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Historical Background

a) Optimal deterministic control

Pontryagin’s principle, Bellman’s dynamic pro-

gramming principle (1950s)

b) Two-player, zero-sum differential games

Isaacs pursuit-evasion games (1950s)

c) Stochastic control

Deterministic control theory ignores time

varying disturbances in dynamics

Stochastic differential equations models
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Dynamic programming/PDE methods

(1960s)

Changes of probability measure-Girsanov



d) Freidlin-Wentzell large deviations theory

Small random perturbations, rare events (late

1960s)

e) H-infinity control theory (1980s) Disturbances

not modeled as stochastic processes, min-max

viewpoint
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Stochastic vs deterministic views of uncertainty

v ∈ Ω an ”uncertainty”

J(v) a “criterion” or “cost”

Stochastic view: J a random variable on (Ω,F , P )

Evaluate E[(F (J)]

Nonstochastic view: Evaluate max
v

J(v)
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Less conservative viewpoint: evaluate

max
v

[q(v) + J(v)] = E+(J)

q(v) “likelihood” of v

q(v) ≤ 0, q(v0) = 0
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Connection between stochastic and nonstochastic

views

F (J) = Fθ(J) = eθJ ,

θ a risk sensitivity parameter

pθ(v) probability of v

pθ(v) ∼ e−θq(v)

lim
θ→∞

θ−1 logE
[
eθJ

]
= E+(J)
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2. Max-plus expectations

Max-plus addition and multiplication

−∞ ≤ a, b < ∞

a⊕ b = max(a, b)

a⊗ b = a + b
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Maslov idempotent probability calculus

Q(A) = sup
v∈A

q(v)

max-plus probability of A ⊂ Ω

E+(J) = ⊕v[q(v)⊗ J(v)]

max-plus expectation of J

Max-plus linearity

E+(J1 ⊕ J2) = E+(J1)⊕ E+(J2)

E+(c⊗ J) = c⊗ E+(J)
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3. Max-plus stochastic differential equations

and large deviations

Fleming Applied Math. Optimiz. 2004

x(s) ∈ Rn solution to the ODE

dx(s) = f(x(s))ds + g(x(s))v(s)ds, t ≤ s ≤ T

x(t) = x, v(s) ∈ Rd

v(·) a disturbance control function
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v(·) ∈ Ω = L2([t, T ]; Rd)

q(v) = −
1

2

∫ T

t
|v(s)|2ds

J(v) = J (x(·))

E+[J (x(·))] = sup
v(·)

J (x(·))−
1

2

∫ T

t
|v(s)|2ds



Example 1: J (x(·)) = `(x(T )) terminal cost

Example 2: J (x(·)) = max
[t,T ]

`(x(s)) max-plus ad-

ditive running cost
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Assumptions: f, g, ` ∈ C1

fx, g, gx, `, `x bounded

Connection with large deviations

Xθ(s) solution to the SDE

dXθ(s) = f(Xθ(s))ds + θ−
1
2g(Xθ(s))dw(s),

t ≤ s ≤ T

Xθ(t) = x

w(s) d-dimension Brownian motion
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In Example 1

lim
θ→∞

θ−1 logE
[
eθ`(Xθ(T ))

]
= E+[`(x(T ))]

In Example 2

lim
θ→∞

θ−1 logE
∫ T

t
eθ`(Xθ(s))ds = E+[max

[t,T ]
`(x(s))]

If L = e`, then Lθ = eθ`.
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4. Max-plus martingales and differential rule

Conditional likelihood of v, given A ⊂ Ω

q(v|A) = q(v)− sup
ω∈A

q(ω), if v ∈ A

= −∞ if v 6∈ A

vτ = v|[t,τ ]

q(v|vτ) = −
1

2

∫ T

τ
|v(s)|2ds

M(s) = M(s, vs) is a max-plus martingale if

E+[M(s)|vτ ] = M(τ), t ≤ τ < s ≤ T
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Max-plus differential rule

H(x, p) = f(x) · p +
1

2
|pg(x)|2, x, p ∈ Rn

If φ ∈ C1
b ([0, T ]× Rn), x(s) a solution to the ODE

on [t, T ] with t ≥ 0

dφ(s, x(s)) = [φt(s, x(s)) + H(x(s), φx(s, x(s))]

ds + dM(s)

M(s) =
∫ s

t

ζ(r) · v(r)− 1

2
|ζ(r)|2

 dr

ζ(r) = φx(r, x(r))g(x(r))

M(s) is a max-plus martingale
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Backward PDE

φt + H(x, φx) = 0

If φ satisfies the backward PDE, M(s) = φ(s, x(s))

is a max-plus martingale.

Taking τ = t, s = T

φ(t, x) = E+
tx[φ(T, x(T )] = E+

tx[`(x(T ))]
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5. Dynamic programming PDEs and varia-

tional inequalities

A) Terminal cost problem: value function

W (t, x) = E+
tx[`(x(T )]

Dynamic programming principle

W (τ, x(τ)) = sup
v(·)

−1

2

∫ s

τ
|v(r)|2dr + W (s, x(s))



is equivalent to W (s, x(s) a max-plus martingale
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W is Lipschitz continuous and satisfies the back-

ward PDE almost everywhere and in the viscosity

sense

0 = Wt + H(x, Wx), 0 ≤ t ≤ T, x ∈ Rn

W (T, x) = `(x)
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B) Max-plus additive running cost value function

V (t, x) = E+
tx

[
⊕

∫ T

t
`(x(s)ds

]

= E+
tx

max
[t,T ]

`(x(s))



Since E+
tx is max-plus linear

V (t, x) = max
[t,T ]

E+
tx[`(x(s))]

Dynamic programming principle

V (t, x) = E+
tx

[
(⊕

∫ s

t
`(x(r))dr)⊕ V (s, x(s))

]
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V is Lipschitz continuous and satisfies almost ev-

erywhere and in viscosity sense

0 = max[`(x)− V (t, x), Vt + H(x, Vx)],

0 ≤ t ≤ T, x ∈ Rn

V (T, x) = `(x)

Idea of proof: Both terms on right are ≤ 0

Two cases:

`(x) = V (t, x) OK

`(x) < V (t, x) standard control argument
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Infinite time horizon bounds

Take t = 0, T large

W (x) ∈ C1, `(x) ≤ W (x), H(x, Wx(x)) ≤ 0

⇒ V (0, x;T ) ≤ W (x)

Equivalently: For 0 ≤ s ≤ T , x = x(0)

`(x(s)) ≤
1

2

∫ s

0
|v(r)|2dr + W (x)

A nonlinear H-infinity control inequality
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Example

f(0) = 0, x · f(x) ≤ −c|x|2, c > 0

0 ≤ `(x) ≤ M |x|2,

W (x) = K|x|2, M ≤ K, ‖ g ‖2 K ≤ c
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6. Max-plus stochastic control I: terminal cost

Fleming-Kaise-Sheu Applied Math Optimiz. 2010

x(s) ∈ Rn state

u(s) ∈ U control (U compact)

v(s) ∈ Rd disturbance control

dx(s) = f(x(s), u(s))ds + g(x(s), u(s))v(s)ds,

t ≤ s ≤ T

x(t) = x
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Control u(s) chosen “depending on v(·) past up

to s”

Terminal cost criterion: minimize E+
tx[`(x(T ))]



Corresponding risk sensitive stochastic control prob-

lem: choose a progressively measurable control to

minimize

Etx

[
eθ`(Xθ(T ))

]

As θ →∞, obtain a two player differential game.

Minimizing player chooses u(s)

Maximizing player chooses v(s)
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Game payoff

P (t, x;u, v) = −
1

2

∫ T

t
|v(s)|2ds + `(x(T ))

Want the upper differential game value (not the

lower value).



Illustrative example (Merton terminal wealth prob-

lem)

x(s) > 0 wealth at time s

u(s) fraction of wealth in risky asset

1− u(s) fraction of wealth in riskless asset
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Riskless interest rate = 0

dx(s)

ds
= x(s)u(s)[µ + νv(s)], t ≤ s ≤ T

x(t) = x

f(x, u) = µxu

g(x, u) = νxu
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Usual terminal wealth problem, parameter θ: choose

u(s) to minimize

Etx

[
eθ`(Xθ(T ))

]

Take HARA utility, parameter −θ � 0.

`(x) = − logx, x−θ = e−θ logx

logx(s) = logx +
∫ s

t
u(r)[µ + νv(r)]dr

P (t, x;u, v) = − logx +
∫ T

t
P̃ (u(r), v(r))dr

P̃ (u, v) = −u(µ + νv)−
1

2
v2
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min
u

max
v

P̃ (u, v) = min
u

−µu +
1

2
ν2u2



= −
µ2

2ν2

Minimum when u = u∗ = µ
ν2

The optimal control is u(s) = u∗ for all s.

E+ [
− logx∗(T )

]
= − logx− Λ(T − t)

Λ = µ2/2ν2 is the max-plus optimal growth rate
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Elliott-Kalton upper and lower differential game

values

Elliott-Kalton strategy α for minimizer (progres-

sive strategy)

u(s) = α[v](s)

v(r) = ṽ(r) a.e. in [t, s] ⇒

α[v](r) = α[ṽ](r) a.e. in [t, s]

ΓEK = {EK strategies α}
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The lower game value is

inf
α∈ΓEK

E+
tx[`(x(T ))] = inf

α∈ΓEK
sup
v(·)

P (t, x;α[v], v)

We want the upper game value

Γ = {EK strategies : α[v](s) is left continuous

with limits on right }

W (t, x) = inf
α∈Γ

E+
tx[`(x(T )]

is the upper EK value. It is Lipschitz continuous

and satisfies (viscosity sense) the Isaacs PDE

30



0 = Wt + min
u∈U

Hu(x, Wx), t ≤ T

W (t, x) = `(x)

Hu(x, p) = f(x, u) · p +
1

2
|pg(x, u)|2

= f(x, u) · p + max
v∈Rd

pg(x, u)v −
1

2
|v|2


Recipe for optimal control policy

u∗(s, x(s)) ∈ argmin
u∈U

Hu(x(s), Wx(s, x(s))))
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Merton terminal wealth problem with non-HARA

utility

Hu(x, p) = µxup +
ν2

2
x2u2p2

min
u

Hu(x, p) = −
µ2

2ν2
= −Λ

W (t, x) = `(x)− Λ(T − t)

u∗(x) = −
µ

ν2`x(x)

Example: Exponential utility `(x) = −x

xu∗(x) =
µ

ν2

32



7. Max-plus stochastic control II

Max-plus additive running cost function `(x, u)

P (t, x;u, v) = −
1

2

∫ T

0
|v(s)|2ds + max

[t,T ]
`(x(s), u(s))

V (t, x) = inf
α∈Γ

E+
tx

[
⊕

∫ T

t
`(x(s), α[v](s))ds

]

= inf
α∈Γ

sup
v(·)

P (t, x;α[v], v)

Assumptions on f, g, ` as before, u ∈ U compact

33



Isaacs variational inequality

0 = min
u∈U

max{`(x, u)− V (t, x), Vt + Hu(x, Vx)},

t ≤ T, x ∈ Rn

V (T, x) = min
u∈U

`(x, u)

V is the unique bounded, Lipschitz viscosity solu-

tion
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Equivalent to a nonlinear PDE with discontinuous

Hamiltonian H

0 = Vt +H(x, V, Vx)

H(x, V, p) = min
u∈A(x,V )

Hu(x, p)

A(x, V ) = {u ∈ U: `(x, u) ≤ V }
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8. Merton optimal consumption problem

dx(s)

ds
= x(s)u(s)[µ + νv(s)]− C(s)

C(s) ≥ 0 consumption rate

Two controls u(s), c(s) = C(s)/x(s)

`(x, c) = L(cx) = L(C)

L(C) decreasing function of C

max
[t,T ]

L(C(s)) = L

min
[t,T ]

C(s)


depends on minimum consumption
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Hu,c(x, p) = µxup +
ν2

2
x2u2p2 − cxp

min
u

Hu,c(x, p) = −Λ− cxp, Λ =
µ2

2ν2

Isaacs VI becomes

0 = min
c>0

max{L(cx)− V (t, x), Vt − Λ− cxVx}
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For HARA utility

L(cx) = − log c− logx

V (t, x) = − logx + B(t)

0 = min
c>0

max{− log c−B(t), Ḃ(t)− Λ + c}
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c∗(t) = e−B(t)

Ḃ(t) = Λ− c∗(t), B(T ) = 0

c∗(t) = Λ
(
1− e−Λ(T−t)

)−1

c∗(t) tends to Λ as T − t →∞

Λ is the optimal growth rate in the Merton model

without consumption (max-plus version)

Balance between growth and consumption

39



Fleming-Hernandez-Hernandez, Appl. Math. Op-

tim. 2005



For non-HARA utility

L(c∗x) = V (t, x)

Vt − Λ− c∗xVx = 0

Nonlinear PDE for V (t, x)

Vt − Λ− L−1(V )Vx = 0, t ≤ T
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