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INTRODUCTION

Three problems about rank-based processes



THE ATLAS MODEL

I Define ranks: x(1) ≥ x(2) . . . ≥ x(n). Fix δ > 0.

I SDE in Rn:

Xi (t) = x0 + δ

∫ t

0
1{Xi (s) = X(n)(s)} ds + Wi (t), ∀ i .

I The market weight: Si (t) = exp(Xi (t)),

µi (t) =
Si

S1 + S2 + . . .+ Sn
(t).

I Banner, Fernholz, Karatzas, P.- (Pitman, Chatterjee), Shkolnikov,
Ichiba and several more.



A CURIOUS SHAPE

Power law decay of real market weights with rank:
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Figure 1: Capital distribution curves: 1929–1999

cesses represented by continuous semimartingales (see, e.g., Duffie (1992) or Karatzas and Shreve
(1998)). The representation of market weights in terms of continuous semimartingales is straight-
forward, but in order to represent the ranked market weights, it is necessary to use semimartingale
local times to capture the behavior when ranks change. The methodology for this analysis was
developed in Fernholz (2001), and is outlined here in an Appendix. By using the representation of
ranked market weights given in Fernholz (2001), we are able to determine the asymptotic behavior
of the capital distribution. For a market with a stable capital distribution, this asymptotic behavior
provides insight into the steady-state structure of the market.

We shall assume that we operate in a continuously-traded, frictionless market in which the stock
prices vary continuously and the companies pay no dividends. We assume that companies neither
enter nor leave the market, nor do they merge or break up, and that the total number of shares of a
company remains constant. Shares of stock are assumed to be infinitely divisible, so we can assume
without loss of generality that each company has a single share of stock outstanding.

Section 2 of the paper contains some basic definitions and results regarding the basic market
model that we use. In Section 3 we present a model for a stable capital distribution, and we apply
this model to the U.S. equity market in Section 4. Section 5 is a summary, and the Appendix
contains some technical mathematical results that we need in the other sections.

2 The market model

In this section we introduce the general market model that we shall use in the rest of the paper. This
model is consistent with the usual market models of continuous-time mathematical finance, found
in, e.g., Duffie (1992) or Karatzas and Shreve (1998), but follows the logarithmic representation used
in, e.g., Fernholz (1999).

Consider a family of n stocks represented by their price processes X1, . . . , Xn. We assume that
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I logµ(i) vs. log i .

I Dec 31, 1929 - 1999.
I Includes all NYSE, AMEX, and

NASDAQ.



PROBLEM 1

I How to show concentration of the shape of market weights?
I Fix J � N. Linear regression through

(log i , logµ(i)(t)), 1 ≤ i ≤ J.

I Slope −α(t).
I Estimate fluctuation of the process {α(s), 0 ≤ s ≤ T}.



PROBLEM 2

I Lipschitz functions F1(T ,B(T )), . . . ,Fd (T ,B(T )).
I Define

Mi (t) := E [Fi (T ,B(T )) | B(t)] .

I Suppose

P
(

sup
i

Mi (t) ≤ a(t), 0 ≤ t ≤ T
)
≥ 1/2.

I What is

P
(

sup
i

Mi (t) > a(t) + α
√

t , 1 ≤ t ≤ T | sup
i

Mi (1) > a(1)

)
?



PROBLEM 3

I Back to rank-based models.
I Suppose Vπ(t) wealth (Vπ(0) = 1)- portfolio π.
I π = µ - market portfolio.
I How does Vπ compare with Vµ ?

P (Vπ(t)/Vµ(t) ≥ a(t)) ≤ exp (−r(t)) ,

explicit a(t) and r(t).



And now the answers ...



PROBLEM 1: FLUCTUATION OF SLOPE

THEOREM (P.-’10, P.-SHKOLNIKOV ’10)
Suppose market weights are running at equilibrium.
Take T = N/δ2.
Let ᾱ = sup0≤s≤T α(s).

P
(
ᾱ > mα + r

√
N
)
≤ 2 exp

(
− r2

2σ2

)
.

Here mα =median and σ2 = σ2(δ, J).



PROBLEM 2: BAD PRICES

THEOREM (P. ’12)
For some absolute constant C > 0:

P
(

sup
i

Mi (t) > a(t) + α
√

t , 1 ≤ t ≤ T | sup
i

Mi (1) > a(1)

)
≈ CT−α

2/8.

Compare with square-root boundary crossing.



PROBLEM 3: PERFORMANCE OF PORTFOLIOS

I Symmetric functionally generated portfolio G.
I π depends only on market weights.
I Market, diversity-weighted, entropy-weighted portfolios.

THEOREM (ICHIBA-P.-SHKOLNIKOV ’11)
Let R(t) = Vπ(t)/Vµ(t).

P
(
R(t) ≥ c+G(µ(t))/G(µ(0))

)
≤ exp

[
−α+t

]
P
(
R(t) ≤ c−G(µ(t))/G(µ(0))

)
≤ exp

[
−α−t

]
.

Here c±, α± explicit.



Transportation - Entropy - Information Inequalities



TRANSPORTATION INEQUALITIES

TCI (Ω,d) - metric space. P,Q - prob measures.

Wp(Q,P) = inf
π

[Edp(X ,X ′)]
1/p

.

I P satisfies Tp if ∃ C > 0:

Wp(Q,P) ≤
√

2CH(Q | P).

I H(Q | P) = EQ log(dQ/dP) or∞.

I Related: Bobkov and Götze, Bobkov-Gentil-Ledoux, Dembo,
Gozlan-Roberto-Samson, Otto and Villani, Talagrand.
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MARTON’S ARGUMENT

I Tp, p ≥ 1⇒ Gaussian concentration of Lipschitz functions.
I If f : Ω→ R - Lipschitz.

|f (x)− f (y)| ≤ σd(x , y).

I Then f has Gaussian tails:

P (|f −mf | > r) ≤ 2e−r2/2Cσ2
.

I Fix p = 2 from now on.



Idea of proof for Problem 1



THE WIENER MEASURE

I Consider Ω = C[0,T ], d(ω, ω′) = sup0≤s≤T |ω(s)− ω′(s)|.

I (Feyel-Üstünel ’04, P. ’10)

P =Wiener measure satisfies T2 with C = T .

I Related: Djellout-Guillin-Wu, Fang-Shao, Fang-Wang-Wu,
Wu-Zhang.



PROOF

I Proof: If Q � P, then by Girsanov

dω(t) = b(t , ω)dt + dβ(t).

Here β ∼ P.

I W2(Q,P) ≤
[
EQd2(ω, β)

]1/2 ≤
√

2TH(Q | P).



EXAMPLES

I How to show local time at zero has Gaussian tail?

I L0(T ) is not Lipschitz w.r.t uniform norm.

I Lévy representation:

L0(T ) = − inf
0≤s≤t

β(s) ∧ 0.

I Lipschitz function of the entire path. Thus

P (|L0(T )−mT | > r) ≤ 2e−r2/2T .



BM IN Rn

I Multidimensional Wiener measure satisfies T2.
I Uniform metric

d2(ω, ω′) =
1
n

n∑
i=1

sup
0≤s≤T

|ω(s)− ω′(s)|2 .

I Skorokhod map

S : BM in Rn 7→ RBM in polyhedra.

I Deterministic map. Rather abstract and complicated.
I But Lipschitz.



THE LIPSCHITZ CONSTANT

THEOREM (P. - SHKOLNIKOV ’10)

The Lipschitz constant of S is ≤ 2n5/2.

I The slope α(t) is a linear map.

BM on Rn → RBM on wedge→ slope of regression.

I Evaluate Lipschitz constant. Estimate concentration.



Idea of proof for Problem 2



A DIFFERENT METRIC

I For ω, ω′ ∈ Cd [0,∞):

σr = inf {t ≥ 0 : σr (ω, ω′) > r} .

I Consider ϕ : R+ → R+

Φ1 :=

{
ϕ ≥ 0, ϕ ↓,

∫ ∞
0

ϕ2(s)ds ≤ 1
}
.

I (P. ’12) A metric on paths:

ρ(ω, ω′) :=

[
sup
ϕ∈Φ1

∫ ∞
0

ϕ (σr ) dr

]1/2

.



GENERALIZED TCI

THEOREM (P. ’12)
P - multidimension Wiener measure.

W2(Q,P) ≤ 4
√

2H(Q | P).

With respect to ρ.



AN EXAMPLE

I P-Wiener measure. Two event processes: 1 ≤ t ≤ T .

AT =
{
β(s) ≤

√
s, 1 ≤ s ≤ T

}
BT =

{
β(s) ≥ 2

√
s, 1 ≤ s ≤ T

}
.

I Let
Q1 = P (· | AT ) , Q2 = P (· | BT ) .

I Couple (X ,Y ) ∼ (Q1,Q2).

σ√s(X ,Y ) ≤ s, 1 ≤ s ≤ T .

I ϕ ↓ and ≥ 0:∫ √T

1
ϕ(σr )dr =

∫ T

1
ϕ(σ√s)

ds
2
√

s
≥
∫ T

1
ϕ(s)

ds
2
√

s
.

I Take
ϕ(s) =

2√
log T

1
2
√

s
1{1 ≤ s ≤ T}.
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EXAMPLE CONTD.

I Thus
W2

2 (Q1,Q2) ≥ 1
2

√
log T .

I 1√
2

4
√

log T ≤ W2(Q1,Q2) ≤ W2(Q1,P) +W2(Q2,P)

≤ 4
√

2H(Q1 | P) + 4
√

2H(Q2 | P)

≤ 4

√
2 log 1

P(AT ) + 4

√
2 log 1

P(BT ) .



EXAMPLE CONTD.

I Thus
W2

2 (Q1,Q2) ≥ 1
2

√
log T .

I 1√
2

4
√

log T ≤ W2(Q1,Q2) ≤ W2(Q1,P) +W2(Q2,P)

≤ 4
√

2H(Q1 | P) + 4
√

2H(Q2 | P)

≤ 4

√
2 log 1

P(AT ) + 4

√
2 log 1

P(BT ) .



EXAMPLE CONTD.

I Thus
W2

2 (Q1,Q2) ≥ 1
2

√
log T .

I 1√
2

4
√

log T ≤ W2(Q1,Q2) ≤ W2(Q1,P) +W2(Q2,P)

≤ 4
√

2H(Q1 | P) + 4
√

2H(Q2 | P)

≤ 4

√
2 log 1

P(AT ) + 4

√
2 log 1

P(BT ) .



EXAMPLE CONTD.

I Thus
W2

2 (Q1,Q2) ≥ 1
2

√
log T .

I 1√
2

4
√

log T ≤ W2(Q1,Q2) ≤ W2(Q1,P) +W2(Q2,P)

≤ 4
√

2H(Q1 | P) + 4
√

2H(Q2 | P)

≤ 4

√
2 log 1

P(AT ) + 4

√
2 log 1

P(BT ) .



Idea of proof for problem 3.



TRANSPORTATION-INFORMATION INEQUALITY

I E - Dirichlet form. Fisher Information:

I(ν | µ) := E(
√

f ,
√

f ), if dν = fdµ.

I µ satisfiesW1I(c) inequality if

W2
1 (ν, µ) ≤ 4c2I (ν | µ) , ∀ ν.

I Allows precise control of additive functionals.
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POINCARÉ INEQUALITIES

THEOREM (GUILLIN ET AL.)
Consider

W1(ν, µ) = ‖ν − µ‖TV .

(Xt , t ≥ 0) Markov - invariant distribution µ.

Suppose µ - Poincaré ineq. ThenW1I holds.

Gaps of rank-based processes stationary. Poincaré ineq holds.
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Thank you Ioannis. Happy birthday.


