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Warp Drive (Star Trek) 

From Wikipedia, the free encyclopedia 

Warp Drive is a faster-than-light (FTL) propulsion system in the setting of many science fiction 

works, most notably Star Trek. A spacecraft equipped with a warp drive may travel at velocities 

greater than that of light by many orders of magnitude, while circumventing the relativistic problem 

of time dilation.  
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 State space for the controlled process  X  is the finite interval  [R, S]. 

 

 An admissible control is a pair of adapted processes C = (Ct) and  = (t) such that C is non-

negative and non-decreasing and ℓ  t  u for all t. 

 

 Dynamics of  X  specified by the differential relationship 

 

dXt = Xt  dt + t dZt  dCt ,          ,  where    = inf {t  0: Xt ≤ R}. 
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Story behind the baseline problem 

 
1. The owner of a business employs an agent for the firm’s day-to-day management. The owner’s 

problem is to design a performance-based compensation scheme, hereafter called a contract, for 

the agent (see 7 below). 
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9. The owner is risk neutral, discounts at rate r > 0, earns at expected rate  over the interval (0, ), 

and receives liquidation value L > 0 upon termination. 
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Solution of the baseline problem 

 
For x[R, S] let V(x) be the maximum objective value that the controller can achieve when using an 

admissible control and starting from state X0 = x. A standard heuristic argument suggests that V() 

must satisfy the HJB equation 

 

(1)            

   
    

      
                      

  

 
              for  R  x  S,    

 

with V(R) = L.   

    

 

  



Solution of the baseline problem 

 
For x[R, S] let V(x) be the maximum objective value that the controller can achieve when using an 

admissible control and starting from state X0 = x. A standard heuristic argument suggests that V() 

must satisfy the HJB equation 

 

(1)            

   
    

      
                      

  

 
              for  R  x  S,    

 

with V(R) = L.  Of course, we can re-express this as 
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Proposition 1  For any choice of S > R, equation (1) has a unique C 
2 

solution V, and for all S 

sufficiently large the structure of that solution is as follows: there exist constants x* and  ̅, not 

depending on S, such that R < x* <  ̅ < S, V is strictly concave on [S,  ̅], V reaches its maximum 

value at x*, and          on [ ̅,S]. 
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Remark  The optimal contract (from the owner’s perspective) delivers value X0 = x* to the agent.  



Proposition 2  For any choice of S sufficiently large, V(X0) is an upper bound on the objective value 

achievable with an admissible control, and that bound can be achieved as follows:  set t    and let 

C be the non-decreasing adapted process that enforces an upper reflecting barrier at level  ̅ . 
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This is the main result of DeMarzo and Sannikov (2006). 
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Example  

 
We now consider a certain numerical example that includes a large value for the artificial upper 

bound u. (Other specifics of the example would tell you nothing.) For this particular numerical 

example, equation (2) has a unique C 
2  

solution V for any choice of  S > R, and for all S sufficiently 

large that solution has the structure pictured below. The maximizing value of c in the HJB equation 

(2) is c = 0 on [0,  ̅) and c =  on [ ̅,S]. The maximizing value of  is  =   on [0, a],  = u on [a, b], 

and  =   again on [b,  ̅]. 

 

 

 



Formal analysis with u =  
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           ,    R  x  S. 

  

For the specific example referred to above, equation (3) has a C 
1 

solution V of the form pictured 

below: it is strictly concave on [R,a), linear on [a,b], strictly concave on (b,  ̅) and linear with 

         on [ ̅, S]. The constants a and  ̅ do not depend on S, assuming S is sufficiently large. 
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Probabilistic realization (continued) 
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Probabilistic realization of the formal solution 

 
Let Na(t) and Nb(t)  be two Poisson processes, each with unit intensity, defined on the same 

probability space as Z, independent of Z and of each other. Let  = b  a > 0 and X  be the unique 

process satisfying 

 

      ∫          [      
     ]  [      

     ]    
 

 
         , 

 

where A is the local time of X at level a, and B is the local time of X at level b; as before, C is the 

increasing process that enforces an upper reflecting barrier at level  ̅ , and   is the first time at which 

X  hits level 0.  

 

 



 

Probabilistic realization (continued) 
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)      for  x(a,b). 

 

It follows easily from the martingale representation property of Brownian motion that X is not 

adapted to the filtration (Ft) generated by Z alone.  
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The End 
 


