Information Percolation

in Segmented Markets

Darrell Duffie, Gustavo Manso, Semyon Malamud

Stanford University, U.C. Berkeley, EPFL

Probability, Control, and Finance In Honor of Ioannis Karatzas

Columbia University, June, 2012

Figure: An over-the-counter market.

Figure: Transaction price dispersion in muni market. Source: Green, Hollifield, and Schürhoff (2007). See, also, Goldstein and Hotchkiss (2007).

Figure: Daily trade in the federal funds Market. Source: Bech and Atalay (2012).

Information Transmission in Markets

Informational Role of Prices: Hayek (1945), Grossman (1976), Grossman and Stiglitz (1981).

- Centralized exchanges:
 - Wilson (1977), Townsend (1978), Milgrom (1981), Vives (1993), Pesendorfer and Swinkels (1997), and Reny and Perry (2006).
- Over-the-counter markets:
 - Wolinsky (1990), Blouin and Serrano (2002), Golosov, Lorenzoni, and Tsyvinski (2009).
 - Duffie and Manso (2007), Duffie, Giroux, and Manso (2008), Duffie, Malamud, and Manso (2010).

Figure: Many OTC markets are dealer-intermediated.

Model Primitives

- Agents: a non-atomic measure space (G, \mathcal{G}, γ) .
- Uncertainty: a probability space $(\Omega, \mathcal{F}, \mathbb{P})$.
- An asset has a random payoff X with outcomes H and L.
- ▶ Agent *i* is initially endowed with a finite set $S_i = \{s_1, \ldots, s_n\}$ of $\{0, 1\}$ -signals.
- Agents have disjoint sets of signals.
- The measurable subsets of Ω × G are enriched from the product σ-algebra enough to allow signals to be essentially pairwise X-conditionally independent, and to allow Fubini, and thus the exact law of large numbers (ELLN). (Sun, JET, 2006).

Information Types

After observing signals $S = \{s_1, \ldots, s_n\}$, the logarithm of the likelihood ratio between states X = H and X = L is by Bayes' rule:

$$\log \frac{\mathbb{P}(X = H \mid s_1, \dots, s_n)}{\mathbb{P}(X = L \mid s_1, \dots, s_n)} = \log \frac{\mathbb{P}(X = H)}{\mathbb{P}(X = L)} + \sum_{i=1}^n \log \frac{p_i(s_i \mid H)}{p_i(s_i \mid L)},$$

where $p_i(s | k) = \mathbb{P}(s_i = s | X = k)$. We say that the "type" θ associated with this set of signals is

$$\theta = \sum_{i=1}^{n} \log \frac{p_i(s_i \mid H)}{p_i(s_i \mid L)}.$$

ELLN for Cross-Sectional Type Density

► The ELLN implies that, on the event {X = H}, the fraction of agents whose initial type is no larger than some given number y is almost surely

$$F^{H}(y) = \int_{G} \mathbb{1}_{\{\theta_{\alpha} \leq y\}} d\gamma(\alpha) = \int_{G} \mathbb{P}(\theta_{\alpha} \leq y \mid X = H) d\gamma(\alpha),$$

where θ_{α} is the initial type of agent α .

- ► On the event {X = L}, the cross-sectional distribution function F^L of types is likewise defined and characterized.
- \blacktriangleright We suppose that F^H and F^L have densities, denoted $g^H(\,\cdot\,,0)$ and $g^L(\,\cdot\,,0)$ respectively.
- We write g(x,0) for the random variable whose outcome is $g^H(x,0)$ on the event $\{X = H\}$ and $g^L(x,0)$ on the event $\{X = L\}$.

Information is Additive in Type

Proposition

Let $S = \{s_1, ..., s_n\}$ and $R = \{r_1, ..., r_m\}$ be disjoint sets of signals, with associated types θ and ϕ . If two agents with types θ and ϕ reveal their types to each other, then both agents achieve the posterior type $\theta + \phi$.

This follows from Bayes' rule, by which

$$\log \frac{\mathbb{P}(X = H \mid S, R, \theta + \phi)}{\mathbb{P}(X = L \mid S, R, \theta + \phi)} = \log \frac{\mathbb{P}(H = H)}{\mathbb{P}(X = L)} + \theta + \phi,$$
$$= \log \frac{\mathbb{P}(X = L \mid \theta + \phi)}{\mathbb{P}(X = L \mid \theta + \phi)}$$

Dynamics of Cross-Sectional Density of Types

Each period, each agent is matched, with probability λ , to a randomly chosen agent (uniformly distributed). They share their posteriors on X.

Duffie and Sun (AAP 2007, JET 2012): With essential-pairwise-independent random matching of agents,

$$g(x,t+1) = (1-\lambda)g(x,t) + \int_{-\infty}^{+\infty} \lambda g(y,t)g(x-y,t) \, dy, \quad x \in \mathbb{R}, \quad \text{a.s.}$$

which can be written more compactly as

$$g(t+1) = (1-\lambda)g(t) + \lambda g(t) * g(t),$$

where * denotes convolution.

Solution of Cross-Sectional Distribution Types

 \blacktriangleright The Fourier transform of $g(\,\cdot\,,t)$ is

$$\hat{g}(z,t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{-izx} g(x,t) \, dx.$$

From (11), for each z in \mathbb{R} ,

$$\frac{d}{dt}\hat{g}(z,t) = -\lambda\hat{g}(z,t) + \lambda\hat{g}^2(z,t),$$
(1)

Thus, the differential equation for the transform is solved by

$$\hat{g}(z,t) = \frac{\hat{g}(z,0)}{e^{\lambda t}(1-\hat{g}(z,0)) + \hat{g}(z,0)}.$$
(2)

Solution of Cross-Sectional Distribution Types

Proposition

The unique solution of the dynamic equation (11) for the cross-sectional type density is the Wild sum

$$g(\theta, t) = \sum_{n \ge 1} e^{-\lambda t} (1 - e^{-\lambda t})^{n-1} g^{*n}(\theta, 0),$$
(3)

where $g^{*n}(\,\cdot\,,0)$ is the n-fold convolution of $g(\,\cdot\,,0)$ with itself.

The solution (3) is justified by noting that the Fourier transform $\hat{g}(z,t)$ can be expanded from (2) as

$$\hat{g}(z,t) = \sum_{n \ge 1} e^{-\lambda t} (1 - e^{-\lambda t})^{n-1} \hat{g}(z,0)^n,$$

which is the transform of the proposed solution for $g(\cdot, t)$.

Duffie-Manso-Malamud

Numerical Example

- Let $\lambda = 1$ and $\mathbb{P}(X = H) = 1/2$.
- Agent α initially observes s_{α} , with

$$\mathbb{P}(s_{\alpha} = 1 \mid X = H) + \mathbb{P}(s_{\alpha} = 1 \mid X = L) = 1.$$

- P(s_α = 1 | X = H) has a cross-sectional distribution over investors that is uniform over the interval [1/2, 1].
- On the event {X = H} of a high outcome, this initial allocation of signals induces an initial cross-sectional density of f(p) = 2p for the likelihood P(X = H | s_α) of a high state.

On the event $\{X = H\}$, the evolution of the cross-sectional population density of posterior probabilities of the event $\{X = H\}$.

Information Percolation in Large Markets

Multi-Agent Meetings

The Boltzmann equation for the cross-sectional distribution μ_t of types is

$$\frac{d}{dt}\mu_t = -\lambda\,\mu_t + \lambda\,\mu_t^{*m}.$$

We obtain the ODE,

$$\frac{d}{dt}\hat{\mu}_t = -\lambda\,\hat{\mu}_t + \lambda\,\hat{\mu}_t^m\,,$$

whose solution satisfies

$$\hat{\mu}_t^{m-1} = \frac{\hat{\mu}_0^{m-1}}{e^{(m-1)\lambda t}(1-\hat{\mu}_0^{m-1})+\hat{\mu}_0^{m-1}} \,. \tag{4}$$

Other Extensions

- Privately gathered information.
- Public information releases (such as tweets or transaction announcements).
 - Duffie, Malamud, and Manso (2010).
- Endogenous search intensity
 - Duffie, Malamud, and Manso (2009).

A Segmented OTC Market

- Agents of class $i \in \{1, \ldots, M\}$ have matching probability λ_i .
- Upon meeting, the probability that a class-j agent is selected as a counterparty is κ_{ij}.
- ► At some time T, the economy ends, X is revealed, and the utility realized by an agent of class i for each additional unit of the asset is

$$U_i = v_i 1_{\{X=L\}} + v^H 1_{\{X=H\}},$$

for strictly positive v^H and $v_i < v^H$.

Trade by Seller's Price Double Auction

- ► If v_i = v_j, there is no trade (Milgrom and Stokey, 1982; Serrano-Padial, 2008).
- ▶ Upon a meeting with gains from trade, say $v_i < v_j$, the counterparties participate in a seller's price double auction.
- That is, if the buyer's bid β exceeds the seller's ask σ, trade occurs at the price σ.
- The class of one's counterparty is common knowledge.

Equilibrium

The prices (σ, β) constitute an equilibrium for a seller of class *i* and a buyer of class *j* provided that, fixing β , the offer σ maximizes the seller's conditional expected gain,

$$E\left[\left(\sigma - E(U_i \,|\, \mathcal{F}_S \cup \{\beta\})\right) \mathbf{1}_{\{\sigma < \beta\}} \,|\, \mathcal{F}_S\right],\,$$

and fixing σ , the bid β maximizes the buyer's conditional expected gain

$$E\left[(E(U_j | \mathcal{F}_B \cup \{\sigma\}) - \sigma)1_{\{\sigma < \beta\}} | \mathcal{F}_B\right].$$

We look for equilibria that are completely revealing, of the form $(B(\theta), S(\phi))$, for a buyer and seller of types θ and ϕ , for strictly increasing $B(\cdot)$ and $S(\cdot)$.

Technical Conditions

Definition: A function $g(\cdot)$ on the real line is of exponential type α at $-\infty$ if, for some constants c > 0 and $\gamma > -1$,

$$\lim_{x \to -\infty} \frac{g(x)}{|x|^{\gamma} e^{\alpha x}} = c.$$
(5)

In this case, we write $g(x) \sim \operatorname{Exp}_{-\infty}(c, \gamma, \alpha)$. We use the notation $g(x) \sim \operatorname{Exp}_{+\infty}(c, \gamma, \alpha)$ analogously for the case of $x \to +\infty$.

Condition: For all *i*, g_{i0} is C^1 and strictly positive. For some $\alpha_- \ge 2.4$ and $\alpha_+ > 0$

$$\frac{d}{dx}g_{i0}^{H}(x) \sim \operatorname{Exp}_{-\infty}(c_{i,-},\gamma_{i,-},\alpha_{-})$$

and

$$\frac{d}{dx}g_{i0}^{H}(x) \sim \operatorname{Exp}_{+\infty}(c_{i,+},\gamma_{i,+},\alpha_{+})$$

for some $c_{i,\pm} > 0$ and some $\gamma_{i,\pm} \ge 0$.

Equilibrium Bidding Strategies

- ► We provide an ODE for the equilibrium type Φ(b) of a prospective buyer whose equilibrium bid is b. The ODE is the first-order condition for maximizing the probability of a trade multiplied by the expected profit given a trade.
- A prospective buyer of type ϕ bids $B(\phi) = \Phi^{-1}(\phi)$.
- A prospective seller of type θ offers $S(\theta) = \Theta^{-1}(\theta)$, where

$$\Theta(v) = \log \frac{v - v_i}{v^H - b} - \Phi(v), \quad v \in (v_i, v^H).$$

The ODE for the Buyer's Type

Lemma: For any initial condition $\phi_0 \in \mathbb{R}$, there exists a unique solution $\Phi(\cdot)$ on $[v_i, v^H)$ to the ODE

$$\Phi'(b) = \frac{1}{v_i - v_j} \left(\frac{b - v_i}{v^H - b} \frac{1}{h_{it}^H(\Phi(b))} + \frac{1}{h_{it}^L(\Phi(b))} \right), \quad \Phi(v_i) = \phi_0.$$

This solution, also denoted $\Phi(\phi_0, b)$, is monotone increasing in both b and ϕ_0 . Further, $\lim_{b\to v^H} \Phi(b) = +\infty$.

The limit $\Phi(-\infty, b) = \lim_{\phi_0 \to -\infty} \Phi(\phi_0, b)$ exists and is strictly monotone and continuously differentiable with respect to b.

Bidding Strategies

Proposition

Suppose that (S, B) is a continuous equilibrium such that $S(\theta) \leq v^H$ for all $\theta \in \mathbb{R}$. Let $\phi_0 = B^{-1}(v_i) \geq -\infty$. Then,

$$B(\phi) = \Phi^{-1}(\phi), \quad \phi > \phi_0,$$

Further, $\lim_{\theta\to-\infty} S(\theta) = v_i$ and $\lim_{\theta\to-\infty} S(\theta) = v^H$, and for any θ , we have $S(\theta) = \Theta^{-1}(\theta)$. Any buyer of type $\phi < \phi_0$ does not trade, and has a bidding policy B that is not uniquely determined at types below ϕ_0 .

The unique welfare maximizing equilibrium is that associated with $\lim_{\phi_0 \to -\infty} \Phi(\phi_0, b)$. This equilibrium exists and is fully revealing.

Evolution of Type Distribution

Dynamics for the distribution of types of agents of class i:

$$g_{i,t+1} = (1 - \lambda_i) g_{it} + \lambda_i g_{it} * \sum_{j=1}^M \kappa_{ij} g_{jt}, \quad i \in \{1, \dots, M\}.$$

Taking Fourier transforms:

$$\hat{g}_{i,t+1} = (1 - \lambda_i) \,\hat{g}_{it} + \lambda_i \,\hat{g}_{it} \sum_{j=1}^M \kappa_{ij} \,\hat{g}_{jt}, \quad i \in \{1, \dots, M\}.$$

Evolution of Type Distribution

Dynamics for the distribution of types of agents of class i:

$$g_{i,t+1} = (1 - \lambda_i) g_{it} + \lambda_i g_{it} * \sum_{j=1}^M \kappa_{ij} g_{jt}, \quad i \in \{1, \dots, M\}.$$

Taking Fourier transforms:

$$\hat{g}_{i,t+1} = (1 - \lambda_i) \,\hat{g}_{it} + \lambda_i \,\hat{g}_{it} \sum_{j=1}^M \kappa_{ij} \,\hat{g}_{jt}, \quad i \in \{1, \dots, M\}.$$

Special Case: N = 2 and $\lambda_1 = \lambda_2$

Proposition: Suppose N = 2 and $\lambda_1 = \lambda_2 = \lambda$. Then

$$\hat{\psi}_1 = \frac{e^{-\lambda t} \left(\hat{\psi}_{20} - \hat{\psi}_{10}\right)}{\hat{\psi}_{20} e^{-\hat{\psi}_{20}(1 - e^{-\lambda t})} - \hat{\psi}_{10} e^{-\hat{\psi}_{10}(1 - e^{-\lambda t})}} \hat{\psi}_{10} e^{-\hat{\psi}_{10}(1 - e^{-\lambda t})}$$

$$\hat{\psi}_2 = \frac{e^{-\lambda t} \left(\hat{\psi}_{20} - \hat{\psi}_{10}\right)}{\hat{\psi}_{20} e^{-\hat{\psi}_{20}(1 - e^{-\lambda t})} - \hat{\psi}_{10} e^{-\hat{\psi}_{10}(1 - e^{-\lambda t})}} \hat{\psi}_{20} e^{-\hat{\psi}_{20}(1 - e^{-\lambda t})}.$$

General Case: Wild Sum Representation

Theorem: There is a unique solution of the evolution equation, given by

$$\psi_{it} = \sum_{k \in \mathbb{Z}_+^N} a_{it}(k) \, \psi_{10}^{*k_1} * \dots * \psi_{N0}^{*k_N},$$

where ψ_{i0}^{*n} denotes *n*-fold convolution,

$$a'_{it} = -\lambda_i a_{it} + \lambda_i a_{it} * \sum_{j=1}^N \kappa_{ij} a_{jt}, \quad a_{i0} = \delta_{e_i},$$

$$(a_{it} * a_{jt})(k_1, \dots, k_N) = \sum_{l=(l_1, \dots, l_N) \in \mathbb{Z}_+^N, \, l < k} a_{it}(l) \, a_{jt}(k-l),$$

and

$$a_{it}(e_i) = e^{-\lambda_i t} a_{i0}(e_i).$$

Endogenous Information Acquisition

- ► A signal packet is a set of signals with type density *f*, satisfying the technical conditions.
- Agents are endowed with N_{min} signal packets, and can acquire up to π more, at a cost of π each.
- ► Agents conjecture the packet quantity choices N = (N₁,...,N_M) of the M classes.
- An agent of class i who initially acquires n signal packets, and as a result has information-type Θ_{n,N,t} at time t, has initial expected utility

$$u_{i,n,N} = E\left(-\pi n + \sum_{t=1}^{T} \lambda_i \sum_j \kappa_{ij} v_{ijt}(\Theta_{n,N,t}; B_{ijt}, S_{ijt})\right).$$
 (6)

Information Acquisition Equilibrium

Some $(N_i, (S_{ijt}, B_{ijt}), g_{it})$ is a pure-strategy rational expectations equilibrium if

- The cross-sectional type density g_{it} satisfies the evolution equation with initial condition the $(N_{\min} + N_i)$ -fold convolution of the packet type density f.
- The bid and ask functions (S_{ijt}, B_{ijt}) are revealing double-auction equilibria.
- ► The number N_i of signal packets acquired by class i solves max_{n∈{0,...,n}} u_{i,n,N}.

3-Class Incentives

- ► We take the case of two equal-mass seller classes with matching probabilities λ₁ and λ₂ > λ₁.
- The buyer class has matching probability $(\lambda_1 + \lambda_2)/2$.

$$\begin{array}{ll} \bullet & \frac{d}{dx}f^{H}(x) \ \sim \ \mathrm{Exp}_{-\infty}(c_{0},0,\alpha+1) \text{ and} \\ & \frac{d}{dx}f^{H}(x) \ \sim \ \mathrm{Exp}_{+\infty}(c_{0},0,-\alpha) \text{ for some } \alpha \geq 1.4 \text{ for some } c_{0} > 0. \end{array}$$

Proposition

For $\frac{v_b-v_s}{v^H-v_b}$ and T large enough, information acquisition is a strategic complement. By contrast, for smaller T, there exist counterexamples to strategic complementarity.

Information Acquisition Incentives

- ► If T is not too great, increasing λ₂ of the more active class-2 sellers *lowers* the incentive of the less active class-1 sellers to gather more information. This can be explained as follows.
- As class-2 sellers become more active, buyers learn at a faster rate. The impact of this on the incentive of the "slower" class-1 sellers to gather information is determined by a "learning effect" and an opposing "pricing effect."
- ► The learning effect is that, knowing that buyers will learn faster as λ₂ is raised, a less connected seller is prone to acquire more information in order to avoid being at an informational disadvantage when facing buyers.
- The pricing effect is that, in order to avoid missing unconditional private-value expected gains from trade with better-informed buyers, sellers find it optimal to reduce their ask prices.
- The learning effect dominates the pricing effect if and only if there are sufficiently many trading rounds.

- ► We show cases in which increasing λ₂ leads to a full collapse of information acquisition (meaning that, in any equilibrium, the fraction of agents that acquire signals is zero).
- Compare with the case of a static double auction, corresponding to T = 0. With only one round of trade, the learning effect is absent and the expected gain from acquiring information for class-1 sellers is proportional to λ₁ and does not depend on λ₂. Similarly, the gain from information acquisition for buyers is linear and increasing in λ₂. Consequently, in the static case, an increase in λ₂ always leads to more information acquisition.