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Portfolio choice under transaction costs
using duality

Cvitanić & Karatzas (1996):

Loewenstein (2000):
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Shadow price processes in optimisation
The basic principle

Goal:
max
ϕ

E(u(VT (ϕ)))

V (ϕ) wealth under transaction costs
Ex. S̃ in [S,S] such that

I optimiser ϕ? maximises ϕ 7→ E(u(v0 + ϕ • S̃T )),
I VT (ϕ?) = v0 + ϕ? • S̃T .
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What about explicit results —
using shadow prices?

Cvitanić & Karatzas (1996):

but cf. K. & Muhle-Karbe (2009), Kühn & Stroh (2010), Gerhold et
al. (2011), Herczegh & Prokaj (2011), Choi et al. (2012)
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What about explicit results —
using shadow prices?

Problem: explicit results are very rare.
(e.g. Davis & Norman 1990, . . . )
Way out: look at asymptotics for small transaction costs.
(Constantinides 1986, Whalley & Wilmott 1997, Atkinson & Al-Ali
1997, Janeček & Shreve 2004, Rogers 2004, . . . )
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Our setup
The portfolio optimisation problem

Want to maximise

ϕ 7→ E(−exp(−pVT (ϕ)))

V (ϕ) wealth process under transaction costs
bid price S = (1− ε)S, ask price S = (1 + ε)S
Why exponential utility u(x) = −exp(−px)?

I It allows for random endowment (= hedging problem)
by a measure change.

I Solution does not depend on initial wealth.
I Utility on R better suited for hedging than utilities on R+.
I Exponential utility often leads to simple structure.
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Our setup
The traded asset

Traded asset
dSt = btdt + σtdWt

I univariate
I continuous
I otherwise rather arbitrary

Frictionless optimiser ϕ is assumed to be known.
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Shadow price approach

Look for
optimal strategy ϕε,

shadow price process S̃ε,
dual martingale Z ε,

which satisfy
ZT = u′(v0 + ϕε • S̃ε

T ),
Z ε martingale,

Z εS̃ε martingale,

ϕε changes only when S̃ε
t ∈ {St ,St}.
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Optimality of ϕε
from an engineer’s perspective

For any competitor ψ we have

E(u(VT (ψ))) ≤ E(u(v0 + ψ • S̃ε
T ))

≤ E(u(v0 + ϕε • S̃ε
T )) + E

(
u′(v0 + ϕε • S̃ε

T )((ψ − ϕε) • S̃ε
T )
)

= E(u(VT (ϕε))) + E
(

ZT ((ψ − ϕε) • S̃ε
T )
)

= E(u(VT (ϕε))).

(Second inequality follows from u(y) ≤ u(x) + u′(x)(y − x).)
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Approximate solution

Look for
approximately optimal strategy ϕε,

approximate shadow price process S̃ε,
approximate dual martingale Z ε,

which satisfy
ZT = u′(v0 + ϕε • S̃ε

T ) + O(ε),
Z ε has drift o(ε2/3),

Z εS̃ε has drift O(ε2/3),

ϕε changes only when S̃ε
t ∈ {St ,St}.

13 / 26



Approximate optimality of ϕε
from an engineer’s perspective

For any competitor ψε with ψε − ϕ = o(1) we have

E(u(VT (ψε))) ≤ E(u(v0 + ψε • S̃ε
T ))

≤ E(u(v0 + ϕε • S̃ε
T )) + E

(
u′(v0 + ϕε • S̃ε

T )((ψε − ϕε) • S̃ε
T )
)

= E(u(VT (ϕε))) + E
(

ZT ((ψε − ϕε) • S̃ε
T )
)

+ o(ε2/3)

= E(u(VT (ϕε))) + o(ε2/3).

Compare with

E(u(VT (ϕε)))− E(u(v0 + ϕ • S̃T )) = O(ε2/3).
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How to find an approximate solution
The ansatz

How to find ϕε, S̃ε, Z ε, no-trade bounds ∆ϕ±?
Write

ϕε = ϕ+ ∆ϕ,

S̃ε = S + ∆S,
Z ε = Z (1 + K ),

where ϕ,Z are optimal for the frictionless problem.
Ansatz:

∆S = f (∆ϕ, . . . ),

f (x) = αx3 − γx
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How to find an approximate solution
The solution

This works for

∆St =
(

(γt ∆ϕ)3 − 3γtx)
) εSt

2
with

γt = 3

√
2p

3εSt

cS
t

cϕ
t
,

where d〈S,S〉t = cS
t dt and d〈ϕ,ϕ〉t = cϕ

t dt .
no-trade bounds

∆ϕ±t = ± 1
γt

= ± 3

√
3εSt

2p
cϕ

t

cS
t

certainty equivalent of utility loss

−E

(
ZT

∫ T

0

p
2

(∆ϕ±t )2d〈S,S〉T

)
(2/3 due to transaction costs, 1/3 due to displacement )
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The multivariate case
The setup

Traded asset
dSt = btdt + σtdWt

with Rd -valued S and multivariate Wiener process W
(e.g. Akian et al. 1996, Liu 2004, Lynch & Tan 2006, Muthuraman
& Kumar 2006, Atkinson & Ingpochai 2007, Goodman & Ostrov
2007, Law et al. 2009, Bichuch & Shreve 2012)
Frictionless optimiser ϕ is assumed to be known.
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The multivariate case
The ansatz

How to find ϕε, S̃ε, Z ε, no-trade region?
Write

ϕε = ϕ+ ∆ϕ,

S̃ε = S + ∆S,
Z ε = Z (1 + K ),

where ϕ,Z are optimal for frictionless problem.
Ansatz:

∆Si = fi(∆ϕ, . . . ), i = 1, . . . ,d

fi(x) =
(

(γ>i x)3 − 3γ>i x
) εSi

2

No-trade region is parallelotop spanned by d vectors
±a1 . . . ,±ad ∈ Rd .
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The multivariate case
The solution

∆Si =
(

(γ>i x)3 − 3γ>i x
) εSi

2
works for γ = (γ1, . . . , γd ) ∈ Rd×d given by

γij = 3

√
2p

3εSi
1

(cScϕcS)ii
cS

ij ,

where d〈Si ,Sj〉t = (cS
ij )tdt and d〈ϕi , ϕj〉t = (cϕ

ij )tdt .
no-trade parallelotop is spanned by a1, . . . ,ad ∈ Rd , where
a = (a1, . . . ,ad ) ∈ Rd×d is given by

aij = (γ−1)ij = 3

√
3εSi

2p
(cScϕcS)jj(cS)−1

ij

certainty equivalent of utility loss more complicated
than in univariate case
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Ingredient of the certainty equivalent of utility loss
Covariance matrix of correlated Brownian motion
with oblique reflection at the boundary

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

x[, 1]

x[
, 2

]

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

What is the covariance matrix of the stationary law?
25 / 26



Conclusion

Shadow price approach is useful to the engineer as well.
One can get quite far with regards to explicit formulas for
asyptotically optimal portfolios.
Rigorous theorems still left to future research.
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