg supermartingale in the class (D) defined on [, ζ].
• There exists L =

(
Lt
)
≤t≤ζ adapted, with upper-right continuous paths with

running supremum L∗t,s = supt≤u≤s Lu, s.t.

Zt = E
[
( sup
t≤u≤ζ

Lu) ∨ Zζ |Ft
]

= E
[
L∗t,ζ ⊕ Zζ |Ft

]
= E

[ ∮ ζ

t

Lu ⊕ Zζ |Ft

]
• Let M⊕ be the martingale : M⊕

t := E
[
L∗0,ζ ⊕ Zζ

∣∣Ft)].Then,
M⊕t ≥max(Zt, L

∗
0,t) = Zt ⊕ L∗0,t ≤ t ≤ ζ

and the equality holds at times when L∗ increases or at maturity ζ :

M⊕S = max(ZS , L
∗
0,S) = ZS ⊕ L∗0,S for all stopping times S ∈ AL? ∪ {ζ}.
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Uniqueness in the Max-Plus decomposition
Let Z ∈ D be a cadlag supermartingale and assume that
• there exist two increasing adapted processes Λ1

t and Λ2
t (Λi−0 = −∞) and two u.i.

martingales M1 and M2 such that Mi
ζ = Λi

ζ ∨ Zζ and Mi
0 = Z0

• Λi only increases at times when the martingale M i hits the supermartingale Z,
(flat-off condition) ∫

[0,ζ]

(M i
t − Zit)dΛit = 0

• (M i,Λi) are two (max-+) decompositions of Z (⊕ = ∨ = max)

M1
t ≥ Zt ⊕Λ1

t , M2
t ≥ Zt ⊕Λ2

t .

⇒ M1 and M2 are indistinguishable processes.
⇒ Given such a martingale M⊕, the set K of Λ satisfying the above conditions has
a maximal element Λmax which is also in K.
If Z is bounded by below, Λmax is also bounded by below with the same constant.
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Sketch of the proof when Z and Λ are bounded by below

Recall the assumption
∫ ζ
0

(M i
s − Zs)dΛis = 0 with Λiζ ≥ Zζ

Then, for any regular convex function (C2 with linear growth)g, g(0) = 0.

g(M1
ζ −M2

ζ ) ≤ g′(M1
ζ −M2

ζ )(M1
ζ −M2

ζ ) = g′(Λ1
ζ −Λ2

ζ )(M1
ζ −M2

ζ )

E
[
g(M1

ζ −M2
ζ )
]
≤

E
[
g′(Λ1

0 − Λ2
0)(M1

ζ −M2
ζ )
]
+E
[
(M1

ζ −M2
ζ )

∫ ζ

0

g′′d (Λ1
t − Λ2

t )(dΛ1
t − Λ2

t )
]

= E
[ ∫ ζ

0

(M1
t −M2

t )g′′d (Λ1
t − Λ2

t )(dΛ1
t − Λ2

t )
]

= E
[ ∫ ζ

0

(Zt −M2
t )g′′d (Λ1

t − Λ2
t )dΛ1

t −
∫ ζ

0

(M1
t − Zt)g

′′
d (Λ1

t − Λ2
t )dΛ2

t

]
≤ 0

by the flat condition and the convexity of g.
In particular, E

[
g(M1

ζ −M2
ζ )
]

= 0 for g(x) = x+
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Darling, Ligget, Taylor Point of View,(1972)
Introduction DLT have studied American Call options with infinite horizon on
discrete time supermartingale, sum of iid r.v. with negative expectation. They gave
a large place to the running supremum of these variables.
• Z is a supermartingale on [0, ζ] and E

[
|Z∗0,ζ |

]
< +∞ E

[
|Z∗t,ζ |

]
< +∞

• Assume Z to be a conditional expectation of some running supremum
process L∗s,t = sup{s≤u≤t} Lu, such that E

[
|L∗0,ζ |

]
< +∞ and Zt = E

[
L∗t,ζ |Ft

]
American Call options Let Ct(Z,m) be the American Call option with strike m,
Ct(Z,m) = ess supt≤S≤ζ E

[
(ZS −m)+|Ft

]
. Then

Ct(Z,m) = E
[(

L∗t,ζ ∨ Zζ −m
)+|Ft

]

and the stopping time Dt(m) = inf{s ∈ [t, ζ]; Ls ≥ m} is optimal.

Juin 2012 21



ProCofin Conference Ioannis Darling, Ligget, Taylor Point of View,(1972) −

Proof
⇒ E

[(
L∗t,ζ −m

)+|Ft] is a supermartingale dominating E
[
L∗t,ζ |Ft

]
−m = Zt −m,

and so Ct(Z,m)

⇒ Conversely, since on {θ = Dt(m) <∞}, L∗θ,ζ ≥ m, at time θ = Dt(m), we can
omit the sign +, and replace (L∗θ,ζ −m) by its conditional expectation
ZDt(m) −m, still nonnegative.

Main question :

To find numerical method to calculate a Max-Plus Index
– Directly by using AY-martingale (elementary)
– By characterization through optimization problems (Gittins, Karatzas, Foellmer)
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Closed Formulae
based on Azéma-Yor martingales
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Azéma-Yor Martingales (1979)
Definition Let X be a càdlàg local semimartingale with X0 = a and
X∗t = sup0≤s≤tXs its running supremum assumed to be nonnegative. Then for any
finite variation function u, with locally integrable right-hand derivative u′, the
process Mu(X)

Mu
t (X) = u(X∗t ) + u′(X∗t )(Xt −X∗t )

is a local martingale, called the Azéma-Yor martingale associated with (u,X).
Main properties
⇒ Mu

t (X) = Mu
0 (X) +

∫ t
0
u′(X∗t ) dXs, (1)

⇒ If u′ is only defined on [a, b), Mu(X) may be defined up to the exit time ζ of
[a, b) by X.
⇒ Assume u′ to be non negative. Then the running supremum of Mu(X) is given
by u(N∗t )
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Bachelier equation

First introduced by Bachelier in 1906.
Def : Let φ : [a∗,∞) be a locally bounded away from 0 function and X a local
martingale with continuous running supremum. The Bachelier equation is

dYt = φ(Y ∗t )dXt

Example Let u be a increasing function, v the inverse function of u, and
φ = u′ ◦ v = 1/v′. Then Mu(X) the AY-martingale associated with u is a solution
of the Bachelier equation.
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Bachelier equation, (suite)
Th : Let φ : [a∗,∞)→ (0,∞) be a Borel function locally bounded away from zero,
and (Xt : t ≥ 0), X0 = a, a càdlàg semimartingale as before.
• Define v(y) = a+

∫ y
a∗

ds
φ(s) and u(x) = v−1(x). So u′(x) = (v−1)′(x) = φ ◦ v(x).

⇒ Then the Bachelier equation

dYt = φ(Y ∗t ) dXt, Y0 = a∗ (1)

has a strong, pathwise unique, solution defined up to its explosion time
ζY = TV (∞).
• The solution is given by Yt = Mu

t (X), t < TV (∞).
For any process X as before, and any increasing function u function (with locally
bounded derivative) with inverse function v, we have

Xt = Mu
t (Mv(X))
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Maximum distribution
Well-known result.
Th : Let (Nt), N0 = 1 be a non-negative local martingale with a continuous
running supremum and with Nt → 0 a.s. Then 1/N∗∞ has a uniform distribution
on [0, 1].
Proof : Let u(x) = (K − x)+ the “Put “function. Then, MU (N) is bounded and
u.i. martingale, such that

E
(
(K −N∗∞)+ + 1{K>N∗∞}N

∗
∞big) = KP(K ≥ N∗∞) = K − 1

• Moreover if b ≥ 1 is a constant such that for ζ = Tb, Nζ ∈ {0, b}, then
P(N∗ζ = b) = 1/b and conditionally to {N∗ζ < b}, 1/N∗ζ is uniformly distributed on
[1/b, 1].
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Surmartingale decomposition and running
supremum

• Let N be a local martingale with continuous running supremum, and going to 0

at ß

• Let u be a increasing convave function, such that E(|u(N)|∗∞) <∞
⇒ The supermartingale u(Nt) is the conditional expectation of the running
supremum between t and ∞ of Lt = v(Nt) where v(x) = u(x)− xu′(x) is an non
decreasing function, that is

Zt = u(Nt) = E
(

sup
t,∞

v(Nu)|Ft

• More generally, g is a continuous increasing function on R+ whose increasing
concave envelope u is finite.

– Galtchouk, Mirochnitchenko Result (1994) : The process Zt = u(Nt) is the
Snell envelope of Y = g(N).
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Concave envelop of u ∨m
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Max-Plus decomposition of Supermartingales with
Independent Increments

Continuous case Let N be a geometric Brownian motion with return=0 and
volatility to be specified. Let Z be a supermartingale defined on [0,∞] such that
• a geometric Brownian motion with negative drift ,

dZt

Zt
= −rdt+ σdWt, Z0 = z > 0.

– Setting γ = 1 + 2r
σ2 , Nt = Zγt is a local martingale, with volatility γσ

– Zt = u(Nt) where u is the increasing concave function u(x) = x1/γ .
• v(x) = u(x)− xu′(x) = γ−1

γ x1/γ = γ−1
γ z,

• Let Z be a Brownian motion with negative drift −(r + 1
2σ

2) ≥ 0

dZt = −(r + 1
2σ

2)dt+ σdWt, Z0 = z.
Then Zt = 1

γ ln(Nt), v(z) = z − 1
γ and the Call American boundary is

y∗(m) = m+ 1
γ .

• the exponentional of a Lévy process with jumps
Assume Z to be a supermartingale with a continuous and integrable supremum.
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Then the same result holds with a modified coefficient γLevy, such that ZγLevy

t

defines a local martingale that goes to 0 at ∞.
• Finite horizon T without Azéma-Yor martingale
Same kind of solution : we have to find a function b(.) such that at any time t

Zt = E
[

sup
t≤u≤T

b(T− u)Zu
∣∣Ft]

Can we find a direct and efficient method to calculate the boundary
b(T − t) ?.
References : Previous papers are relative to processes with independent
increments (E. Mordecki (2001) - S. Asmussen, F. Avram and M. Pistorius (2004) -
L. Alili and A. E. Kiprianou (2005)).
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Universal Index and Pricing Rule
Framework : Let Z = u(N.) be a increasing concave function of the cadlag local
martingale N going to 0 at infinity, with continuous running supremum. Assume
E[|Z∗0,∞|] < +∞.
• Let ϕ be the increasing convex, inverse function of u, such that ϕ(Z) = N is a

local martingale and ψ(z) = v oϕ(z) = z− φ(z)

φ′(z)
. Then

Zt = E[ψ(Z∗t,∞)|Ft], CZt (m) = E[(ψ(Z∗t,∞)−m)+|Ft]

y∗(m) = ψ−1(m) = m+
ϕ(y∗(m))

ϕ′(y∗(m))

CZt (m) =

 (Zt −m) if Zt ≥ y∗(m)

y∗(m)−m
ϕ(y∗(m)) ϕ(Zt) if Zt ≤ y∗(m)

.
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Optimality of Azema-Yor martingale
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Martingale optimization problem

The optimization problem

Let Yt = g(Nt) be a floor process and ZYt = u(Nt) the Snell envelope of Y where u
is the concave envelope of g.
The following problem is motivated by portfolio insurance :

M(x) =
{

(Mt)t≥0u.i.martingale |M0 = x and Mt ≥ g(Nt) ∀t ∈ [0, ζ]
}

• We aim at finding a martingale (M∗t ) inM(x) such that for all martingales (Mt)

inM(x), and for any utility function,(concave, increasing) V such that the
following quantities have sense

E(V(M∗
ζ)) ≥ E(V(Mζ))

• The initial value of any martingale dominating Y must be at least equal to the
one of the Snell envelope ZY , that is u(N0).
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The u-Azéma-Yor martingale is optimal
The martingale MAY

t = u(N∗t ) + u′((N∗t )(Nt −N∗t ) martingale is optimal for the
concave order of the terminal value.
In particular, dMY,⊕

ζ = u′(N∗t )dNt is less variable than the martingale of the Doob
Meyer Decomposition dMDM = u′(Nt)dNt.

Sketch of proof : Let M be inMY (ZY0 ). Since M dominates ZY , the American
Call option Ct(M,m) also dominates Ct(ZY ,m). By convexity,

Ct(M,m) = E
[
(Mζ −m)+|FS

]
≥ E

[
(LY,∗S,ζ ∨ Yζ −m)+|FS

]
∀S ∈ T .

More generally, this inequality holds true for any convex function g, and

E
[
g
(
Mζ

)]
≥ E

[
g
(
LY,∗0,ζ ∨ Yζ

)]
= E

[
g(MY,⊕

ζ )
]

Initial condition x ≥ ZY0 Same result by using LY,∗S, ζ ∨m in place of LY,∗S,ζ .
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Skew Brownian Motion
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Strategic Process
Mandelbaum (1993), Nek.Karatzas (1997)
Framework : Two arms Brownian Bandit
• With two independent Brownian motions (W 1,W 2) we associate two pay-off
strictly increasing functions ηi(W i

t ) and their Gittins Index νi(W i)

– νi is also positive strictly increasing, with inverse function µi (assumed to have
the same domain.)
• Let σi(m) = inf{t; νi(W i

t ) ≤ m}, γi(α) = inf{t;W i
t ≤ α}((α ≤ 0),

σi(m) = γi(µi(m)).
• The minimum rewards : Wi(t) = infu≤tW

i(u) is the inverse function of γi(α),
and is flat on the excursions of the reflected Brownian motion
R(W i)(t) = W i(t)−Wi(t)

• Mi
t = infu≤t ν

i(W i
u) = νi(Wi(t)) is the inverse function of σi
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A reflected Brownian motion
Optimal strategies
• Let M the continuous inverse of σ1(m) + σ2(m), T i(t) = σi(M(t)) when t is a
decreasing time of M, and M(t) = Mi(T i(t)) i = 1, 2 at any time.
• Let Si = R(W i)(Ti) = W i(Ti)−Wi(Ti) = µi(Mi(Ti))− µi(M) ≥ 0. Then
Si(t) > 0 if Ti(t) belongs to an excursion of R(W i), and does not belongs to the
support of M.
⇒ Lemma Let ν the inverse fonction of µ1 + µ2 and µ the inverse function of ν.
Put S(t) = S1(t) + S2(t) = Wt + LWt . Then W (t) = W 1(T1(t)) +W 2(T2(t)) is a
G = F1 ∨ F2-Brownian motion, and LW = −

∑2
i=1 µ

i(M) = −µ(M).
– By the previous remarks, LW only increases when S(t) = 0 and
S(t) = S1(t) + S2(t) is a reflected Brownian motion ;

– by uniqueness of the Skohorod problem µ(M)(t) = infu≤tW
1(T1(t)) +W 2(T2(t)).

By classical result, the distribution of LWt is well-known.
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Skew Brownian motion
Pathwise construction
• Let X = S1 − S2 = B + V where B = W 1(T1)−W 2(T2) is a Brownian motion,
and V = µ1(M)− µ2(M) = φ(LW ) where

φ(l) = (µ1 − µ2)(ν)(−l) = (µ1 − µ2)((µ1 + µ2)−1)(−l).
– Because S1

t S
2
t = 0, S1 = X+ and S2 = X−, and |X| = S is a reflected Brownian

motion, with local time LX = LW . Then, X is solution of the fol-
lowing problem, involving the local time LX , where the function φ ∈ C1 and |φ| ≤ 1

Xt = φ(LX)t +Bt

• Examples :
• ν1 = ν2, φ ≡ 0, and X is a Brownian motion
• ν1(x) = ν2(αx), α ∈ (0, 1], then φ(l) = βl with β = 1−α

1+α , and X is the Skew
Brownian motion (Harrison Kreps(1981), Walsh(78))
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Multidimensional case
Assume a bandit problems with d projects
• By the same way, we still have that Si(t) > 0 only outside of the open support of
M, and S(t) =

∑d
i=0 S

j(t) is a reflected Brownian motion, with intrinsic local
time −µ(M)

• How describe the muti-dimensional process S which are reflected
independent Brownian motions with different scales of times
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To finish...
• In 1993, my daughter Imen (6 years) asks me :

but Mom, why do you argue with Ioannis always bandit problems with multiple
guns, you are not police ?
She was really surprised.
• Explanation : in french the word bandit is the same, but the word arm means
weapon

Thank you Ioannis for these moments

so stimulating and friendly

Happy Birthday
Next Year in Paris
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