TRANSPORT INEQUALITIES FOR STOCHASTIC PROCESSES

Soumik Pal
University of Washington, Seattle

Jun 6, 2012

Introduction

Three problems about rank-based processes

The Atlas model

- Define ranks: $x_{(1)} \geq x_{(2)} \ldots \geq x_{(n)}$. Fix $\delta>0$.
- SDE in \mathbb{R}^{n} :

$$
X_{i}(t)=x_{0}+\delta \int_{0}^{t} 1\left\{X_{i}(s)=X_{(n)}(s)\right\} d s+W_{i}(t), \quad \forall i
$$

- The market weight: $S_{i}(t)=\exp \left(X_{i}(t)\right)$,

$$
\mu_{i}(t)=\frac{S_{i}}{S_{1}+S_{2}+\ldots+S_{n}}(t)
$$

- Banner, Fernholz, Karatzas, P.- (Pitman, Chatterjee), Shkolnikov, Ichiba and several more.

A CURIOUS SHAPE

Power law decay of real market weights with rank:

- $\log \mu_{(i)}$ vs. $\log i$.
- Dec 31, 1929-1999.
- Includes all NYSE, AMEX, and NASDAQ.

Figure 1: Capital distribution curves: 1929-1999

Problem 1

- How to show concentration of the shape of market weights?
- Fix $J \ll N$. Linear regression through

$$
\left(\log i, \log \mu_{(i)}(t)\right), \quad 1 \leq i \leq J .
$$

- Slope $-\alpha(t)$.
- Estimate fluctuation of the process $\{\alpha(s), 0 \leq s \leq T\}$.

Problem 2

- Lipschitz functions $F_{1}(T, B(T)), \ldots, F_{d}(T, B(T))$.
- Define

$$
M_{i}(t):=E\left[F_{i}(T, B(T)) \mid B(t)\right] .
$$

- Suppose

$$
P\left(\sup _{i} M_{i}(t) \leq a(t), 0 \leq t \leq T\right) \geq 1 / 2 .
$$

- What is

$$
P\left(\sup _{i} M_{i}(t)>a(t)+\alpha \sqrt{t}, 1 \leq t \leq T \mid \sup _{i} M_{i}(1)>a(1)\right) ?
$$

Problem 3

- Back to rank-based models.
- Suppose $V^{\pi}(t)$ wealth $\left(V^{\pi}(0)=1\right)$ - portfolio π.
- $\pi=\mu$ - market portfolio.
- How does V^{π} compare with V^{μ} ?

$$
P\left(V^{\pi}(t) / V^{\mu}(t) \geq a(t)\right) \leq \exp (-r(t))
$$

explicit $a(t)$ and $r(t)$.

And now the answers ...

Problem 1: FLUCTUATION OF SLOPE

THEOREM (P.-'10, P.-SHKOLNIKOV '10)

Suppose market weights are running at equilibrium.
Take $T=N / \delta^{2}$.
Let $\bar{\alpha}=\sup _{0 \leq s \leq T} \alpha(s)$.

$$
P\left(\bar{\alpha}>m_{\alpha}+r \sqrt{N}\right) \leq 2 \exp \left(-\frac{r^{2}}{2 \sigma^{2}}\right) .
$$

Here $m_{\alpha}=$ median and $\sigma^{2}=\sigma^{2}(\delta, J)$.

PROBLEM 2: BAD PRICES

Theorem (P. '12)
For some absolute constant $C>0$:
$P\left(\sup _{i} M_{i}(t)>a(t)+\alpha \sqrt{t}, 1 \leq t \leq T \mid \sup _{i} M_{i}(1)>a(1)\right) \approx C T^{-\alpha^{2} / 8}$.
Compare with square-root boundary crossing.

Problem 3: Performance of portfolios

- Symmetric functionally generated portfolio G.
- π depends only on market weights.
- Market, diversity-weighted, entropy-weighted portfolios.

THEOREM (ICHIBA-P.-SHKOLNIKOV '11)
Let $R(t)=V^{\pi}(t) / V^{\mu}(t)$.

$$
\begin{aligned}
& P\left(R(t) \geq c^{+} G(\mu(t)) / G(\mu(0))\right) \leq \exp \left[-\alpha^{+} t\right] \\
& P\left(R(t) \leq c^{-} G(\mu(t)) / G(\mu(0))\right) \leq \exp \left[-\alpha^{-} t\right] .
\end{aligned}
$$

Here $c^{ \pm}, \alpha^{ \pm}$explicit.

Transportation - Entropy - Information Inequalities

Transportation Inequalities

TCI (Ω, d) - metric space. P, Q - prob measures.

$$
\mathcal{W}_{p}(Q, P)=\inf _{\pi}\left[E d^{p}\left(X, X^{\prime}\right)\right]^{1 / p} .
$$

Transportation Inequalities

TCI (Ω, d) - metric space. P, Q - prob measures.

$$
\mathcal{W}_{p}(Q, P)=\inf _{\pi}\left[E d^{p}\left(X, X^{\prime}\right)\right]^{1 / p}
$$

- P satisfies T_{p} if $\exists C>0$:

$$
\mathcal{W}_{p}(Q, P) \leq \sqrt{2 C H(Q \mid P)}
$$

- $H(Q \mid P)=E_{Q} \log (d Q / d P)$ or ∞.

Transportation Inequalities

TCI (Ω, d) - metric space. P, Q - prob measures.

$$
\mathcal{W}_{p}(Q, P)=\inf _{\pi}\left[E d^{p}\left(X, X^{\prime}\right)\right]^{1 / p}
$$

- P satisfies T_{p} if $\exists C>0$:

$$
\mathcal{W}_{p}(Q, P) \leq \sqrt{2 C H(Q \mid P)}
$$

- $H(Q \mid P)=E_{Q} \log (d Q / d P)$ or ∞.
- Related: Bobkov and Götze, Bobkov-Gentil-Ledoux, Dembo, Gozlan-Roberto-Samson, Otto and Villani, Talagrand.

MARTON'S ARGUMENT

- $T_{p}, p \geq 1 \Rightarrow$ Gaussian concentration of Lipschitz functions.
- If $f: \Omega \rightarrow \mathbb{R}$ - Lipschitz.

$$
|f(x)-f(y)| \leq \sigma d(x, y)
$$

- Then f has Gaussian tails:

$$
P\left(\left|f-m_{f}\right|>r\right) \leq 2 e^{-r^{2} / 2 C \sigma^{2}}
$$

- Fix $p=2$ from now on.

Idea of proof for Problem 1

The Wiener measure

- Consider $\Omega=C[0, T], \mathbf{d}\left(\omega, \omega^{\prime}\right)=\sup _{0 \leq s \leq T}\left|\omega(s)-\omega^{\prime}(s)\right|$.
- (Feyel-Üstünel '04, P. '10)

$$
P=\text { Wiener measure satisfies } T_{2} \text { with } C=T
$$

- Related: Djellout-Guillin-Wu, Fang-Shao, Fang-Wang-Wu, Wu-Zhang.

Proof

- Proof: If $Q \ll P$, then by Girsanov

$$
d \omega(t)=b(t, \omega) d t+d \beta(t) .
$$

Here $\beta \sim P$.

- $\mathcal{W}_{2}(Q, P) \leq\left[E_{Q} d^{2}(\omega, \beta)\right]^{1 / 2} \leq \sqrt{2 T H(Q \mid P)}$.

EXAMPLES

- How to show local time at zero has Gaussian tail?
- $L_{0}(T)$ is not Lipschitz w.r.t uniform norm.
- Lévy representation:

$$
L_{0}(T)=-\inf _{0 \leq s \leq t} \beta(s) \wedge 0
$$

- Lipschitz function of the entire path. Thus

$$
P\left(\left|L_{0}(T)-m_{T}\right|>r\right) \leq 2 e^{-r^{2} / 2 T} .
$$

$\mathrm{BM} \operatorname{IN} \mathbb{R}^{n}$

- Multidimensional Wiener measure satisfies T_{2}.
- Uniform metric

$$
\mathbf{d}^{2}\left(\omega, \omega^{\prime}\right)=\frac{1}{n} \sum_{i=1}^{n} \sup _{0 \leq s \leq T}\left|\omega(s)-\omega^{\prime}(s)\right|^{2}
$$

- Skorokhod map

$$
\mathcal{S}: \mathrm{BM} \text { in } \mathbb{R}^{n} \mapsto \mathrm{RBM} \text { in polyhedra. }
$$

- Deterministic map. Rather abstract and complicated.
- But Lipschitz.

The Lipschitz constant

Theorem (P. - SHKOLNIKOV '10)

The Lipschitz constant of \mathcal{S} is $\leq 2 n^{5 / 2}$.

- The slope $\alpha(t)$ is a linear map.

BM on $\mathbb{R}^{n} \rightarrow$ RBM on wedge \rightarrow slope of regression.

- Evaluate Lipschitz constant. Estimate concentration.

Idea of proof for Problem 2

A DIFFERENT METRIC

- For $\omega, \omega^{\prime} \in C^{d}[0, \infty)$:

$$
\sigma_{r}=\inf \left\{t \geq 0: \sigma_{r}\left(\omega, \omega^{\prime}\right)>r\right\}
$$

- Consider $\varphi: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$

$$
\Phi_{1}:=\left\{\varphi \geq 0, \varphi \downarrow, \int_{0}^{\infty} \varphi^{2}(s) d s \leq 1\right\} .
$$

- (P. '12) A metric on paths:

$$
\rho\left(\omega, \omega^{\prime}\right):=\left[\sup _{\varphi \in \Phi_{1}} \int_{0}^{\infty} \varphi\left(\sigma_{r}\right) d r\right]^{1 / 2} .
$$

Generalized TCI

Theorem (P. '12)

P - multidimension Wiener measure.

$$
\mathcal{W}_{2}(Q, P) \leq \sqrt[4]{2 H(Q \mid P)} .
$$

With respect to ρ.

An EXAMPLE

- P-Wiener measure. Two event processes: $1 \leq t \leq T$.

$$
A_{T}=\{\beta(s) \leq \sqrt{s}, 1 \leq s \leq T\} \quad B_{T}=\{\beta(s) \geq 2 \sqrt{s}, 1 \leq s \leq T\} .
$$

An EXAMPLE

- P-Wiener measure. Two event processes: $1 \leq t \leq T$.

$$
A_{T}=\{\beta(s) \leq \sqrt{s}, 1 \leq s \leq T\} \quad B_{T}=\{\beta(s) \geq 2 \sqrt{s}, 1 \leq s \leq T\} .
$$

- Let

$$
Q_{1}=P\left(\cdot \mid A_{T}\right), \quad Q_{2}=P\left(\cdot \mid B_{T}\right)
$$

An EXAMPLE

- P-Wiener measure. Two event processes: $1 \leq t \leq T$.

$$
A_{T}=\{\beta(s) \leq \sqrt{s}, 1 \leq s \leq T\} \quad B_{T}=\{\beta(s) \geq 2 \sqrt{s}, 1 \leq s \leq T\} .
$$

- Let

$$
Q_{1}=P\left(\cdot \mid A_{T}\right), \quad Q_{2}=P\left(\cdot \mid B_{T}\right)
$$

- Couple $(X, Y) \sim\left(Q_{1}, Q_{2}\right)$.

$$
\sigma_{\sqrt{s}}(X, Y) \leq s, \quad 1 \leq s \leq T .
$$

An EXAMPLE

- P-Wiener measure. Two event processes: $1 \leq t \leq T$.

$$
A_{T}=\{\beta(s) \leq \sqrt{s}, 1 \leq s \leq T\} \quad B_{T}=\{\beta(s) \geq 2 \sqrt{s}, 1 \leq s \leq T\} .
$$

- Let

$$
Q_{1}=P\left(\cdot \mid A_{T}\right), \quad Q_{2}=P\left(\cdot \mid B_{T}\right)
$$

- Couple $(X, Y) \sim\left(Q_{1}, Q_{2}\right)$.

$$
\sigma_{\sqrt{s}}(X, Y) \leq s, \quad 1 \leq s \leq T
$$

- $\varphi \downarrow$ and ≥ 0 :

$$
\int_{1}^{\sqrt{T}} \varphi\left(\sigma_{r}\right) d r=\int_{1}^{T} \varphi\left(\sigma_{\sqrt{s}}\right) \frac{d s}{2 \sqrt{s}} \geq \int_{1}^{T} \varphi(s) \frac{d s}{2 \sqrt{s}}
$$

An EXAMPLE

- P-Wiener measure. Two event processes: $1 \leq t \leq T$.

$$
A_{T}=\{\beta(s) \leq \sqrt{s}, 1 \leq s \leq T\} \quad B_{T}=\{\beta(s) \geq 2 \sqrt{s}, 1 \leq s \leq T\} .
$$

- Let

$$
Q_{1}=P\left(\cdot \mid A_{T}\right), \quad Q_{2}=P\left(\cdot \mid B_{T}\right)
$$

- Couple $(X, Y) \sim\left(Q_{1}, Q_{2}\right)$.

$$
\sigma_{\sqrt{s}}(X, Y) \leq s, \quad 1 \leq s \leq T .
$$

- $\varphi \downarrow$ and ≥ 0 :

$$
\int_{1}^{\sqrt{T}} \varphi\left(\sigma_{r}\right) d r=\int_{1}^{T} \varphi\left(\sigma_{\sqrt{s}}\right) \frac{d s}{2 \sqrt{s}} \geq \int_{1}^{T} \varphi(s) \frac{d s}{2 \sqrt{s}}
$$

- Take

$$
\varphi(s)=\frac{2}{\sqrt{\log T}} \frac{1}{2 \sqrt{s}} 1\{1 \leq s \leq T\}
$$

EXAMPLE CONTD.

- Thus

$$
\mathcal{W}_{2}^{2}\left(Q_{1}, Q_{2}\right) \geq \frac{1}{2} \sqrt{\log T}
$$

EXAMPLE CONTD.

- Thus

$$
\mathcal{W}_{2}^{2}\left(Q_{1}, Q_{2}\right) \geq \frac{1}{2} \sqrt{\log T}
$$

- $\frac{1}{\sqrt{2}} \sqrt[4]{\log T} \leq \mathcal{W}_{2}\left(Q_{1}, Q_{2}\right) \leq \mathcal{W}_{2}\left(Q_{1}, P\right)+\mathcal{W}_{2}\left(Q_{2}, P\right)$

EXAMPLE CONTD.

- Thus

$$
\mathcal{W}_{2}^{2}\left(Q_{1}, Q_{2}\right) \geq \frac{1}{2} \sqrt{\log T}
$$

- $\frac{1}{\sqrt{2}} \sqrt[4]{\log T} \leq \mathcal{W}_{2}\left(Q_{1}, Q_{2}\right) \leq \mathcal{W}_{2}\left(Q_{1}, P\right)+\mathcal{W}_{2}\left(Q_{2}, P\right)$
$\leq \sqrt[4]{2 H\left(Q_{1} \mid P\right)}+\sqrt[4]{2 H\left(Q_{2} \mid P\right)}$

EXAMPLE CONTD.

- Thus

$$
\mathcal{W}_{2}^{2}\left(Q_{1}, Q_{2}\right) \geq \frac{1}{2} \sqrt{\log T}
$$

- $\frac{1}{\sqrt{2}} \sqrt[4]{\log T} \leq \mathcal{W}_{2}\left(Q_{1}, Q_{2}\right) \leq \mathcal{W}_{2}\left(Q_{1}, P\right)+\mathcal{W}_{2}\left(Q_{2}, P\right)$
$\leq \sqrt[4]{2 H\left(Q_{1} \mid P\right)}+\sqrt[4]{2 H\left(Q_{2} \mid P\right)}$
$\leq \sqrt[4]{2 \log \frac{1}{P\left(A_{T}\right)}}+\sqrt[4]{2 \log \frac{1}{P\left(B_{T}\right)}}$.

Idea of proof for problem 3.

TRANSPORTATION-INFORMATION INEQUALITY

- \mathcal{E} - Dirichlet form. Fisher Information:

$$
I(\nu \mid \mu):=\mathcal{E}(\sqrt{f}, \sqrt{f}), \quad \text { if } d \nu=f d \mu .
$$

- μ satisfies $\mathcal{W}_{1} I(c)$ inequality if

$$
\mathcal{W}_{1}^{2}(\nu, \mu) \leq 4 c^{2} I(\nu \mid \mu), \quad \forall \nu .
$$

TRANSPORTATION-INFORMATION INEQUALITY

- \mathcal{E} - Dirichlet form. Fisher Information:

$$
I(\nu \mid \mu):=\mathcal{E}(\sqrt{f}, \sqrt{f}), \quad \text { if } d \nu=f d \mu .
$$

- μ satisfies $\mathcal{W}_{1} I(c)$ inequality if

$$
\mathcal{W}_{1}^{2}(\nu, \mu) \leq 4 c^{2} I(\nu \mid \mu), \quad \forall \nu .
$$

- Allows precise control of additive functionals.

Poincaré InEQUALITIES

Theorem (Guillin et Al.)

Consider

$$
\mathcal{W}_{1}(\nu, \mu)=\|\nu-\mu\|_{\mathrm{TV}} .
$$

$\left(X_{t}, t \geq 0\right)$ Markov - invariant distribution μ.
Suppose μ - Poincaré ineq. Then \mathcal{W}_{1} I holds.

Poincaré InEQUALITIES

Theorem (Guillin et al.)
Consider

$$
\mathcal{W}_{1}(\nu, \mu)=\|\nu-\mu\|_{\mathrm{TV}} .
$$

$\left(X_{t}, t \geq 0\right)$ Markov - invariant distribution μ.
Suppose μ - Poincaré ineq. Then \mathcal{W}_{1} I holds.

Gaps of rank-based processes stationary. Poincaré ineq holds.

Thank you loannis. Happy birthday.

