TRANSPORT INEQUALITIES FOR STOCHASTIC PROCESSES

Soumik Pal

University of Washington, Seattle

Jun 6, 2012

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

INTRODUCTION

Three problems about rank-based processes

THE ATLAS MODEL

• Define ranks: $x_{(1)} \ge x_{(2)} \dots \ge x_{(n)}$. Fix $\delta > 0$.

▶ SDE in \mathbb{R}^n :

$$X_i(t) = x_0 + \delta \int_0^t \mathbf{1} \{X_i(s) = X_{(n)}(s)\} ds + W_i(t), \quad \forall i.$$

• The market weight: $S_i(t) = \exp(X_i(t))$,

$$\mu_i(t) = \frac{S_i}{S_1 + S_2 + \ldots + S_n}(t).$$

 Banner, Fernholz, Karatzas, P.- (Pitman, Chatterjee), Shkolnikov, Ichiba and several more.

A CURIOUS SHAPE

Power law decay of real market weights with rank:

Figure 1: Capital distribution curves: 1929-1999

- log $\mu_{(i)}$ vs. log *i*.
- Dec 31, 1929 1999.
- Includes all NYSE, AMEX, and NASDAQ.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – 釣��

- How to show concentration of the shape of market weights?
- Fix $J \ll N$. Linear regression through

```
(\log i, \log \mu_{(i)}(t)), \quad 1 \leq i \leq J.
```

- Slope $-\alpha(t)$.
- Estimate fluctuation of the process { $\alpha(s)$, $0 \le s \le T$ }.

Problem 2

- Lipschitz functions $F_1(T, B(T)), \ldots, F_d(T, B(T))$.
- Define

$$M_i(t) := E\left[F_i(T, B(T)) \mid B(t)\right].$$

Suppose

$$P\left(\sup_{i} M_{i}(t) \leq a(t), \ 0 \leq t \leq T\right) \geq 1/2.$$

What is

$$P\left(\sup_{i} M_{i}(t) > a(t) + \alpha\sqrt{t}, \ 1 \leq t \leq T \mid \sup_{i} M_{i}(1) > a(1)\right)?$$

- Back to rank-based models.
- Suppose $V^{\pi}(t)$ wealth ($V^{\pi}(0) = 1$)- portfolio π .
- $\pi = \mu$ market portfolio.
- How does V^{π} compare with V^{μ} ?

$$P(V^{\pi}(t)/V^{\mu}(t) \geq a(t)) \leq \exp\left(-r(t)\right),$$

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ シ へ ○ ヘ

explicit a(t) and r(t).

And now the answers ...

PROBLEM 1: FLUCTUATION OF SLOPE

Theorem (P.-'10, P.-Shkolnikov '10)

Suppose market weights are running at equilibrium. Take $T = N/\delta^2$.

Let
$$\bar{\alpha} = \sup_{0 \le s \le T} \alpha(s)$$
.

$$P\left(\bar{\alpha} > m_{\alpha} + r\sqrt{N}\right) \leq 2\exp\left(-\frac{r^2}{2\sigma^2}\right).$$

うして 山田 マイボマ エリア しょうくしゃ

Here m_{α} =median and $\sigma^2 = \sigma^2(\delta, J)$.

PROBLEM 2: BAD PRICES

THEOREM (P. '12)

For some absolute constant C > 0:

$$P\left(\sup_{i} M_{i}(t) > a(t) + \alpha\sqrt{t}, \ 1 \leq t \leq T \ | \ \sup_{i} M_{i}(1) > a(1)\right) \approx CT^{-\alpha^{2}/8}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Compare with square-root boundary crossing.

PROBLEM 3: PERFORMANCE OF PORTFOLIOS

- Symmetric functionally generated portfolio G.
- π depends only on market weights.
- Market, diversity-weighted, entropy-weighted portfolios.

THEOREM (ICHIBA-P.-SHKOLNIKOV '11) Let $R(t) = V^{\pi}(t)/V^{\mu}(t)$. $P\left(R(t) \ge c^{+}G(\mu(t))/G(\mu(0))\right) \le \exp\left[-\alpha^{+}t\right]$ $P\left(R(t) \le c^{-}G(\mu(t))/G(\mu(0))\right) \le \exp\left[-\alpha^{-}t\right]$.

うして 山田 マイボマ エリア しょうくしゃ

Here c^{\pm}, α^{\pm} explicit.

Transportation - Entropy - Information Inequalities

TRANSPORTATION INEQUALITIES

TCI (Ω, d) - metric space. P, Q - prob measures.

$$\mathcal{W}_p(Q, P) = \inf_{\pi} \left[Ed^p(X, X') \right]^{1/p}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

TRANSPORTATION INEQUALITIES

TCI (Ω, d) - metric space. P, Q - prob measures.

$$\mathcal{W}_{p}(Q,P) = \inf_{\pi} \left[Ed^{p}(X,X') \right]^{1/p}.$$

• *P* satisfies T_p if $\exists C > 0$:

$$\mathcal{W}_{p}(Q, P) \leq \sqrt{2CH(Q \mid P)}.$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ - □ - のへで

• $H(Q \mid P) = E_Q \log(dQ/dP)$ or ∞ .

TRANSPORTATION INEQUALITIES

TCI (Ω, d) - metric space. P, Q - prob measures.

$$\mathcal{W}_{p}(Q,P) = \inf_{\pi} \left[Ed^{p}(X,X') \right]^{1/p}.$$

• *P* satisfies T_p if $\exists C > 0$:

$$\mathcal{W}_{p}(Q, P) \leq \sqrt{2CH(Q \mid P)}.$$

•
$$H(Q \mid P) = E_Q \log(dQ/dP)$$
 or ∞ .

 Related: Bobkov and Götze, Bobkov-Gentil-Ledoux, Dembo, Gozlan-Roberto-Samson, Otto and Villani, Talagrand.

MARTON'S ARGUMENT

T_p, *p* ≥ 1 ⇒ Gaussian concentration of Lipschitz functions.
 If *f* : Ω → ℝ - Lipschitz.

$$|f(x)-f(y)|\leq \sigma d(x,y).$$

Then f has Gaussian tails:

$$P(|f - m_f| > r) \le 2e^{-r^2/2C\sigma^2}.$$

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ ―臣 – のへぐ

Fix p = 2 from now on.

Idea of proof for Problem 1

THE WIENER MEASURE

- Consider $\Omega = C[0, T], \ \mathbf{d}(\omega, \omega') = \sup_{0 \le s \le T} |\omega(s) \omega'(s)|.$
- ▶ (Feyel-Üstünel '04, P. '10)

P =Wiener measure satisfies T_2 with C = T.

 Related: Djellout-Guillin-Wu, Fang-Shao, Fang-Wang-Wu, Wu-Zhang. • Proof: If $Q \ll P$, then by Girsanov

$$d\omega(t) = b(t,\omega)dt + d\beta(t).$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Here $\beta \sim P$.

► $W_2(Q, P) \leq [E_Q d^2(\omega, \beta)]^{1/2} \leq \sqrt{2TH(Q \mid P)}.$

EXAMPLES

- How to show local time at zero has Gaussian tail?
- $L_0(T)$ is not Lipschitz w.r.t uniform norm.
- Lévy representation:

$$L_0(T) = -\inf_{0 \le s \le t} \beta(s) \land 0.$$

Lipschitz function of the entire path. Thus

$$P(|L_0(T) - m_T| > r) \le 2e^{-r^2/2T}.$$

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ ―臣 – のへぐ

BM IN \mathbb{R}^n

- ► Multidimensional Wiener measure satisfies *T*₂.
- Uniform metric

$$\mathbf{d}^{2}(\omega,\omega') = rac{1}{n}\sum_{i=1}^{n}\sup_{0\leq s\leq T}\left|\omega(s)-\omega'(s)
ight|^{2}.$$

Skorokhod map

 \mathcal{S} : BM in $\mathbb{R}^n \mapsto \text{RBM}$ in polyhedra.

- Deterministic map. Rather abstract and complicated.
- But Lipschitz.

THEOREM (P. - SHKOLNIKOV '10)

The Lipschitz constant of S is $\leq 2n^{5/2}$.

• The slope $\alpha(t)$ is a linear map.

BM on $\mathbb{R}^n \to \mathsf{RBM}$ on wedge \to slope of regression.

Evaluate Lipschitz constant. Estimate concentration.

Idea of proof for Problem 2

A DIFFERENT METRIC

For
$$\omega, \omega' \in C^d[0,\infty)$$
:

$$\sigma_r = \inf \left\{ t \ge \mathbf{0} : \sigma_r(\omega, \omega') > r \right\}.$$

 $\blacktriangleright \ \text{Consider} \ \varphi: \mathbb{R}^+ \to \mathbb{R}^+$

$$\Phi_1 := \left\{ arphi \geq 0, \ arphi \ \downarrow, \ \int_0^\infty arphi^2(s) ds \leq 1
ight\}.$$

(P. '12) A metric on paths:

$$\rho(\omega,\omega'):=\left[\sup_{\varphi\in\Phi_1}\int_0^{\infty}\varphi(\sigma_r)\,dr\right]^{1/2}.$$

GENERALIZED TCI

THEOREM (P. '12)

P - multidimension Wiener measure.

$$\mathcal{W}_2(Q, P) \leq \sqrt[4]{2H(Q \mid P)}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

With respect to ρ .

▶ *P*-Wiener measure. Two event processes: $1 \le t \le T$.

 $A_T = \left\{ \beta(s) \le \sqrt{s}, \ 1 \le s \le T \right\} \quad B_T = \left\{ \beta(s) \ge 2\sqrt{s}, \ 1 \le s \le T \right\}.$

▶ *P*-Wiener measure. Two event processes: $1 \le t \le T$.

$$A_T = \left\{ \beta(s) \le \sqrt{s}, \ 1 \le s \le T \right\} \quad B_T = \left\{ \beta(s) \ge 2\sqrt{s}, \ 1 \le s \le T \right\}.$$

Let

$$Q_1 = P(\cdot \mid A_T), \quad Q_2 = P(\cdot \mid B_T).$$

▶ *P*-Wiener measure. Two event processes: $1 \le t \le T$.

 $A_{\mathcal{T}} = \left\{\beta(s) \leq \sqrt{s}, \ 1 \leq s \leq T\right\} \quad B_{\mathcal{T}} = \left\{\beta(s) \geq 2\sqrt{s}, \ 1 \leq s \leq T\right\}.$

Let

$$Q_1 = P(\cdot \mid A_T), \quad Q_2 = P(\cdot \mid B_T).$$

• Couple $(X, Y) \sim (Q_1, Q_2)$.

$$\sigma_{\sqrt{s}}(X, Y) \leq s, \quad 1 \leq s \leq T.$$

▶ *P*-Wiener measure. Two event processes: $1 \le t \le T$.

$$A_T = \left\{ \beta(s) \le \sqrt{s}, \ 1 \le s \le T \right\} \quad B_T = \left\{ \beta(s) \ge 2\sqrt{s}, \ 1 \le s \le T \right\}.$$

Let

$$Q_1 = P(\cdot \mid A_T), \quad Q_2 = P(\cdot \mid B_T).$$

► Couple (X, Y) ~ (Q₁, Q₂).

$$\sigma_{\sqrt{s}}(X, Y) \leq s, \quad 1 \leq s \leq T.$$

• $\varphi \downarrow$ and \geq 0:

$$\int_{1}^{\sqrt{T}} \varphi(\sigma_r) dr = \int_{1}^{T} \varphi(\sigma_{\sqrt{s}}) \frac{ds}{2\sqrt{s}} \ge \int_{1}^{T} \varphi(s) \frac{ds}{2\sqrt{s}}.$$

▲□▶▲圖▶▲圖▶▲圖▶ ▲圖▶ ■ のへで

▶ *P*-Wiener measure. Two event processes: $1 \le t \le T$.

 $A_{\mathcal{T}} = \left\{ \beta(s) \leq \sqrt{s}, \ 1 \leq s \leq T \right\} \quad B_{\mathcal{T}} = \left\{ \beta(s) \geq 2\sqrt{s}, \ 1 \leq s \leq T \right\}.$

Let

$$Q_1 = P(\cdot \mid A_T), \quad Q_2 = P(\cdot \mid B_T).$$

• Couple $(X, Y) \sim (Q_1, Q_2)$.

$$\sigma_{\sqrt{s}}(X, Y) \leq s, \quad 1 \leq s \leq T.$$

• $\varphi \downarrow$ and \geq 0:

$$\int_{1}^{\sqrt{T}} \varphi(\sigma_r) dr = \int_{1}^{T} \varphi(\sigma_{\sqrt{s}}) \frac{ds}{2\sqrt{s}} \geq \int_{1}^{T} \varphi(s) \frac{ds}{2\sqrt{s}}.$$

Take

$$\varphi(s) = \frac{2}{\sqrt{\log T}} \frac{1}{2\sqrt{s}} \mathbb{1}\{1 \le s \le T\}.$$

EXAMPLE CONTD.

$$\mathcal{W}_2^2(\mathcal{Q}_1,\mathcal{Q}_2) \geq \frac{1}{2}\sqrt{\log T}.$$

◆□▶ ◆□▶ ◆ □▶ ◆ □ ▶ ● □ ● ● ● ●

EXAMPLE CONTD.

► Thus $\mathcal{W}_2^2(Q_1, Q_2) \ge \frac{1}{2}\sqrt{\log T}.$ ► $\frac{1}{\sqrt{2}}\sqrt[4]{\log T} \le \mathcal{W}_2(Q_1, Q_2) \le \mathcal{W}_2(Q_1, P) + \mathcal{W}_2(Q_2, P)$

► Thus

$$\mathcal{W}_2^2(Q_1, Q_2) \ge \frac{1}{2}\sqrt{\log T}.$$
► $\frac{1}{\sqrt{2}}\sqrt[4]{\log T} \le \mathcal{W}_2(Q_1, Q_2) \le \mathcal{W}_2(Q_1, P) + \mathcal{W}_2(Q_2, P)$
 $\le \sqrt[4]{2H(Q_1 | P)} + \sqrt[4]{2H(Q_2 | P)}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

► Thus

$$\mathcal{W}_{2}^{2}(Q_{1}, Q_{2}) \geq \frac{1}{2}\sqrt{\log T}.$$

► $\frac{1}{\sqrt{2}}\sqrt[4]{\log T} \leq \mathcal{W}_{2}(Q_{1}, Q_{2}) \leq \mathcal{W}_{2}(Q_{1}, P) + \mathcal{W}_{2}(Q_{2}, P)$
 $\leq \sqrt[4]{2H(Q_{1} | P)} + \sqrt[4]{2H(Q_{2} | P)}$
 $\leq \sqrt[4]{2\log \frac{1}{P(A_{T})}} + \sqrt[4]{2\log \frac{1}{P(B_{T})}}.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Idea of proof for problem 3.

・ロト・母ト・ヨト・ヨト ヨー りへぐ

TRANSPORTATION-INFORMATION INEQUALITY

E - Dirichlet form. Fisher Information:

$$I(\nu \mid \mu) := \mathcal{E}(\sqrt{f}, \sqrt{f}), \text{ if } d\nu = fd\mu.$$

• μ satisfies $\mathcal{W}_1 I(c)$ inequality if

$$\mathcal{W}_1^2(\nu,\mu) \leq 4c^2 I(\nu \mid \mu), \quad \forall \nu.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

TRANSPORTATION-INFORMATION INEQUALITY

E - Dirichlet form. Fisher Information:

$$I(\nu \mid \mu) := \mathcal{E}(\sqrt{f}, \sqrt{f}), \text{ if } d\nu = fd\mu.$$

• μ satisfies $\mathcal{W}_1 I(c)$ inequality if

$$\mathcal{W}_1^2(\nu,\mu) \leq 4c^2 I(\nu \mid \mu), \quad \forall \nu.$$

Allows precise control of additive functionals.

POINCARÉ INEQUALITIES

THEOREM (GUILLIN ET AL.) Consider

$$\mathcal{W}_1(\nu,\mu) = \|\nu-\mu\|_{\mathrm{TV}}.$$

 $(X_t, t \ge 0)$ Markov - invariant distribution μ .

Suppose μ - Poincaré ineq. Then W_1 I holds.

POINCARÉ INEQUALITIES

THEOREM (GUILLIN ET AL.) Consider

$$\mathcal{W}_1(\nu,\mu) = \|\nu-\mu\|_{\mathrm{TV}}.$$

 $(X_t, t \ge 0)$ Markov - invariant distribution μ .

Suppose μ - Poincaré ineq. Then W_1 I holds.

Gaps of rank-based processes stationary. Poincaré ineq holds.

Thank you loannis. Happy birthday.