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Consider the following problem....

I Choose a function f : Rd → C uniformly at random from the
set of all v : Rd → C satisfying M(v) = m for some given
constant m, where

M(v) :=

∫
Rd

|v(x)|2dx .

I Does not make sense mathematically.
I Only reasonable answer: f must be zero almost everywhere.
I This f does not satisfy M(f ) = m. Paradox resolved if we

view this as the limit of a sequence of discrete questions:
I Approximate Rd by a large box [−L, L]d .
I Discretize this box as a union of many small cubes.
I Choose a function f : Rd → C uniformly from the set of all

functions v that are piecewise constant in these small cubes
and zero outside the box [−L, L]d , and satisfy M(v) = m.

I This is a probabilistically sensible question; the resulting f
approaches zero in the L∞ norm in the “infinite volume
continuum limit”.
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A more complex problem

I Let p > 1 and E ∈ R be given constants.

I Suppose that we add one more constraint to the previous
problem: f should satisfy H(f ) = E , where

H(v) :=
1

2

∫
Rd

|∇v(x)|2dx − 1

p + 1

∫
Rd

|v(x)|p+1dx .

I What happens if we attempt to choose a function uniformly
from the set of all v satisfying M(v) = m and H(v) = E ?

I Before answering this question, let us first connect it to the
study of the nonlinear Schrödinger equation (NLS).

I M(v) is called the mass of v and H(v) is called the energy
of v in the context of the NLS.
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The focusing nonlinear Schrödinger equation

I A complex-valued function u of two variables x and t, where
x ∈ Rd is the space variable and t ∈ R is the time variable, is
said to satisfy a d-dimensional focusing nonlinear Schrödinger
equation (NLS) with nonlinearity parameter p if

i ∂tu = −∆u − |u|p−1u.

I The equation is called “defocusing” if the term −|u|p−1u is
replaced by +|u|p−1u. In this talk, we will only consider the
focusing case.

I The mass and energy defined before are conserved quantities
for this flow.
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Solitons

I For the defocusing NLS, it is known that in many situations,
the solution “disperses” as t →∞.

This means that for every
compact set K ⊆ Rd ,

lim
t→∞

∫
K
|u(x , t)|2dx = 0.

I In the focusing case dispersion may not occur.

I Demonstrated quite simply by a special class of solutions
called “solitons” or “standing waves”.

I These are solutions of the form u(x , t) = v(x)e iωt , where ω is
a positive constant and the function v is a solution of the
soliton equation

ωv = ∆v + |v |p−1v .

I Often, the function v is also called a soliton.
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The soliton resolution conjecture

I Little is known about the long-term behavior of solutions of
the focusing NLS.

I One particularly important conjecture, sometimes called the
“soliton resolution conjecture”, claims (vaguely) that as
t →∞, the solution u(·, t) would look more and more like a
soliton, or a union of a finite number of receding solitons.

I The claim may not hold for all initial conditions, but is
expected to hold for “most” (i.e. generic) initial data.

I In certain situations, one needs to impose the additional
condition that the solution does not blow up.

I The only case where it is partially solved is when d = 1 and
p = 3, where the NLS is completely integrable. In higher
dimensions, some progress in recent years.

I It is generally believed that proving a precise statement is “far
out of the reach of current technology”. See e.g. Terry Tao’s
blog entry on this topic, or Avy Soffer’s ICM lecture notes.
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Invariant measures for the NLS

I One approach to understanding the long-term behavior of
global solutions is through the study of invariant Gibbs
measures.

I Roughly, the idea is as follows.
I The NLS is an infinite dimensional Hamiltonian flow.
I Finite dimensional Hamiltonian flows preserve Lebesgue

measure (Liouville’s theorem).
I Extending this logic, one might expect that “Lebesgue

measure” on the space of all functions of suitable regularity, if
such a thing existed, would be an invariant measure for the
flow.

I Since the flow preserves energy, this would imply that Gibbs
measures that have density proportional to e−βH(v) with
respect to this fictitious Lebesgue measure (where β is
arbitrary) would also be invariant for the flow.

I In statistical physics parlance, this is the Grand Canonical
Ensemble.
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Making sense of the Grand Canonical Ensemble

I Lebowitz, Rose & Speer (1988) were the first to make sense
of the grand canonical ensemble for the NLS.

I Invariance was rigorously proved by Bourgain (1994, 1996) in
d = 1 for the focusing case, and d ≤ 2 for defocusing.

I Invariance in the one-dimensional case was also proved by
McKean (1995) and Zhidkov (1991).

I Other important contributions from Bourgain, McKean,
Vaninsky, Zhidkov, Rider, Brydges, Slade,....

I Significant recent progress on grand canonical invariant
measures for the NLS and other equations by Tzvetkov and
coauthors, and Oh and coauthors.

I However, all in all, not much is known in d ≥ 3. In fact, it is
possible that the idea does not work at all in d ≥ 3.

I More importantly, no one has analyzed the behavior of
random functions picked from these measures. Such behavior
would reflect the long-term behavior of NLS flows.
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The microcanonical ensemble

I Instead of considering the Grand Canonical Ensemble of
Lebowitz, Rose & Speer, one may alternatively consider the
Microcanonical Ensemble.

I The microcanonical ensemble, in this context, is the
restriction of our fictitious Lebesgue measure on function
space to the manifold of functions satisfying M(v) = m and
H(v) = E , where m and E are given.
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The microcanonical ensemble contd.

I How to make sense of the microcanonical ensemble for the
NLS?

I One way: Discretize space and pass to the continuum limit.
(This was Zhidkov’s line of attack for the invariance of the
grand canonical ensemble in d = 1. McKean and coauthors
used Brownian motion; Bourgain and others used Fourier
expansions.)

I Some physicists have briefly investigated this approach, with
inconclusive results.

I I tried to make sense of the microcanonical ensemble in some
simpler settings before, one on my own and one with Kay
Kirkpatrick. Could not pass to the continuum limit.

I The main goal of this talk is to show that it is indeed possible
to take the discretized microcanonical ensemble to a
continuum limit in such a way that very conclusive results can
drawn about it in all dimensions.
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Equivalence classes

I If v satisfies M(v) = m and H(v) = E , so does the function

u(x) := α0v(x + x0)

for any x0 ∈ Rd and α0 ∈ C with |α0| = 1.

I Thus, it is reasonable to first quotient the function space by
the equivalence relation ∼, where u ∼ v means that u and v
are related in the above manner.

I We will generally talk about functions and equivalence classes
as the same thing.
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Ground state solitons

I When p satisfies the “mass-subcriticality” condition
p < 1 + 4/d , it is known that there is a unique equivalence
class minimizing H(v) under the constraint M(v) = m.

I This equivalence class is known as the “ground state soliton”
of mass m.

I The ground state soliton has the following description:
I (Deep classical result) There is a unique positive and radially

symmetric solution Q of the soliton equation

Q = ∆Q + |Q|p−1Q.

I For each λ > 0, let

Qλ(x) := λ2/(p−1)Q(λx).

Then each Qλ is also a soliton.
I For each m > 0, there is a unique λ(m) > 0 such that Qλ(m) is

the ground state soliton of mass m.
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Main result

Theorem (C., 2012; rough statement)

Suppose that p < 1 + 4/d, and that E is a real number bigger
than the ground state energy at a given mass m. If we attempt to
choose a function uniformly at random from all functions satisfying
M(v) = m and H(v) = E , by first discretizing the problem and
then passing to the infinite volume continuum limit, then the
resulting sequence of discrete random functions (equivalence
classes) converges in the L∞ norm to the ground state soliton of
mass m.

I Actually, this is a theorem about microcanonical invariant
measures of the discrete NLS. I do not construct an invariant
measure for the continuum NLS.

I In probabilistic jargon, this can be called a shape theorem.
Like all shape theorems, the proof is based primarily on large
deviations.

I What about multi-soliton solutions? Will discuss later.
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How to discretize?

I Let Vn = {0, 1, . . . , n − 1}d = (Z/nZ)d .

I Imagine this set embedded in Rd as hVn, where h > 0 is the
grid size.

I hVn is a discrete approximation of the box [0, nh]d .

I Endow Vn with the graph structure of a discrete torus.

I The (discretized) mass and energy of a function v : Vn → C
are defined as

M(v) := hd
∑
x∈Vn

|v(x)|2,

and

H(v) :=
hd

2

∑
x,y∈Vn
|x−y|=1

∣∣∣∣v(x)− v(y)

h

∣∣∣∣2 − hd

p + 1

∑
x∈Vn

|v(x)|p+1.
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How to discretize? (contd.)

I Fixing ε > 0, E ∈ R and m > 0, define

Sε,h,n(E ,m) := {v ∈ CVn : |M(v)−m| ≤ ε, |H(v)− E | ≤ ε}.

I Let f be a random function chosen uniformly from the finite
volume set Sε,h,n(E ,m).

I Extend f to a step function f̃ on Rd in the natural way.
I There are three discretization parameters involved here:

I The grid size h.
I The box size nh.
I The thickness ε of the annulus.

I The main theorem says that the equivalence class
corresponding to this random function f̃ converges to the
ground state soliton of mass m if (ε, h, nh) is taken to
(0, 0,∞) in an appropriate manner.
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The soliton resolution conjecture for the DNLS

I The uniform distribution on Sε,h,n(E ,m) is itself the
microcanonical invariant measure for the Discrete Nonlinear
Schrödinger Equation (DNLS) on the discrete torus.

I I have an analogous theorem for the DNLS, where
(ε, n)→ (0,∞) but h remains fixed. The theorem gives
convergence to discrete solitons (with mass strictly less
than m).

I Effectively, this proves the soliton resolution conjecture for the
DNLS: Approximately all ergodic components with mass
∈ [m ± ε] and energy ∈ [E ± ε] have the property that a flow
with initial data in that component comes close to a discrete
soliton as t →∞, where the degree of closeness depends on
the smallness of ε and largeness of n.

I How is this compatible with multi-soliton solutions in the
continuum case? May be the recession of the solitons
“outruns” the convergence to equilibrium.
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Main ideas in the proof

I Let f be a function “uniformly chosen” satisfying M(f ) = m
and H(f ) = E , whatever that means.

I We need to show that for any set A of functions that do not
contain the ground state soliton, the chance of f ∈ A is zero.

I Take any δ > 0 and let Vδ := {x : |f (x)| ≤ δ}.
I Then ∫

Vδ

|f (x)|p+1dx ≤ δp−1

∫
Vδ

|f (x)|2dx ≤ δp−1m.

I Decompose f as u + v , where u = f 1Vδ and v = f 1Rd\Vδ .
The above inequality shows that when δ is close to zero,

H(u) ≈ 1

2

∫
Rd

|∇u(x)|2dx .

I On the other hand

Vol(Rd\Vδ) ≤
1

δ2

∫
Rd\Vδ

|f (x)|2dx ≤ m

δ2
.
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Main ideas in the proof (contd.)

I We will refer to v and u as the “visible” and “invisible” parts
of f .

I The last two inequalities show that:
I The visible part is supported on a finite volume set, whose size

is controlled by δ.
I The energy of the invisible part is essentially the same as the

L2 norm squared of its gradient, times 1/2.
I The game now is to compute P(f ∈ A) by analyzing the

visible and invisible parts separately.
I The visible part, being supported on a “small” set, can be

analyzed directly.
I For the invisible part, one has to develop joint large deviations

for the mass and the gradient. (There is no nonlinear term!)
I The large deviation analysis throws up the following key

conclusion: If the visible part has mass m′, then with high
probability, the energy of the visible part must be close to the
lowest possible energy at mass m′.
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Key steps

I Develop large deviation estimates in the finite volume discrete
case.

I Analyze the variational problem arising out of this large
deviation question.

I Pass to the infinite volume limit (keeping the grid size fixed)
using a discretization of the concentration-compactness
argument, and show convergence to discrete solitons.

I Develop discrete analogs of harmonic analytic tools
(Littlewood-Paley decompositions, Hardy-Littlewood-Sobolev
inequality of fractional integration, Gagliardo-Nirenberg
inequality, discrete Green’s function estimates, etc.) to prove
smoothness estimates for discrete solitons that remain stable
as grid size → 0.

I Use these smoothness estimates, together with the stability of
the ground state soliton, to prove convergence of discrete
solitons to continuum solitons.
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