Stochastic Control at Warp Speed *

Mike Harrison Graduate School of Business Stanford University

June 7, 2012

* Based on current work by Peter DeMarzo, which extends in certain ways the model and analysis of P. DeMarzo and Y. Sannikov, Optimal Security Design and Dynamic Capital Structure in a Continuous-Time Agency Model, *J. of Finance*, Vol. 61 (2006), 2681-2724.

Warp Drive (Star Trek)

From Wikipedia, the free encyclopedia

Warp Drive is a faster-than-light (FTL) propulsion system in the setting of many science fiction works, most notably *Star Trek*. A spacecraft equipped with a warp drive may travel at velocities greater than that of light by many orders of magnitude, while circumventing the relativistic problem of time dilation.

Outline

Baseline problem

Modified problem with $u < \infty$

Formal analysis with $u = \infty$

Open questions

Baseline problem

- State space for the controlled process X is the finite interval [R, S].
- An *admissible control* is a pair of adapted processes $C = (C_t)$ and $\beta = (\beta_t)$ such that *C* is non-negative and non-decreasing and $\ell \leq \beta_t \leq u$ for all *t*.
- Dynamics of X specified by the differential relationship

 $dX_t = \gamma X_t dt + \beta_t dZ_t - dC_t, \quad 0 \le t \le \tau, \text{ where } \tau = \inf \{t \ge 0: X_t \le R\}.$

Baseline problem

- Data are constants $L, R, X_0, S, \ell, u, r, \gamma, \mu > 0$ such that $R < X_0 < S, \ell < u$ and $r < \gamma$.
- $Z = (Z_t, t \ge 0)$ is standard Brownian motion on (Ω, \mathcal{F}, P) and (\mathcal{F}_t) is the filtration generated by Z.
- State space for the controlled process X is the finite interval [R, S].
- An *admissible control* is a pair of adapted processes $C = (C_t)$ and $\beta = (\beta_t)$ such that *C* is non-negative and non-decreasing and $\ell \le \beta_t \le u$ for all *t*.
- Dynamics of X specified by the differential relationship

 $dX_t = \gamma X_t dt + \beta_t dZ_t - dC_t, \quad 0 \le t \le \tau, \text{ where } \tau = \inf \{t \ge 0: X_t \le R\}.$

Baseline problem

- Data are constants $L, R, X_0, S, \ell, u, r, \gamma, \mu > 0$ such that $R < X_0 < S, \ell < u$ and $r < \gamma$.
- $Z = (Z_t, t \ge 0)$ is standard Brownian motion on (Ω, \mathcal{F}, P) and (\mathcal{F}_t) is the filtration generated by Z.
- State space for the controlled process X is the finite interval [R, S].
- An *admissible control* is a pair of adapted processes $C = (C_t)$ and $\beta = (\beta_t)$ such that *C* is non-negative and non-decreasing and $\ell \le \beta_t \le u$ for all *t*.
- Dynamics of X specified by the differential relationship

$$dX_t = \gamma X_t dt + \beta_t dZ_t - dC_t, \quad 0 \le t \le \tau, \text{ where } \tau = \inf \{t \ge 0: X_t \le R\}.$$

• Controller's objective is to

maximize
$$E(\int_0^\tau e^{-rt} (\mu dt - dC_t) + Le^{-r\tau})$$

1. The owner of a business employs an agent for the firm's day-to-day management. The owner's problem is to design a performance-based compensation scheme, hereafter called a *contract*, for the agent (see 7 below).

- 1. The owner of a business employs an agent for the firm's day-to-day management. The owner's problem is to design a performance-based compensation scheme, hereafter called a *contract*, for the agent (see 7 below).
- 2. The firm's cumulative earnings are modeled by a Brownian motion $Y_t = \mu t + \sigma Z_t$, $t \ge 0$. Assume for the moment that the agent and the owner both observe *Y*.

- 1. The owner of a business employs an agent for the firm's day-to-day management. The owner's problem is to design a performance-based compensation scheme, hereafter called a *contract*, for the agent (see 7 below).
- 2. The firm's cumulative earnings are modeled by a Brownian motion $Y_t = \mu t + \sigma Z_t$, $t \ge 0$. Assume for the moment that the agent and the owner both observe *Y*.
- 3. The owner commits to $(C_t, 0 \le t \le \tau)$ as the agent's cumulative compensation process, based on observed earnings; τ is the agent's *termination date*. Upon termination the agent will accept outside employment; from the agent's perspective, the income stream associated with that outside employment is equivalent in value to a one-time payout of *R*.

- 1. The owner of a business employs an agent for the firm's day-to-day management. The owner's problem is to design a performance-based compensation scheme, hereafter called a *contract*, for the agent (see 7 below).
- 2. The firm's cumulative earnings are modeled by a Brownian motion $Y_t = \mu t + \sigma Z_t$, $t \ge 0$. Assume for the moment that the agent and the owner both observe *Y*.
- 3. The owner commits to $(C_t, 0 \le t \le \tau)$ as the agent's cumulative compensation process, based on observed earnings; τ is the agent's *termination date*. Upon termination the agent will accept outside employment; from the agent's perspective, the income stream associated with that outside employment is equivalent in value to a one-time payout of *R*.
- 4. The agent is risk neutral and discounts at interest rate $\gamma > 0$. We denote by X_t the agent's *continuation value* at time *t*. That is, X_t is the conditional expected present value, as of time *t*, of the agent's income from that point onward, including income from later outside employment, given the observed earnings (Y_s , $0 \le s \le t$).

5. To keep the agent from defecting, the contract $(C_t, 0 \le t \le \tau)$ must be designed so that $X_t \ge R$ for $0 \le t \le \tau$. To avoid trivial complications we also require $X_t \le S$ for $0 \le t \le \tau$, where *S* is some large constant.

- 5. To keep the agent from defecting, the contract $(C_t, 0 \le t \le \tau)$ must be designed so that $X_t \ge R$ for $0 \le t \le \tau$. To avoid trivial complications we also require $X_t \le S$ for $0 \le t \le \tau$, where *S* is some large constant.
- 6. It follows from the martingale representation property of Brownian motion that $(X_t, 0 \le t \le \tau)$ can be represented in the form $dX = \gamma X dt dC + \beta dZ$ for some suitable integrand β .

- 5. To keep the agent from defecting, the contract $(C_t, 0 \le t \le \tau)$ must be designed so that $X_t \ge R$ for $0 \le t \le \tau$. To avoid trivial complications we also require $X_t \le S$ for $0 \le t \le \tau$, where *S* is some large constant.
- 6. It follows from the martingale representation property of Brownian motion that $(X_t, 0 \le t \le \tau)$ can be represented in the form $dX = \gamma X dt dC + \beta dZ$ for some suitable integrand β .
- 7. In truth the owner does *not* observe the earnings process *Y*, but rather is dependent on earnings reports by the agent. Payments to the agent are necessarily based on *reported* earnings, and there is a threat that the agent will under-report earnings, keeping the difference for himself. To motivate truthful reporting by the agent, the contract $(C_t, 0 \le t \le \tau)$ must be designed so that $\beta_t \ge \ell$ for $0 \le t \le \tau$, where $\ell > 0$ is a given problem parameter.

- 5. To keep the agent from defecting, the contract $(C_t, 0 \le t \le \tau)$ must be designed so that $X_t \ge R$ for $0 \le t \le \tau$. To avoid trivial complications we also require $X_t \le S$ for $0 \le t \le \tau$, where *S* is some large constant.
- 6. It follows from the martingale representation property of Brownian motion that $(X_t, 0 \le t \le \tau)$ can be represented in the form $dX = \gamma X dt dC + \beta dZ$ for some suitable integrand β .
- 7. In truth the owner does *not* observe the earnings process *Y*, but rather is dependent on earnings reports by the agent. Payments to the agent are necessarily based on *reported* earnings, and there is a threat that the agent will under-report earnings, keeping the difference for himself. To motivate truthful reporting by the agent, the contract $(C_t, 0 \le t \le \tau)$ must be designed so that $\beta_t \ge \ell$ for $0 \le t \le \tau$, where $\ell > 0$ is a given problem parameter.
- 8. The upper bound $\beta_t \le u$ is artificial, imposed for the sake of tractability. We will let $u \uparrow \infty$ later.

- 5. To keep the agent from defecting, the contract $(C_t, 0 \le t \le \tau)$ must be designed so that $X_t \ge R$ for $0 \le t \le \tau$. To avoid trivial complications we also require $X_t \le S$ for $0 \le t \le \tau$, where *S* is some large constant.
- 6. It follows from the martingale representation property of Brownian motion that $(X_t, 0 \le t \le \tau)$ can be represented in the form $dX = \gamma X dt dC + \beta dZ$ for some suitable integrand β .
- 7. In truth the owner does *not* observe the earnings process *Y*, but rather is dependent on earnings reports by the agent. Payments to the agent are necessarily based on *reported* earnings, and there is a threat that the agent will under-report earnings, keeping the difference for himself. To motivate truthful reporting by the agent, the contract $(C_t, 0 \le t \le \tau)$ must be designed so that $\beta_t \ge \ell$ for $0 \le t \le \tau$, where $\ell > 0$ is a given problem parameter.
- 8. The upper bound $\beta_t \le u$ is artificial, imposed for the sake of tractability. We will let $u \uparrow \infty$ later.
- 9. The owner is risk neutral, discounts at rate r > 0, earns at expected rate μ over the interval $(0,\tau)$, and receives liquidation value L > 0 upon termination.

- 5. To keep the agent from defecting, the contract $(C_t, 0 \le t \le \tau)$ must be designed so that $X_t \ge R$ for $0 \le t \le \tau$. To avoid trivial complications we also require $X_t \le S$ for $0 \le t \le \tau$, where *S* is some large constant.
- 6. It follows from the martingale representation property of Brownian motion that $(X_t, 0 \le t \le \tau)$ can be represented in the form $dX = \gamma X dt dC + \beta dZ$ for some suitable integrand β .
- 7. In truth the owner does *not* observe the earnings process *Y*, but rather is dependent on earnings reports by the agent. Payments to the agent are necessarily based on *reported* earnings, and there is a threat that the agent will under-report earnings, keeping the difference for himself. To motivate truthful reporting by the agent, the contract $(C_t, 0 \le t \le \tau)$ must be designed so that $\beta_t \ge \ell$ for $0 \le t \le \tau$, where $\ell > 0$ is a given problem parameter.
- 8. The upper bound $\beta_t \le u$ is artificial, imposed for the sake of tractability. We will let $u \uparrow \infty$ later.
- 9. The owner is risk neutral, discounts at rate r > 0, earns at expected rate μ over the interval $(0,\tau)$, and receives liquidation value L > 0 upon termination.
- 10. We will initially treat X_0 (the total value to the agent of the contract that is offered) as a given constant, and will eventually choose X_0 to maximize expected value to owner.

Baseline problem (again)

- Data are constants $L, R, X_0, S, \ell, u, r, \gamma, \mu > 0$ such that $R < X_0 < S, \ell < u$ and $r < \gamma$.
- $Z = (Z_t, t \ge 0)$ is standard Brownian motion on (Ω, \mathcal{F}, P) and (\mathcal{F}_t) is the filtration generated by Z.
- State space for the controlled process X is the finite interval [R, S].
- An *admissible control* is a pair of adapted processes $C = (C_t)$ and $\beta = (\beta_t)$ such that *C* is non-negative and non-decreasing and $\ell \le \beta_t \le u$ for all *t*.
- Dynamics of X specified by the differential relationship

$$dX_t = \gamma X_t dt + \beta_t dZ_t - dC_t, \quad 0 \le t \le \tau, \text{ where } \tau = \inf \{t \ge 0: X_t \le R\}.$$

• Controller's objective is to

maximize
$$E(\int_0^\tau e^{-rt} (\mu dt - dC_t) + Le^{-r\tau})$$
.

Solution of the baseline problem

For $x \in [R,S]$ let V(x) be the maximum objective value that the controller can achieve when using an admissible control and starting from state $X_0 = x$. A standard heuristic argument suggests that $V(\cdot)$ must satisfy the HJB equation

(1)
$$\max_{\substack{c \ge 0 \\ \ell \le \beta \le u}} \{(\mu - c) - rV(x) - cV'(x) + \frac{1}{2}\beta^2 V''(x)\} = 0 \text{ for } R \le x \le S,$$

with V(R) = L.

Solution of the baseline problem

For $x \in [R,S]$ let V(x) be the maximum objective value that the controller can achieve when using an admissible control and starting from state $X_0 = x$. A standard heuristic argument suggests that $V(\cdot)$ must satisfy the HJB equation

(1)
$$\max_{\substack{c \ge 0 \\ \ell \le \beta \le u}} \{(\mu - c) - rV(x) - cV'(x) + \frac{1}{2}\beta^2 V''(x)\} = 0 \text{ for } R \le x \le S,$$

with V(R) = L. Of course, we can re-express this as

(1) '
$$\mu - rV(x) - \frac{\min}{c \ge 0} \{ c[1 + V'(x)] \} + \frac{1}{2} \frac{\max}{\ell \le \beta \le u} \{ \beta^2 V''(x) \} = 0, \quad R \le x \le S.$$

Proposition 1 For any choice of S > R, equation (1) has a unique C^2 solution V, and for all S sufficiently large the structure of that solution is as follows: there exist constants x^* and \bar{x} , not depending on S, such that $R < x^* < \bar{x} < S$, V is strictly concave on $[S, \bar{x}]$, V reaches its maximum value at x^* , and $V'(\cdot) = -1$ on $[\bar{x}, S]$.

Proposition 1 For any choice of S > R, equation (1) has a unique C^2 solution V, and for all S sufficiently large the structure of that solution is as follows: there exist constants x^* and \bar{x} , not depending on S, such that $R < x^* < \bar{x} < S$, V is strictly concave on $[S, \bar{x}]$, V reaches its maximum value at x^* , and $V'(\cdot) = -1$ on $[\bar{x}, S]$.

Remark The optimal contract (from the owner's perspective) delivers value $X_0 = x^*$ to the agent.

Proposition 2 For any choice of *S* sufficiently large, $V(X_0)$ is an upper bound on the objective value achievable with an admissible control, and that bound can be achieved as follows: set $\beta_t \equiv \ell$ and let *C* be the non-decreasing adapted process that enforces an upper reflecting barrier at level \bar{x} .

Proposition 2 For any choice of *S* sufficiently large, $V(X_0)$ is an upper bound on the objective value achievable with an admissible control, and that bound can be achieved as follows: set $\beta_t \equiv \ell$ and let *C* be the non-decreasing adapted process that enforces an upper reflecting barrier at level \bar{x} .

This is the main result of DeMarzo and Sannikov (2006).

Modified problem formulation

- New data are constants $b \in (R, S)$ and k > 0.
- The owner now must pay monitoring costs at rate $K(X_t)$ over the time interval $[0,\tau]$, where K(x) = k for $R \le x \le b$, and K(x) = 0 otherwise. Everything else is the same as before.

Modified problem formulation

- New data are constants $b \in (R, S)$ and k > 0.
- The owner now must pay monitoring costs at rate $K(X_t)$ over the time interval $[0,\tau]$, where K(x) = k for $R \le x \le b$, and K(x) = 0 otherwise. Everything else is the same as before.

Story behind the modified formulation

When his continuation value X falls below the critical level b, the agent is prone toward risky behavior that could have disastrous consequences for the firm; to prevent such behavior the owner must intensify monitoring of the agent, which incurs an added cost.

Modified problem formulation

- New data are constants $b \in (R, S)$ and k > 0.
- The owner now must pay monitoring costs at rate $K(X_t)$ over the time interval $[0,\tau]$, where K(x) = k for $R \le x \le b$, and K(x) = 0 otherwise. Everything else is the same as before.

Story behind the modified formulation

When his continuation value X falls below the critical level b, the agent is prone toward risky behavior that could have disastrous consequences for the firm; to prevent such behavior the owner must intensify monitoring of the agent, which incurs an added cost.

Modified HJB equation

(2)
$$\mu - rV(x) - \frac{min}{c \ge 0} \{ c[1 + V'(x)] \} + \frac{1}{2} \max_{\ell \le \beta \le u} \{ \beta^2 V''(x) \} = 0, \quad R \le x \le S.$$

Example

We now consider a certain numerical example that includes a large value for the artificial upper bound *u*. (Other specifics of the example would tell you nothing.) For this particular numerical example, equation (2) has a unique C^2 solution *V* for any choice of S > R, and for all *S* sufficiently large that solution has the structure pictured below. The maximizing value of *c* in the HJB equation (2) is c = 0 on $[0, \bar{x})$ and $c = \infty$ on $[\bar{x}, S]$. The maximizing value of β is $\beta = \ell$ on [0, a], $\beta = u$ on [a, b], and $\beta = \ell$ again on $[b, \bar{x}]$.

Formal analysis with $u = \infty$

(3)
$$\mu - rV(x) - K(x) - \frac{\min}{c \ge 0} \{ c[1 + V'(x)] \} + \frac{1}{2} \frac{\max}{\beta \ge \ell} \{ \beta^2 V''(x) \} = 0, \quad R \le x \le S$$

For the specific example referred to above, equation (3) has a C^1 solution V of the form pictured below: it is strictly concave on [R,a), linear on [a,b], strictly concave on (b, \bar{x}) and linear with $V'(\cdot) = -1$ on $[\bar{x}, S]$. The constants a and \bar{x} do not depend on S, assuming S is sufficiently large.

Probabilistic realization of the formal solution

Probabilistic realization (continued)

Let (\mathfrak{G}_t) be the filtration generated by *X*. It is straight-forward to show that

$$\begin{aligned} X_t &= E(\int_t^{\tau} e^{-\gamma(s-t)} dC_s + R e^{-\gamma(\tau-t)} \mid \mathcal{G}_t), \ 0 \le t \le \tau, \\ V(x) &= E\left(\int_0^{\tau} e^{-rt} (\mu \, dt - dC_t) + L e^{-r\tau}\right) \mid X_0 = x\right) \text{ for } x \in [0,a] \cup [b,\bar{x}] \\ V(x) &= \left(\frac{b-x}{b-a}\right) V(a) + \left(\frac{x-a}{b-a}\right) V(b) \text{ for } x \in (a,b). \end{aligned}$$

Probabilistic realization of the formal solution

Let $N_a(t)$ and $N_b(t)$ be two Poisson processes, each with unit intensity, defined on the same probability space as *Z*, independent of *Z* and of each other. Let $\delta = b - a > 0$ and *X* be the unique process satisfying

$$X_t = X_0 + \int_0^t \gamma X_s ds + \ell Z_t - [A_t - \delta N_a(\delta^{-1}A_t)] + [B_t - \delta N_b(\delta^{-1}B_t)] - C_t, \ 0 \le t \le \tau,$$

where A is the local time of X at level a, and B is the local time of X at level b; as before, C is the increasing process that enforces an upper reflecting barrier at level \bar{x} , and τ is the first time at which X hits level 0.

Probabilistic realization (continued)

Let (\mathcal{G}_t) be the filtration generated by *X*. It is straight-forward to show that

$$\begin{aligned} X_t &= E(\int_t^{\tau} e^{-\gamma(s-t)} dC_s + R e^{-\gamma(\tau-t)} \mid \mathfrak{S}_t), \ 0 \le t \le \tau, \\ V(x) &= E\left(\int_0^{\tau} e^{-rt} (\mu \, dt - dC_t) + L e^{-r\tau}\right) \mid X_0 = x\right) \text{ for } x \in [0,a] \cup [b,\bar{x}] \\ V(x) &= \left(\frac{b-x}{b-a}\right) V(a) + \left(\frac{x-a}{b-a}\right) V(b) \text{ for } x \in (a,b). \end{aligned}$$

It follows easily from the martingale representation property of Brownian motion that *X* is *not* adapted to the filtration (\mathcal{F}_t) generated by *Z* alone.

1. How to define an admissible control for the relaxed example with $u = \infty$. It should be that

(*i*) V(X₀) is an upper bound on the value achievable using any admissible control, and
(*ii*) the control described above is admissible, hence optimal (because it achieves the bound).

1. How to define an admissible control for the relaxed example with $u = \infty$. It should be that

(*i*) V(X₀) is an upper bound on the value achievable using any admissible control, and
(*ii*) the control described above is admissible, hence optimal (because it achieves the bound).

2. How to extend the analysis to allow an arbitrary piecewise-continuous cost function $K(\cdot)$ on [R,S].

- 1. How to define an admissible control for the relaxed example with $u = \infty$. It should be that
 - (*i*) $V(X_0)$ is an upper bound on the value achievable using any admissible control, and
 - (*ii*) the control described above is admissible, hence optimal (because it achieves the bound).
- 2. How to extend the analysis to allow an arbitrary piecewise-continuous cost function $K(\cdot)$ on [R,S].
- 3. How to formulate an attractive general problem on a compact interval [R, S], without the special structure of this particular application.

- 1. How to define an admissible control for the relaxed example with $u = \infty$. It should be that
 - (*i*) $V(X_0)$ is an upper bound on the value achievable using any admissible control, and
 - (*ii*) the control described above is admissible, hence optimal (because it achieves the bound).
- 2. How to extend the analysis to allow an arbitrary piecewise-continuous cost function $K(\cdot)$ on [R,S].
- 3. How to formulate an attractive general problem on a compact interval [R, S], without the special structure of this particular application.

The End