Max-plus Stochastic Processes and Control W.H. Fleming, Brown University

1. Introduction, historical background
2. Max-plus expectations
3. Max-plus SDEs and large deviations
4. Max-plus martingales and differential rule
5. Dynamic programming PDEs and variational inequalities
6. Max-plus stochastic control I: terminal cost
7. Max-plus optimal control II: max-plus additive running cost
8. Merton optimal consumption problem

Historical Background

a) Optimal deterministic control

Pontryagin's principle, Bellman's dynamic programming principle (1950s)
b) Two-player, zero-sum differential games Isaacs pursuit-evasion games (1950s)
c) Stochastic control

Deterministic control theory ignores time varying disturbances in dynamics

Stochastic differential equations models

Dynamic programming/PDE methods (1960s)

Changes of probability measure-Girsanov
d) Freidlin-Wentzell large deviations theory

Small random perturbations, rare events (late 1960s)
e) H-infinity control theory (1980s) Disturbances not modeled as stochastic processes, min-max viewpoint

Stochastic vs deterministic views of uncertainty

$$
\begin{aligned}
v \in \Omega & \text { an "uncertainty" } \\
J(v) & \text { a "criterion" or "cost" }
\end{aligned}
$$

Stochastic view: J a random variable on (Ω, \mathcal{F}, P)

Evaluate $E[(F(J)]$

Nonstochastic view: Evaluate $\max _{v} J(v)$

Less conservative viewpoint: evaluate

$$
\max _{v}[q(v)+J(v)]=E^{+}(J)
$$

$q(v)$ "likelihood" of v

$$
q(v) \leq 0, \quad q\left(v_{0}\right)=0
$$

Connection between stochastic and nonstochastic views

$$
F(J)=F_{\theta}(J)=e^{\theta J}
$$

θ a risk sensitivity parameter
$p_{\theta}(v)$ probability of v

$$
p_{\theta}(v) \sim e^{-\theta q(v)}
$$

$$
\lim _{\theta \rightarrow \infty} \theta^{-1} \log E\left[e^{\theta J}\right]=E^{+}(J)
$$

2. Max-plus expectations

Max-plus addition and multiplication

$$
\begin{aligned}
-\infty & \leq a, b<\infty \\
a \oplus b & =\max (a, b) \\
a \otimes b & =a+b
\end{aligned}
$$

Maslov idempotent probability calculus

$$
Q(A)=\sup _{v \in A} q(v)
$$

max-plus probability of $A \subset \Omega$

$$
E^{+}(J)=\oplus v[q(v) \otimes J(v)]
$$

max-plus expectation of J

Max-plus linearity

$$
\begin{aligned}
E^{+}\left(J_{1} \oplus J_{2}\right) & =E^{+}\left(J_{1}\right) \oplus E^{+}\left(J_{2}\right) \\
E^{+}(c \otimes J) & =c \otimes E^{+}(J)
\end{aligned}
$$

3. Max-plus stochastic differential equations and large deviations

Fleming Applied Math. Optimiz. 2004

$$
\begin{aligned}
& x(s) \in \mathbb{R}^{n} \text { solution to the ODE } \\
& d x(s)=f(x(s)) d s+g(x(s)) v(s) d s, t \leq s \leq T \\
& x(t)=x, \quad v(s) \in \mathbb{R}^{d}
\end{aligned}
$$

$v(\cdot)$ a disturbance control function

$$
\begin{aligned}
v(\cdot) \in \Omega & =L^{2}\left([t, T] ; \mathbb{R}^{d}\right) \\
q(v) & =-\frac{1}{2} \int_{t}^{T}|v(s)|^{2} d s \\
J(v) & =\mathcal{J}(x(\cdot)) \\
E^{+}[\mathcal{J}(x(\cdot))] & =\sup _{v(\cdot)}\left[\mathcal{J}(x(\cdot))-\frac{1}{2} \int_{t}^{T}|v(s)|^{2} d s\right]
\end{aligned}
$$

Example 1: $\mathcal{J}(x(\cdot))=\ell(x(T))$ terminal cost

Example 2: $\mathcal{J}(x(\cdot))=\max _{[t, T]} \ell(x(s))$ max-plus additive running cost

Assumptions: $f, g, \ell \in C^{1}$

$$
f_{x}, g, g_{x}, \ell, \ell_{x} \text { bounded }
$$

Connection with large deviations
$X_{\theta}(s)$ solution to the SDE

$$
\begin{aligned}
d X_{\theta}(s)= & f\left(X_{\theta}(s)\right) d s+\theta^{-\frac{1}{2}} g\left(X_{\theta}(s)\right) d w(s) \\
& t \leq s \leq T \\
X_{\theta}(t)= & x
\end{aligned}
$$

$w(s) d$-dimension Brownian motion

In Example 1

$$
\lim _{\theta \rightarrow \infty} \theta^{-1} \log E\left[e^{\theta \ell\left(X_{\theta}(T)\right)}\right]=E^{+}[\ell(x(T))]
$$

In Example 2
$\lim _{\theta \rightarrow \infty} \theta^{-1} \log E \int_{t}^{T} e^{\theta \ell\left(X_{\theta}(s)\right)} d s=E^{+}\left[\max _{[t, T]} \ell(x(s))\right]$
If $L=e^{\ell}$, then $L^{\theta}=e^{\theta \ell}$.

4. Max-plus martingales and differential rule

Conditional likelihood of v, given $A \subset \Omega$

$$
\begin{gathered}
q(v \mid A)=q(v)-\sup _{\omega \in A} q(\omega), \text { if } v \in A \\
=-\infty \text { if } v \notin A \\
v^{\tau}=\left.v\right|_{[t, \tau]} \\
q\left(v \mid v^{\tau}\right)=-\frac{1}{2} \int_{\tau}^{T}|v(s)|^{2} d s
\end{gathered}
$$

$M(s)=M\left(s, v^{s}\right)$ is a max-plus martingale if

$$
E^{+}\left[M(s) \mid v^{\tau}\right]=M(\tau), t \leq \tau<s \leq T
$$

Max-plus differential rule

$$
H(x, p)=f(x) \cdot p+\frac{1}{2}|p g(x)|^{2}, x, p \in \mathbb{R}^{n}
$$

If $\phi \in C_{b}^{1}\left([0, T] \times \mathbb{R}^{n}\right), x(s)$ a solution to the ODE on $[t, T]$ with $t \geq 0$

$$
\begin{aligned}
& d \phi(s, x(s))= {\left[\phi_{t}(s, x(s))+H\left(x(s), \phi_{x}(s, x(s))\right]\right.} \\
& d s+d M(s) \\
& M(s)=\int_{t}^{s}\left[\zeta(r) \cdot v(r)-\frac{1}{2}|\zeta(r)|^{2}\right] d r \\
& \zeta(r)=\phi_{x}(r, x(r)) g(x(r))
\end{aligned}
$$

$M(s)$ is a max-plus martingale

Backward PDE

$$
\phi_{t}+H\left(x, \phi_{x}\right)=0
$$

If ϕ satisfies the backward PDE, $M(s)=\phi(s, x(s))$ is a max-plus martingale.

Taking $\tau=t, s=T$

$$
\phi(t, x)=E_{t x}^{+}\left[\phi(T, x(T)]=E_{t x}^{+}[\ell(x(T))]\right.
$$

5. Dynamic programming PDEs and variational inequalities

A) Terminal cost problem: value function

$$
W(t, x)=E_{t x}^{+}[\ell(x(T)]
$$

Dynamic programming principle

$$
W(\tau, x(\tau))=\sup _{v(\cdot)}\left[-\frac{1}{2} \int_{\tau}^{s}|v(r)|^{2} d r+W(s, x(s))\right]
$$

is equivalent to $W(s, x(s)$ a max-plus martingale
W is Lipschitz continuous and satisfies the backward PDE almost everywhere and in the viscosity sense

$$
\begin{gathered}
0=W_{t}+H\left(x, W_{x}\right), 0 \leq t \leq T, x \in \mathbb{R}^{n} \\
W(T, x)=\ell(x)
\end{gathered}
$$

B) Max-plus additive running cost value function

$$
\begin{aligned}
V(t, x) & =E_{t x}^{+}\left[\oplus \int_{t}^{T} \ell(x(s) d s]\right. \\
& =E_{t x}^{+}\left[\max _{[t, T]} \ell(x(s))\right]
\end{aligned}
$$

Since $E_{t x}^{+}$is max-plus linear

$$
V(t, x)=\max _{[t, T]} E_{t x}^{+}[\ell(x(s))]
$$

Dynamic programming principle

$$
V(t, x)=E_{t x}^{+}\left[\left(\oplus \int_{t}^{s} \ell(x(r)) d r\right) \oplus V(s, x(s))\right]
$$

V is Lipschitz continuous and satisfies almost everywhere and in viscosity sense

$$
\begin{gathered}
0=\max \left[\ell(x)-V(t, x), V_{t}+H\left(x, V_{x}\right)\right] \\
0 \leq t \leq T, x \in \mathbb{R}^{n} \\
V(T, x)=\ell(x)
\end{gathered}
$$

Idea of proof: Both terms on right are ≤ 0

Two cases:
$\ell(x)=V(t, x)$ OK
$\ell(x)<V(t, x)$ standard control argument

Infinite time horizon bounds

Take $t=0, T$ large

$$
\begin{gathered}
W(x) \in C^{1}, \ell(x) \leq W(x), H\left(x, W_{x}(x)\right) \leq 0 \\
\Rightarrow V(0, x ; T) \leq W(x)
\end{gathered}
$$

Equivalently: For $0 \leq s \leq T, x=x(0)$

$$
\ell(x(s)) \leq \frac{1}{2} \int_{0}^{s}|v(r)|^{2} d r+W(x)
$$

A nonlinear H-infinity control inequality

Example

$$
\begin{aligned}
f(0) & =0, x \cdot f(x) \leq-c|x|^{2}, c>0 \\
0 & \leq \ell(x) \leq M|x|^{2} \\
W(x) & =K|x|^{2}, M \leq K,\|g\|^{2} K \leq c
\end{aligned}
$$

6. Max-plus stochastic control I: terminal cost

Fleming-Kaise-Sheu Applied Math Optimiz. 2010

$$
x(s) \in \mathbb{R}^{n} \text { state }
$$

$$
u(s) \in \mathcal{U} \text { control }(\mathcal{U} \text { compact })
$$

$v(s) \in \mathbb{R}^{d}$ disturbance control

$$
\begin{aligned}
d x(s)= & f(x(s), u(s)) d s+g(x(s), u(s)) v(s) d s \\
& t \leq s \leq T \\
x(t)= & x
\end{aligned}
$$

Control $u(s)$ chosen "depending on $v(\cdot)$ past up to s "

Terminal cost criterion: minimize $E_{t x}^{+}[\ell(x(T))]$

Corresponding risk sensitive stochastic control problem: choose a progressively measurable control to minimize

$$
E_{t x}\left[e^{\theta \ell\left(X_{\theta}(T)\right)}\right]
$$

As $\theta \rightarrow \infty$, obtain a two player differential game.

Minimizing player chooses $u(s)$

Maximizing player chooses $v(s)$

Game payoff

$$
P(t, x ; u, v)=-\frac{1}{2} \int_{t}^{T}|v(s)|^{2} d s+\ell(x(T))
$$

Want the upper differential game value (not the lower value).

Illustrative example (Merton terminal wealth problem)
$x(s)>0$ wealth at time s
$u(s)$ fraction of wealth in risky asset
$1-u(s)$ fraction of wealth in riskless asset

Riskless interest rate $=0$

$$
\begin{aligned}
\frac{d x(s)}{d s} & =x(s) u(s)[\mu+\nu v(s)], t \leq s \leq T \\
x(t) & =x \\
f(x, u) & =\mu x u \\
g(x, u) & =\nu x u
\end{aligned}
$$

Usual terminal wealth problem, parameter θ : choose $u(s)$ to minimize

$$
E_{t x}\left[e^{\theta \ell\left(X_{\theta}(T)\right)}\right]
$$

Take HARA utility, parameter $-\theta \ll 0$.

$$
\begin{aligned}
\ell(x) & =-\log x, x^{-\theta}=e^{-\theta \log x} \\
\log x(s) & =\log x+\int_{t}^{s} u(r)[\mu+\nu v(r)] d r \\
P(t, x ; u, v) & =-\log x+\int_{t}^{T} \tilde{P}(u(r), v(r)) d r \\
\tilde{P}(u, v) & =-u(\mu+\nu v)-\frac{1}{2} v^{2}
\end{aligned}
$$

$$
\begin{aligned}
\min _{u} \max _{v} \tilde{P}(u, v) & =\min _{u}\left[-\mu u+\frac{1}{2} \nu^{2} u^{2}\right] \\
& =-\frac{\mu^{2}}{2 \nu^{2}}
\end{aligned}
$$

Minimum when $u=u^{*}=\frac{\mu}{\nu^{2}}$

The optimal control is $u(s)=u^{*}$ for all s.

$$
E^{+}\left[-\log x^{*}(T)\right]=-\log x-\wedge(T-t)
$$

$\Lambda=\mu^{2} / 2 \nu^{2}$ is the max-plus optimal growth rate

Elliott-Kalton upper and lower differential game

 valuesElliott-Kalton strategy α for minimizer (progressive strategy)

$$
\begin{aligned}
u(s) & =\alpha[v](s) \\
v(r) & =\tilde{v}(r) \text { a.e. in }[t, s] \Rightarrow \\
\alpha[v](r) & =\alpha[\widetilde{v}](r) \text { a.e. in }[t, s] \\
\Gamma_{E K} & =\{E K \text { strategies } \alpha\}
\end{aligned}
$$

The lower game value is

$$
\inf _{\alpha \in \Gamma_{E K}} E_{t x}^{+}[\ell(x(T))]=\inf _{\alpha \in \Gamma_{E K}} \sup _{v(\cdot)} P(t, x ; \alpha[v], v)
$$

We want the upper game value
$\Gamma=\{E K$ strategies : $\alpha[v](s)$ is left continuous with limits on right \}

$$
W(t, x)=\inf _{\alpha \in \Gamma} E_{t x}^{+}[\ell(x(T)]
$$

is the upper $E K$ value. It is Lipschitz continuous and satisfies (viscosity sense) the Isaacs PDE

$$
\begin{aligned}
0= & W_{t}+\min _{u \in U} H^{u}\left(x, W_{x}\right), t \leq T \\
& W(t, x)=\ell(x) \\
H^{u}(x, p)= & f(x, u) \cdot p+\frac{1}{2}|p g(x, u)|^{2} \\
= & f(x, u) \cdot p+\max _{v \in \mathbb{R}^{d}}\left[p g(x, u) v-\frac{1}{2}|v|^{2}\right]
\end{aligned}
$$

Recipe for optimal control policy

$$
\left.\underline{u}^{*}(s, x(s)) \in \arg \min _{u \in U} H^{u}\left(x(s), W_{x}(s, x(s))\right)\right)
$$

Merton terminal wealth problem with non-HARA utility

$$
\begin{gathered}
H^{u}(x, p)=\mu x u p+\frac{\nu^{2}}{2} x^{2} u^{2} p^{2} \\
\min _{u} H^{u}(x, p)=-\frac{\mu^{2}}{2 \nu^{2}}=-\Lambda \\
W(t, x)=\ell(x)-\wedge(T-t) \\
u^{*}(x)=-\frac{\mu}{\nu^{2} \ell_{x}(x)}
\end{gathered}
$$

Example: Exponential utility $\ell(x)=-x$

$$
x u^{*}(x)=\frac{\mu}{\nu^{2}}
$$

7. Max-plus stochastic control II

Max-plus additive running cost function $\ell(x, u)$

$$
\begin{aligned}
P(t, x ; u, v) & =-\frac{1}{2} \int_{0}^{T}|v(s)|^{2} d s+\max _{[t, T]} \ell(x(s), u(s)) \\
V(t, x) & =\inf _{\alpha \in \Gamma} E_{t x}^{+}\left[\oplus \int_{t}^{T} \ell(x(s), \alpha[v](s)) d s\right] \\
& =\inf _{\alpha \in \Gamma} \sup _{v(\cdot)} P(t, x ; \alpha[v], v)
\end{aligned}
$$

Assumptions on f, g, ℓ as before, $u \in \mathcal{U}$ compact

Isaacs variational inequality

$$
\begin{aligned}
0= & \min _{u \in \mathcal{U}} \max \left\{\ell(x, u)-V(t, x), V_{t}+H^{u}\left(x, V_{x}\right)\right\}, \\
& t \leq T, x \in \mathbb{R}^{n}
\end{aligned}
$$

$$
V(T, x)=\min _{u \in \mathcal{U}} \ell(x, u)
$$

V is the unique bounded, Lipschitz viscosity solution

Equivalent to a nonlinear PDE with discontinuous Hamiltonian \mathcal{H}

$$
0=V_{t}+\mathcal{H}\left(x, V, V_{x}\right)
$$

$$
\begin{aligned}
& \mathcal{H}(x, V, p)=\min _{u \in A(x, V)} H^{u}(x, p) \\
& A(x, V)=\{u \in \mathcal{U}: \ell(x, u) \leq V\}
\end{aligned}
$$

8. Merton optimal consumption problem

$$
\frac{d x(s)}{d s}=x(s) u(s)[\mu+\nu v(s)]-C(s)
$$

$$
C(s) \geq 0 \text { consumption rate }
$$

Two controls $u(s), c(s)=C(s) / x(s)$

$$
\ell(x, c)=L(c x)=L(C)
$$

$L(C)$ decreasing function of C

$$
\max _{[t, T]} L(C(s))=L\left[\min _{[t, T]} C(s)\right]
$$

depends on minimum consumption

$$
\begin{aligned}
& H^{u, c}(x, p)=\mu x u p+\frac{\nu^{2}}{2} x^{2} u^{2} p^{2}-c x p \\
& \min _{u} H^{u, c}(x, p)=-\Lambda-c x p, \wedge=\frac{\mu^{2}}{2 \nu^{2}}
\end{aligned}
$$

Isaacs VI becomes

$$
0=\min _{c>0} \max \left\{L(c x)-V(t, x), V_{t}-\wedge-c x V_{x}\right\}
$$

For HARA utility

$$
\begin{aligned}
L(c x) & =-\log c-\log x \\
V(t, x) & =-\log x+B(t)
\end{aligned}
$$

$0=\min _{c>0} \max \{-\log c-B(t), \dot{B}(t)-\Lambda+c\}$

$$
\begin{aligned}
c^{*}(t) & =e^{-B(t)} \\
\dot{B}(t) & =\wedge-c^{*}(t), B(T)=0 \\
c^{*}(t) & =\wedge\left(1-e^{-\Lambda(T-t)}\right)^{-1}
\end{aligned}
$$

$c^{*}(t)$ tends to \wedge as $T-t \rightarrow \infty$
Λ is the optimal growth rate in the Merton model without consumption (max-plus version)

Balance between growth and consumption

Fleming-Hernandez-Hernandez, Appl. Math. Optim. 2005

For non-HARA utility

$$
\begin{gathered}
L\left(c^{*} x\right)=V(t, x) \\
V_{t}-\wedge-c^{*} x V_{x}=0
\end{gathered}
$$

Nonlinear PDE for $V(t, x)$

$$
V_{t}-\wedge-L^{-1}(V) V_{x}=0, t \leq T
$$

