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Problem

Problem

Motivation: In credit risk, in mathematical finance, one works with a random time
which represents the default time (in a single default context). Many studies are
based on the intensity process: starting with a reference filtration F, the intensity
process of τ is the F predictable increasing process Λ such that

11τ≤t − Λt∧τ

is a G-martingale, where Gt = ∩ε>0Ft+ε ∨ σ(τ ∧ (t + ε)).

Then, the problem is : given Λ, construct a random time τ which admits Λ
as intensity.
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Problem

A classical construction is: extend the probability space (Ω,F,P) so that there
exists a random variable Θ, with exponential law, independent of F∞ and define

τ := inf{t : Λt ≥ Θ}

3



Problem

Our goal is to provide other constructions.

One starts with noting that, in general,

Zt = P(τ > t|Ft)

is a supermartingale (called the Azéma supermartingale) with multiplicative
decomposition Zt = NtDt, where N is a local martingale and D a decreasing
predictable process.

Assuming that Z does not vanishes, we set Dt = e−Λt . We shall now assume that
Λ is continuous, and that Z0 = 1. Then, one proves that Λ is the intensity of τ .
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Problem

Problem (?): let (Ω,F,P) be a filtered probability space, Λ an increasing continuous
process, N a non-negative local martingale such that

0 < Nte
−Λt ≤ 1

Construct, on the canonical extended space (Ω× [0,∞]), a probability Q such that

1. restriction condition Q|F∞ = P|F∞
2. projection condition Q[τ > t|Ft] = Nte

−Λt

Here, τ is the canonical map. We shall note P(X) := EP(X).
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Problem

Particular case: Z = e−Λ.

In that case a solution (the Cox solution) is

τ = inf{t : Λt ≥ Θ}

where Θ is a random variable with unit exponential law, independent of F∞, or in
other words Q = QC where, for A ∈ F∞:

QC(A ∩ {s < τ ≤ t}) = P
(

11A

∫ t

s

e−ΛudΛu

)

so that
QC(τ > θ|Ft) = e−Λθ , for t ≥ θ
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Problem

Outline of the talk

• Increasing families of martingales

• Semi-martingale decompositions

• Predictable Representation Theorem

• Exemple
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Problem

The link between the supermartingale Z and the conditional law Q(τ ∈ du|Ft) for
u ≤ t is: Let Mu

t = Q(τ ≤ u|Ft), then M is increasing w.r.t. u and

Mu
u = 1− Zu

Mu
t ≤ M t

t = 1− Zt

(Note that, for t < u, Mu
t = E(1− Zu|Ft)).

Solving the problem (?) is equivalent to find a family Mu
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Family iMZ

Family iMZ

An increasing family of positive martingales bounded by 1− Z (in short
iMZ) is a family of processes (Mu : 0 < u < ∞) satisfying the following conditions:

1. Each Mu is a càdlàg P-F martingale on [u,∞].

2. For any u, the martingale Mu is positive and closed by Mu
∞ = limt→∞Mu

t .

3. For each fixed t, 0 < t ≤ ∞, u ∈ [0, t] → Mu
t is a right continuous

increasing map.

4. Mu
u = 1− Zu and Mu

t ≤ M t
t = 1− Zt for u ≤ t ≤ ∞.
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Family iMZ

Given an iMZ , let duMu
∞ be the random measure on (0,∞) associated with the

increasing map u → Mu
∞. The following probability measure Q is a solution of the

problem (?)

Q(F ) := P

(∫

[0,∞]

F (u, ·)(M0
∞δ0(du) + duMu

∞ + (1−M∞
∞ )δ∞(du)

)
)

The two properties for Q:

• Restriction condition: For B ∈ F∞,

Q(B) = P

(
IB

∫

[0,∞]

(M0
∞δ0(du) + duMu

∞ + (1−M∞
∞ )δ∞(du))

)
= P[B]

• Projection condition: For 0 ≤ t < ∞, A ∈ Ft,

Q[A ∩ {τ ≤ t}] = P[IAM t
∞] = P[IAM t

t ] = Q[IA(1− Zt)]

are satisfied.
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Constructions of iMZ

Constructions of iMZ

Hypothesis (z) For all 0 < t < ∞, 0 ≤ Zt < 1, 0 ≤ Zt− < 1.

The simplest iMZ

Assume conditions (z). The family

Mu
t := (1− Zt) exp

(
−

∫ t

u

Zs

1− Zs
dΛs

)
, 0 < u < ∞, u ≤ t ≤ ∞,

defines an iMZ , called basic solution. We note that

dMu
t = −Mu

t−
e−Λt

1− Zt−
dNt, 0 < u ≤ t < ∞.
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Constructions of iMZ

Other solutions To construct an iMZ , we have to check four constraints :

i. Mu
u = (1− Zu)

ii. 0 ≤ Mu

iii. Mu ≤ 1− Z

iv. Mu ≤ Mv for u < v

These constraints are easy to handle if Mu are solutions of a SDE:

The constraint i indicates the initial condition;
the constraint ii means that we must take an exponential SDE;
the constraint iv is a comparison theorem for one dimensional SDE,
the constraint iii can be handled by local time as described in the following result :

Let m be a (P,F)-local martingale such that mu ≤ 1− Zu. Then,
mt ≤ (1− Zt) on t ∈ [u,∞) if and only if the local time at zero of
m− (1− Z) on [u,∞) is identically null.

12



Constructions of iMZ

Other solutions To construct an iMZ , we have to check four constraints :

i. Mu
u = (1− Zu)

ii. 0 ≤ Mu

iii. Mu ≤ 1− Z

iv. Mu ≤ Mv for u < v

These constraints are easy to handle if Mu are solutions of a SDE:
The constraint i indicates the initial condition;
the constraint ii means that we must take an exponential SDE;
the constraint iv is a comparison theorem for one dimensional SDE,
the constraint iii can be handled by local time as described in the following result :

Let m be a (P,F)-local martingale such that mu ≤ 1− Zu. Then,
mt ≤ (1− Zt) on t ∈ [u,∞) if and only if the local time at zero of
m− (1− Z) on [u,∞) is identically null.

13



Constructions of iMZ

Other solutions To construct an iMZ , we have to check four constraints :

i. Mu
u = (1− Zu)

ii. 0 ≤ Mu

iii. Mu ≤ 1− Z

iv. Mu ≤ Mv for u < v

These constraints are easy to handle if Mu are solutions of a SDE:
The constraint i indicates the initial condition;
the constraint ii means that we must take an exponential SDE;
the constraint iv is a comparison theorem for one dimensional SDE,
the constraint iii can be handled by local time as described in the following result :

Let m be a (P,F)-local martingale such that mu ≤ 1− Zu. Then,
mt ≤ (1− Zt) on t ∈ [u,∞) if and only if the local time at zero of
m− (1− Z) on [u,∞) is identically null.

14



Constructions of iMZ

Generating equation when 1− Z > 0

Hypothesis (zz ):

1. For all 0 < t < ∞, 0 ≤ Zt < 1, 0 ≤ Zt− < 1.

2. All P-F martingales are continuous.

Assume (zz). Let Y be a (P,F) local martingale and f be a (bounded) Lipschitz
function with f(0) = 0. For any 0 ≤ u < ∞, we consider the equation

(?u)





dXt = Xt

(
− e−Λt

1− Zt
dNt + f(Xt − (1− Zt))dYt

)
, u ≤ t < ∞

Xu = x
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Constructions of iMZ

Generating equation when 1− Z > 0

Hypothesis (zz ):

1. For all 0 < t < ∞, 0 ≤ Zt < 1, 0 ≤ Zt− < 1.

2. All P-F martingales are continuous.

Assume (zz). Let Y be a (P,F) local martingale and f be a bounded Lipschitz
function with f(0) = 0. For any 0 ≤ u < ∞, we consider the equation

(?u)





dXt = Xt

(
− e−Λt

1− Zt
dNt + f(Xt − (1− Zt))dYt

)
, u ≤ t < ∞

Xu = x

Let Mu be the solution on [u,∞) of the equation (?u) with initial condition
Mu

u = 1− Zu. Then, (Mu, u ≤ t < ∞) defines an iMZ .
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Constructions of iMZ

Particular case:

in the case of a Brownian filtration, for N = 1 (so that Zt = e−Λt and f(x) = x,




dMu
t = Mu

t (Mu
t − (1− Zt)) dBt, u ≤ t < ∞

Mu
u = 1− Zu

In that case, one can check that Mu
∞ = 11τ≤u. The fact that Z is decreasing show

that τ is a pseudo-stopping time (i.e., times such that, for any BOUNDED F
martingale m, one has

E(mτ ) = m0

hence, for any F martingale X, the stopped process xτ is a G martingale.
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Constructions of iMZ

Balayage formula when 1− Z can reach zero

We introduce Z = {s : 1− Zs = 0} and, for t ∈ (0,∞), the random time

gt := sup{0 ≤ s ≤ t : s ∈ Z}

Hypothesis(Z) The set Z is not empty and is closed.
The measure dΛ has a decomposition dΛs = dVs + dAs where V, A are continuous
increasing processes such that dV charges only Z while dA charges its
complementary Zc.
Moreover, we suppose

I{gt≤u<t}

∫ t

u

Zs

1− Zs
dAs < ∞

for any 0 < u < t < ∞.
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Constructions of iMZ

We suppose that Hy(Z). The family

Mu
t = (1− Zu)−

∫ t

u

I{gs≤u} exp
(
−

∫ s

u

Zv

1− Zv
dAv

)
e−ΛsdNs

defines an iMZ .

Note that

Mu
t = I{gt≤u} exp

(
−

∫ t

u

Zs

1− Zs
dAs

)
(1− Zt), 0 < u < ∞, u ≤ t ≤ ∞.
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Constructions of iMZ

Particular case:

If F is a Brownian filtration and

Zt = Nt (sup
s≤t

Ns)−1

where Nt →t→∞ 0, then τ = sup{t : Nt = sups≤t Ns} which is an honest time. (See
Nikghebali and Yor)

Assuming that some F-adapted asset is traded (as well as a savings account with
null interest rate, so that the associated market is complete and arbitrage free), it is
easy to check that the martingale N is the value of a self-financing portfolio with
initial value 1, admissible, such that Nτ > 1, therefore there exists arbitrage
opportunities before τ . One can also prove that there do not exist e.m.m. on the
enlarged filtration G (a simple one would be 1/N·∧τ which is a strict local
G-martingale). The same argument holds also after τ (see also Imkeller, Platen,
Kardaras, Swierb)
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Enlargement of filtration problem solved by SDE

Enlargement of filtration problem solved by SDE

Here we study in particular the enlargement of filtration problem.

• G is a progressive enlargement of F.

• The F-local martingales remain always G-semimartingales on the interval [0, τ ].
whose semimartingale decomposition formula is given in Jeulin.

• The F-local martingales’ behaviour on the interval [τ,∞) in the filtration G
depends on the model.
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Enlargement of filtration problem solved by SDE

Semimartingale decomposition formula for the ?u, in the case 1− Z > 0

We suppose
• Hy(zz) and Z∞ = 0
• for each 0 ≤ t ≤ ∞, the map u → Mu

t is continuous on [0, t], where Mu is
solution of the generating equation (?): 0 ≤ u < ∞,

(?u)





dMt = Mt

(
− e−Λt

1−Zt
dNt + f(Mt − (1− Zt))dYt

)
, u ≤ t < ∞

Mu = 1− Zu

We prove that, for our models, the hypothesis (H′) holds between F and G and we
obtain semimartingale decomposition formula.
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Enlargement of filtration problem solved by SDE

Let Q be the probability on the product space [0,∞]⊗ Ω associated with the iMZ

Let X be a P-F local martingale. Then the process

X̃t = Xt −
∫ t

0

11{s≤τ}
e−Λs

Zs
d〈N,X〉s +

∫ t

0

11{τ<s}
e−Λs

1− Zs
d〈N, X〉s

−
∫ t

0

11{τ<s}(f(Mτ
s − (1− Zs)) + Mτ

s f ′(Mτ
s − (1− Zs)))d〈Y, X〉s

is a Q-G-local martingale.
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Enlargement of filtration problem solved by SDE

Semimartingale decomposition formula in case of zeros of 1− Z

We suppose Hy(Z). We consider the iMZ constructed above and its associated
probability measure Q on [0,∞]× Ω. Let g = limt→∞gt.

Let X be a (P,F)-local martingale. Then

Xt −
∫ t

0

11{s≤g∨τ}
e−Λs

Zs−
d〈N,X〉s +

∫ t

0

11{g∨τ<s}
e−Λs d〈N,X〉s

1− Zs−
, 0 ≤ t < ∞,

is a (Q,G)-local martingale.

It is noted that the above formula has the same form as the formula for honest
time, whilst g ∨ τ is not a honest time in the filtration F.
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Predictable Representation Property

Predictable Representation Property

Assume z z and that

1. there exists an (P,F)-martingale m which admits the (P,F)-Predictable
Representation Property

2. The martingales N and Y are orthogonal

Let m̃ be the (P,G)-martingale part of the (P,G)-semimartingale m.
Then, (m̃,M) enjoys the (Q,G)-Predictable Representation Property where
Mt = 11τ≤t − Λt∧τ .
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Predictable Representation Property

Jeanblanc, M. and Song, S. (2010)
Explicit Model of Default Time with given Survival Probability. Stochastic
Processes and their Applications
Default times with given survival probability and their F-martingale decomposition
formula. Stochastic Processes and their Applications

Nikeghbali, A. and Yor, M. (2006) Doob’s maximal identity, multiplicative
decompositions and enlargements of filtrations, Illinois Journal of Mathematics, 50,
791-814.

Li, L. and Rutkowski, M. (2010) Constructing Random Times Through
Multiplicative Systems, SPA, 2012.

In that paper, the authors give a solution to the problem (?), based on Meyer,
P.A. (1967): On the multiplicative decomposition of positive supermartingales.
In: Markov Processes and Potential Theory, J. Chover, ed., J. Wiley, New York, pp.
103–116.
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Predictable Representation Property

Thank you for your attention
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Predictable Representation Property

HAPPY BIRTHDAY IOANNIS

Santorini -The naked child

Bend if you can to the dark sea forgetting

the flute’s sound on naked feet

that trod your sleep in the other, the sunken life.

Write if you can on your last shell

the day the place the name

and fling it into the sea so that it sinks.

Giorgios SEFERIS
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Predictable Representation Property

Föllmer’s measure

One may think that a solution of the problem (?) is given by the Föllmer measure
associated with Z, defined as

QF[F ] = P[
∫ ∞

0

F (s, ·)ZsdΛs], F ∈ B[0,∞]⊗F∞.

which satisfies the projection condition.
In order to be a solution of the problem (?), QF must be an extension of P, i.e.,

P[A] = QF[A] = P[IA
∫ ∞

0

ZsdΛs], A ∈ F∞.

This is equivalent to the condition:
∫∞
0

ZsdΛs ≡ 1. The last condition combined
with the assumption Z∞ = 0 implies, from the Doob-Meyer decomposition of Z

written in differential form as dZt = e−ΛtdNt − ZtdΛt:

Zt = P[
∫ ∞

0

ZsdΛs|Ft]−
∫ t

0

ZsdΛs = 1−
∫ t

0

ZsdΛs

i.e., Zt = e−Λt
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Proofs

Proofs
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Proofs

Proof of properties of Mu

• Inequality Mu ≤ 1−Z on [u,∞) is satisfied if the local time of ∆ = Mu− (1−Z)
at zero is null. This is the consequence of the following estimation:

d〈∆〉t = ∆2
t

(
e−Λt

1− Zt

)2

d〈N〉t + M2
t f2(∆t)d〈Y 〉t − 2∆t

e−Λt

1− Zt
Mtf(∆t)d〈N, Y 〉t

≤ 2∆2
t

(
e−Λt

1− Zt

)2

d〈N〉t + 2M2
t f2(∆t)d〈Y 〉t

≤ 2∆2
t

(
e−Λt

1− Zt

)2

d〈N〉t + 2M2
t K2∆2

t d〈Y 〉t

From this, we can write
∫ t

0

I{0<∆s<ε}
1

∆2
s

d〈∆〉s < ∞, 0 < ε, 0 < t < ∞

and get the result according to Revuz-Yor.
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Proofs

• Inequality Mu ≤ Mv on [v,∞) when u < v. The comparison theorem holds for
SDE(\). We note also that Mu and Mv satisfy the same SDE(\) on [v,∞). So,
since Mu

v ≤ (1− Zv) = Mv
v , Mu

t ≤ Mv
t for all t ∈ [v,∞).
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Proofs

Balayage Formula

Let Y be a continuous semi-martingale and define

gt = sup{s ≤ t : Ys = 0},

with the convention sup{∅} = 0. Then

hgtYt = h0Y0 +
∫ t

0
hgsdYs

for every predictable, locally bounded process h.
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Proofs

We need only to prove that each Mu satisfies the above equation, and therefore,
that Mu is a local P-F martingale. Let

Eu
t = exp

(
−

∫ t

u

Zs

1− Zs
dAs

)

Then,
d (Eu

t (1− Zt)) = Eu
t

(−e−ΛtdNt + ZtdVt

)

We apply the balayage formula and we obtain

Mu
t = I{gt≤u}Eu

t (1− Zt)

= I{gt≤u}(1− Zu) +
∫ t

u

I{gs≤u}Eu
s

(−e−ΛsdNs + ZsdVs

)

= (1− Zu)−
∫ t

u

I{gs≤u}Eu
s e−ΛsdNs
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Proofs

Semi martingale

The theorem can be proved in quite the same way as in the preceding theorem,
except some precaution on the zeros of 1− Z. Recall that the elements in iMZ

satisfy the equation:

Mu
t = (1− Zu)−

∫ t

u

I{gs≤u}Eu
s e−ΛsdNs, u ≤ t < ∞.

Let 0 ≤ a < b ≤ s < t and A ∈ Fs. Put aside the integrability question. We have

Q[11A11{a<g∨τ≤b}(Xt −Xs)] = Q[11A(M b
∞ −Ma

∞)(Xt −Xs)]

= Q[11A

∫ t

s

11{gr≤b}Eb
r(−e−Λr )d〈N, X〉r]−Q[11A

∫ t

s

11{gr≤a}Ea
r (−e−Λr )d〈N, X〉r]

= Q[11A11{g∨τ≤b}

∫ t

s

(−e−Λr )
1− Zr

d〈N, X〉r]−Q[11A11{g∨τ≤a}

∫ t

s

(−e−Λr )
1− Zr

d〈N, X〉r]

= Q[11A11{a<g∨τ≤b}

∫ t

s

(−e−Λr )
1− Zr

d〈N, X〉r]

37



Another Method

Another Method
Gapeev, P. V., Jeanblanc, M., Li, L., and Rutkowski, M. (2009):
Constructing Random Times with Given Survival Processes and Applications to
Valuation of Credit Derivatives. Forthcoming in: Contemporary Quantitative
Finance Springer-Verlag 2010.

In that paper, the probability Q is constructed as a probability measure equivalent
to the solution of Cox model QC on [0,∞]× Ω associated with Λ. Define

dQ|Gt = LtdQC |Gt , 0 ≤ t < ∞
where Gt = Ft ∨ σ(τ ∧ t) and Lt = `t11t<τ + Lt(τ)11τ≤t. If L satisfies

`t = Nt,

(L) : Nte
−Λt +

∫ t

0

Lt(s)e−ΛsdΛs = 1, 0 ≤ t < ∞.

where, for any s, the process (Lt(s), t ≥ s) is an F-martingale satisfying
Ls(s) = Ns, then, Q is a solution of the problem (?).
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Another Method

Conditions: find Lt = `t11t<τ + Lt(τ, ·)11τ≤t such that

`t = Nt,

(L) : Nte
−Λt +

∫ t

0

Lt(s, ·)e−ΛsdΛs = 1, 0 ≤ t < ∞.

where (Lt(s), t ≥ s) is an F-martingale satisfying Ls(s) = Ns.
• The form of L is a general form for G-adapted processes
• The condition on martingality of Lt(s), t ≥ s is to ensure that L is a G-martingale
• The condition Lt11t<τ = Nt11t<τ is stated to satisfy the projection condition
• The condition (L) is needed to satisfy the restriction condition (and implies
that L is a G-martingale).
In fact, the process Lt = `t11t<τ + Lt(τ, ·)11τ≤t is a G local martingale iff
Lt(s), t ≥ s and E(Lt|Ft) are F-martingales.
To solve (L) the idea is to find X and Y so that Lt(s) = XtYs and Nt = XtYt.
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Example

Example

Let ϕ is the standard Gaussian density and Φ the Gaussian cumulative function, F
generated by a Brownian motion B.

Let X =
∫∞
0

f(s)dBs where f is a deterministic, square-integrable function and
Y = ψ(X) where ψ is a positive and strictly increasing function. Then,

P(Y ≤ u|Ft) = P
( ∫ ∞

t

f(s)dBs ≤ ψ−1(u)−mt|Ft

)

where mt =
∫ t

0
f(s)dBs is Ft-measurable. It follows that

Mu
t := P(Y ≤ u|Ft) = Φ

(ψ−1(u)−mt

σ(t)

)

The family Mu
t is then a family of iMZ martingales which satisfies

dMu
t = −ϕ

(
Φ−1(Mu

t )
) f(t)

σ(t)
dBt

42



Example

The multiplicative decomposition of Zt = Nt exp
(
− ∫ t

0
λsds

)
where

dNt = Nt
ϕ(Yt)

σ(t)Φ(Yt)
dmt, λt =

h′(t) ϕ(Yt)
σ(t)Φ(Yt)

Yt =
mt − ψ−1(t)

σ(t)

The basic martingale satisfies

dMu
t = −Mu

t

f(t)ϕ(Yt)
σ(t)Φ(−Yt)

dBt.
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