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Consider a zero-sum controller-and-stopper game:

Two players: the “controller” and the “stopper”.

A state process Xα: can be manipulated by the controller
through the selection of α.

Given a time horizon T > 0. The stopper has

the right to choose the duration of the game, in the form of a
stopping time τ in [0,T ] a.s.
the obligation to pay the controller the running reward
f (s,Xα

s , αs) at every moment 0 ≤ s < τ , and the terminal
reward g(Xα

τ ) at time τ .

Instantaneous discount rate: c(s,Xα
s ), 0 ≤ s ≤ T .
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Value Functions

Define the lower value function of the game

V (t, x) := sup
α∈At

inf
τ∈T t

t,T

E
[ ∫ τ

t
e−

∫ s
t c(u,X t,x,α

u )duf (s,X t,x ,α
s , αs)ds

+ e−
∫ τ
t c(u,X t,x,α

u )dug(X t,x ,α
τ )

]
,

At := {admissible controls indep. of Ft},
T t
t,T := {stopping times in [t,T ] a.s. & indep. of Ft}.

Note: the upper value function is defined similarly:
U(t, x) := infτ supα E[· · · ]. We say the game has a value if these
two functions coincide.
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Related Work

The game of control and stopping is closely related to some
common problems in mathematical finance:

Karatzas & Kou [1998]; Karatzas & Zamfirescu; [2005], B. &
Young [2010]; B., Karatzas, and Yao (2010),

More recently, in the context of 2BSDEs (Soner, Touzi,
Zhang) and G -expectations (Peng).
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Related Work (continued)

One-dimensional case: Karatzas and Sudderth [2001] study the
case where Xα moves along a given interval on R. Under
appropriate conditions, they

show that the game has a value;

construct explicitly a saddle-point of optimal strategies
(α∗, τ∗).

Difficult to extend their results to multi-dimensional cases (their
techniques rely heavily on optimal stopping theorems for
one-dimensional diffusions).
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Related Work (continued)

Multi-dimensional case: Karatzas and Zamfirescu [2008] develop a
martingale approach to deal with this. Again, it is shown that the
game has a value and a saddle point of optimal strategies is
constructed,

the volatility coefficient of Xα has to be nondegenerate.

the volatility coefficient of Xα cannot be controlled.
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Our Goal

We intend to investigate a much more general multi-dimensional
controller-and-stopper game in which both the drift and the
volatility coefficients of Xα can be controlled, and the volatility
coefficient can be degenerate.

Main Result: The game has a value (i.e. U = V ) and the value
function is the unique viscosity solution to an obstacle problem of
an HJB equation.
One can then construct a numerical scheme to compute the value
function, see e.g. B. and Fahim [2011] for a stochastic numerical
method.

Erhan Bayraktar On the Multi-Dimensional Controller and Stopper Games



Introduction
The Set-up

Subsolution Property of U∗

Supersolution Property of V∗
Comparison

Methodology

Show: V∗ is a viscosity supersolution

prove continuity of an optimal stopping problem.
derive a weak DPP for V , from which the supersolution
property follows.

Show: U∗ is a viscosity subsolution

prove continuity of an optimal control problem.
derive a weak DPP for U, from which the subsolution property
follows.

Prove a comparison result. Then U∗ ≤ V∗. Since
U∗ ≥ U ≥ V ≥ V∗, we have U = V , i.e. the game has a
value!!
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Consider a fixed time horizon T > 0.

Ω := C ([0,T ];Rd).

W = {Wt}t∈[0,T ]: the canonical process, i.e. Wt(ω) = ωt .

P: the Wiener measure defined on Ω.

F = {Ft}t∈[0,T ]: the P-augmentation of σ(Ws , s ∈ [0,T ]).

For each t ∈ [0,T ], consider

Ft : the P-augmentation of σ(Wt∨s −Wt , s ∈ [0,T ]).

T t :={Ft-stopping times valued in [0,T ] P-a.s.}.
At :={Ft-progressively measurable M-valued processes},
where M is a separable metric space.

Given F-stopping times τ1, τ2 with τ1 ≤ τ2 P-a.s., define
T t
τ1,τ2

:={τ ∈ T t valued in [τ1, τ2] P-a.s.}.
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Concatenation

Given ω, ω′ ∈ Ω and θ ∈ T , we define the concatenation of ω and
ω′ at time θ as

(ω⊗θω′)s := ωr1[0,θ(ω)](s)+(ω′s−ω′θ(ω)+ωθ(ω))1(θ(ω),T ](s), s ∈ [0,T ].

For each α ∈ A and τ ∈ T , we define the shifted versions:

αθ,ω(ω′) := α(ω ⊗θ ω′)
τ θ,ω(ω′) := τ(ω ⊗θ ω′).
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Assumptions on b and σ

Given τ ∈ T , ξ ∈ Lpd which is Fτ -measurable, and α ∈ A, let
X τ,ξ,α denote a Rd -valued process satisfying the SDE:

dX τ,ξ,α
t = b(t,X τ,ξ,α

t , αt)dt + σ(t,X τ,ξ,α
t , αt)dWt , (1)

with the initial condition X τ,ξ,α
τ = ξ a.s.

Assume: b(t, x , u) and σ(t, x , u) are deterministic Borel functions,
and continuous in (x , u); moreover, ∃ K > 0 s.t. for t ∈ [0,T ],
x , y ∈ Rd , and u ∈ M

|b(t, x , u)− b(t, y , u)|+ |σ(t, x , u)− σ(t, y , u)| ≤ K |x − y |,
|b(t, x , u)|+ |σ(t, x , u)| ≤ K (1 + |x |),

(2)

This implies for any (t, x) ∈ [0,T ]× Rd and α ∈ A, (1) admits a
unique strong solution X t,x ,α

· .
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Assumptions on f , g , and c

f and g are rewards, c is the discount rate ⇒ assume f , g , c ≥ 0.

In addition, Assume:

f : [0,T ]× Rd ×M 7→ R is Borel measurable, and f (t, x , u)
continuous in (x , u), and continuous in x uniformly in u ∈ M.

g : Rd 7→ R is continuous,

c : [0,T ]× Rd 7→ R is continuous and bounded above by
some real number c̄ > 0.

f and g satisfy a polynomial growth condition

|f (t, x , u)|+ |g(x)| ≤ K (1 + |x |p̄) for some p̄ ≥ 1. (3)
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Reduction to the Mayer form

Set F (x , y , z) := z + yg(x). Observe that

V (t, x) = sup
α∈At

inf
τ∈T t

t,T

E
[
Z t,x ,1,0,α
τ + Y t,x ,1,α

τ g(X t,x ,α
τ )

]
= sup

α∈At

inf
τ∈T t

t,T

E
[
F (Xt,x ,1,0,α

τ )
]
,

(4)

where Xt,x ,y ,z,α
τ := (X t,x ,α

τ ,Y t,x ,y ,α
τ ,Z t,x ,y ,z,α

τ ).

More generally, for any (x , y , z) ∈ S := Rd × R2
+, define

V̄ (t, x , y , z) := sup
α∈At

inf
τ∈T t

t,T

E
[
F (Xt,x ,y ,z,α

τ )
]
.

Let J(t, x;α, τ) := E[F (Xt,x,α
τ )]. We can write V as

V (t, x) = sup
α∈At

inf
τ∈T t

t,T

J(t, (x , 1, 0);α, τ).
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Conditional expectation

Lemma

Fix (t, x) ∈ [0,T ]× S and α ∈ A. For any θ ∈ Tt,T and τ ∈ Tθ,T ,

E[F (Xt,x,α
τ ) | Fθ](ω) = J

(
θ(ω),Xt,x,α

θ (ω);αθ,ω, τ θ,ω
)

P-a.s.(
= E

[
F

(
X
θ(ω),Xt,x,α

θ (ω),αθ,ω

τθ,ω

)])
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For (t, x , p,A) ∈ [0,T ]× Rd × Rd ×Md , define

Ha(t, x , p,A) := −b(t, x , a)− 1

2
Tr [σσ′(t, x , a)A]− f (t, x , a),

and set
H(t, x , p,A) := inf

a∈M
Ha(t, x , p,A).
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Subsolution Property of U∗

Proposition 4.2

The function U∗ is a viscosity subsolution on [0,T )× Rd to the
obstacle problem of an HJB equation

max

{
c(t, x)w − ∂w

∂t
+ H∗(t, x ,Dxw ,D2

x w),w − g(x)

}
≤ 0.

Proof: Assume the contrary, i.e. ∃ h ∈ C 1,2([0,T )× Rd) and
(t0, x0) ∈ [0,T )× Rd s.t.

0 = (U∗−h)(t0, x0) > (U∗−h)(t, x), ∀ (t, x) ∈ [0,T )×Rd\(t0, x0),

and

max

{
c(t0, x0)h − ∂h

∂t
+ H∗(t0, x0,Dxh,D2

x h), h − g(x0)

}
(t0, x0) > 0.

(5)
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Proof (continued)

Since by definition U ≤ g , the USC of g implies
h(t0, x0) = U∗(t0, x0) ≤ g(x0). Then, we see from (5) that

c(t0, x0)h(t0, x0)− ∂h

∂t
(t0, x0) + H∗(·,Dxh,D2

x h)(t0, x0) > 0.

Define the function h̃(t, x) := h(t, x) + ε(|t − t0|2 + |x − x0|)4.
Note that (h̃, ∂t h̃,Dx h̃,D2

x h̃)(t0, x0) = (h, ∂th,Dxh,D2
x h)(t0, x0).

Then, by LSC of H∗, ∃ r > 0, ε > 0 such that t0 + r < T and

c(t, x)h̃(t, x)− ∂h̃

∂t
(t, x) + Ha(·,Dx h̃,D2

x h̃)(t, x) > 0, (6)

for all a ∈ M and (t, x) ∈ Br (t0, x0).

Erhan Bayraktar On the Multi-Dimensional Controller and Stopper Games



Introduction
The Set-up

Subsolution Property of U∗

Supersolution Property of V∗
Comparison

Proof (continued)

Define η > 0 by ηe c̄T := min∂Br (t0,x0)(h̃ − h) > 0.

Take (t̂, x̂) ∈ Br (t0, x0) s.t. |(U − h̃)(t̂, x̂)| < η/2. For α ∈ At̂ , set

θα := inf
{

s ≥ t̂
∣∣∣ (s,X t̂,x̂ ,α

s ) /∈ Br (t0, x0)
}
∈ T t̂

t̂,T .

Applying the product rule to Y t̂,x̂ ,1,α
s h̃(s,X t̂,x̂ ,α

s ), we get

h̃(t̂, x̂) = E
[

Y t̂,x̂ ,1,α
θα h̃(θα,X t̂,x̂ ,α

θα )

+

∫ θα

t̂
Y t̂,x̂ ,1,α
s

(
ch̃ − ∂h̃

∂t
+ Hα(·,Dx h̃,D2

x h̃) + f

)
(s,X t̂,x̂ ,α

s )ds

]
> E

[
Y t̂,x̂ ,1,α
θα h(θα,X t̂,x̂ ,α

θα ) +

∫ θα

t̂
Y t̂,x̂ ,1,α
s f (s,X t̂,x̂ ,α

s , αs)ds

]
+ η
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Proof (continued)

By our choice of (t̂, x̂), U(t̂, x̂) + η/2 > h̃(t̂, x̂). Thus,

U(t̂, x̂) > E
[

Y t̂,x̂ ,1,α
θα h(θα,X t̂,x̂ ,α

θα ) +

∫ θα

t̂
Y t̂,x̂ ,1,α
s f (s,X t̂,x̂ ,α

s , αs)ds

]
+
η

2
,

for any α ∈ At̂ .

How to get a contradiction to this??
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Proof (continued)

By the definition of U,

U(t̂, x̂) ≤ sup
α∈At̂

E
[
F
(
Xt̂,x̂ ,1,0,α
τ∗

)]
≤ E

[
F
(
Xt̂,x̂ ,1,0,α̂
τ∗

)]
+
η

4
, for some α̂ ∈ At̂ .

≤ E
[
Y t̂,x̂ ,1,α̂
θα̂

h(θ,X t̂,x̂ ,α̂
θα̂

) + Z t̂,x̂ ,1,0,α̂
θα̂

]
+
η

4
+
η

4
,

The blue part is the weak DPP we want to prove!
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Weak DPP I

Proposition

Fix (t, x) ∈ [0,T ]× S and ε > 0. For any α ∈ At , θ ∈ T t
t,T , and

ϕ ∈ LSC ([0,T ]× Rd) with ϕ ≥ U, there exists τ∗(α, θ) ∈ T t
t,T

such that

E[F (Xt,x,α
τ∗ )] ≤ E[Y t,x ,y ,α

θ ϕ(θ,X t,x ,α
θ ) + Z t,x ,y ,z,α

θ ] + 4ε.
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Continuity of an Optimal Control Problem

Lemma 4.3

Fix t ∈ [0,T ]. For any τ ∈ T t
t,T , the function Lτ : [0, t]× S

defined by
Lτ (s, x) := sup

α∈As

J(s, x;α, τ)

is continuous.

Idea of Proof: Generalize the arguments in Krylov[1980].
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Proof of Weak DPP I

Step 1: Separate [0,T ]× S into small pieces. By Lindelöf covering
thm, take {(ti , xi )}i∈N s.t.

⋃
i∈N B(ti , xi ; r (ti ,xi )) = (0,T ]× S.

Take a disjoint subcovering {Ai}i∈N of the space (0,T ]× S
s.t. (ti , xi ) ∈ Ai .

Step 2: Construct desired stopping time τ (ti ,xi ) in each Ai . For
each (ti , xi ), by def. of Ū, ∃ τ (ti ,xi ) ∈ T ti

ti ,T
s.t.

sup
α∈Ati

J(ti , xi ;α, τ
(ti ,xi )) ≤ Ū(ti , xi ) + ε. (7)

Set ϕ̄(t, x , y , z) := yϕ(t, x) + z . For any (t ′, x ′) ∈ Ai ,

Lτ
(ti ,xi )(t ′, x ′) ≤

usc
Lτ

(ti ,xi )(ti , xi ) + ε ≤ Ū(ti , xi ) + 2ε

≤ ϕ̄(ti , xi ) + 2ε≤
lsc

ϕ̄(t ′, x ′) + 3ε.
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Proof of the Weak DPP I (continued)

Step 3: Construct desired stopping time τ on the whole space
[0,T ]× S. For any n ∈ N, set Bn := ∪0≤i≤nAi and define

τn := T 1(Bn)c (θ,Xt,x,α
θ ) +

n∑
i=0

τ (ti ,xi )1Ai
(θ,Xt,x,α

θ ) ∈ T t
t,T .

Step 4: Estimations.

E[F (Xt,x,α
τn )] = E

[
F (Xt,x,α

τn )1Bn(θ,Xt,x,α
θ )

]
+ E

[
F (Xt,x,α

τn )1(Bn)c (θ,Xt,x,α
θ )

]
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Proof of Weak DPP I (continued)

By Lemma 2.4 and Properties 1 & 2,

E[F (Xt,x,α
τn ) | Fθ](ω) 1Bn(θ(ω),Xt,x,α

θ (ω))

=
n∑

i=0

J
(
θ(ω),Xt,x,α

θ (ω);αθ,ω, τ (ti ,xi )
)

1Ai
(θ(ω),Xt,x,α

θ (ω))

≤
n∑

i=0

Lτ
(ti ,xi )

(
θ(ω),Xt,x,α

θ (ω)
)

1Ai
(θ(ω),Xt,x,α

θ (ω))

≤
[
ϕ̄
(
θ(ω),Xt,x,α

θ (ω)
)

+ 3ε
]

1Bn(θ(ω),Xt,x,α
θ (ω)).

Thus,

E
[
F (Xt,x,α

τn )1Bn(θ,Xt,x,α
θ )

]
= E

[
E[F (Xt,x,α

τε,n ) | Fθ]1Bn(θ,Xt,x,α
θ )

]
≤ E[ϕ̄(θ,Xt,x,α

θ )1Bn(θ,Xt,x,α
θ )] + 3ε ≤ E[ϕ̄(θ,Xt,x,α

θ )] + 3ε.
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Proof of Weak DPP I(continued)

Step 5: Conclusion.

E[F (Xt,x,α
τn )] ≤ E[ϕ̄(θ,Xt,x,α

θ )]+3ε+E[F (Xt,x,α
T )1(An)c (θ,Xt,x,α

θ )].

Now, take n∗ ∈ N large enough s.t.

E[F (Xt,x,α
τn∗

)] ≤ E[ϕ̄(θ,Xt,x,α
θ )] + 4ε

= E[Y t,x ,y ,α
θ ϕ(θ,X t,x ,α

θ ) + Z t,x ,y ,z,α
θ ] + 4ε.
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Supersolution Property of V∗

Proposition

The function V∗ is a viscosity supersolution on [0,T )× Rd to the
obstacle problem of an HJB equation

max

{
c(t, x)w − ∂w

∂t
+ H(t, x ,Dxw ,D2

x w), w − g(x)

}
≥ 0.

(8)
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Weak DPP II

Proposition

Fix (t, x) ∈ [0,T ]× S and ε > 0. Take arbitrary α ∈ At , θ ∈ T t
t,T

and ϕ ∈ USC ([0,T ]× Rd) with ϕ ≤ V . We have the following:

(i) E[ϕ̄+(θ,Xt,x,α
θ )] <∞;

(ii) If, moreover, E[ϕ̄−(θ,Xt,x,α
θ )] <∞, then there exists α∗ ∈ At

with α∗s = αs for s ∈ [t, θ] such that

E[F (Xt,x,α∗
τ )] ≥ E[Y t,x ,y ,α

τ∧θ ϕ(τ ∧ θ,X t,x ,α
τ∧θ ) + Z t,x ,y ,z,α

τ∧θ ]− 4ε,
(9)

for any τ ∈ T t
t,T .
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Continuity of an Optimal Stopping Problem

Lemma

Fix t ∈ [0,T ]. Then for any α ∈ At , the function

Gα(s, x) := inf
τ∈T s

s,T

J(s, x;α, τ)

is continuous on [0, t]× S.

Idea: Express optimal stopping problem as a solution to RBSDE
and then use continuity results for RBSDE.

Erhan Bayraktar On the Multi-Dimensional Controller and Stopper Games



Introduction
The Set-up

Subsolution Property of U∗

Supersolution Property of V∗
Comparison

Outline

1 Introduction

2 The Set-up

3 Subsolution Property of U∗

4 Supersolution Property of V∗

5 Comparison

Erhan Bayraktar On the Multi-Dimensional Controller and Stopper Games



Introduction
The Set-up

Subsolution Property of U∗

Supersolution Property of V∗
Comparison

To state an appropriate comparison result, we assume

A. for any t, s ∈ [0,T ], x , y ∈ Rd , and u ∈ M,

|b(t, x , u)−b(s, y , u)|+|σ(t, x , u)−σ(s, y , u)| ≤ K (|t−s|+|x−y |).

B. f (t, x , u) is uniformly continuous in (t, x), uniformly in u ∈ M.

The conditions A and B, together with the linear growth condition
on b and σ, imply that the function H is continuous, and thus
H = H∗.
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Comparison Result

Proposition

Assume A and B. Let u (resp. v) be an USC viscosity subsolution
(resp. a LSC viscosity supersolution) with polynomial growth
condition to (8), such that u(T , x) ≤ v(T , x) for all x ∈ Rd . Then
u ≤ v on [0,T )× Rd .
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U∗(T , ·) = V∗(T , ·)

Lemma

For all x ∈ Rd , V∗(T , x) ≥ g(x).
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Main Result

Theorem

Assume A and B. Then U∗ = V∗ on [0,T ]× Rd . In particular,
U = V on [0,T ]× Rd , i.e. the game has a value, which is the
unique viscosity solution to (8) with terminal condition
U(T , x) = g(x) for x ∈ Rd .
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Thank you very much for your attention!
Happy Birthday Yannis!
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