Some sufficient condition for the ergodicity of the Lévy transform

Vilmos Prokaj

Eötvös Loránd University, Hungary

Probability, Control and Finance
A Conference in Honor of loannis Karatzas
2012, New York

Lévy transformation of the path space

- β is a Brownian motion

$$
\mathbf{T} \beta=\int \operatorname{sign}\left(\beta_{s}\right) d \beta_{s}=|\beta|-L^{0}(\beta) .
$$

- \mathbf{T} is a transformation of the path space.
- T preserves the Wiener measure.
- Is \mathbf{T} ergodic?
- A deep result of Marc Malric claims that the Lévy transform is topologically recurrent, i.e., on an almost sure event
$\left\{\mathbf{T}^{n} \beta: n \geq 0\right\} \cap G \neq \emptyset, \quad$ for all nonempty open $G \subset C[0, \infty)$.
- We use only a weaker form, also due to Marc Malric, the density of zeros of iterated paths, i.e.:

$$
\bigcup_{n=0}^{\infty}\left\{t>0:\left(\mathbf{T}^{n} \beta\right)_{t}=0\right\} \text { is dense in }[0, \infty)
$$

Ergodicity and Strong mixing (reminder)

$$
T: \Omega \rightarrow \Omega, \quad \mathbf{P} \circ T^{-1}=\mathbf{P}
$$

- T is ergodic, if
- $\frac{1}{N} \sum_{n=0}^{N-1} \mathbf{P}\left(A \cap T^{-n} B\right) \rightarrow \mathbf{P}(A) \mathbf{P}(B), \quad$ for all A, B.
- or, $\frac{1}{N} \sum_{n=0}^{N-1} X \circ T^{n} \rightarrow \mathbf{E}(X), \quad$ for each r.v. $X \in L^{1}$.
- or, the invariant σ-field, is trivial.
- T is strongly mixing if $\mathbf{P}\left(A \cap T^{-n} B\right) \rightarrow \mathbf{P}(A) \mathbf{P}(B)$, for all A, B.

Ergodicity and weak convergence

In our case $\Omega=C[0, \infty)$ is a polish space (complete, separable, metric space).
Theorem
Ω polish, T is a measure preserving transform of $(\Omega, \mathcal{B}(\Omega), \mathbf{P})$. Then

- T is ergodic iff $\frac{1}{n} \sum_{k=0}^{n-1} \mathbf{P} \circ\left(T^{0}, T^{k}\right)^{-1} \xrightarrow{w} \mathbf{P} \otimes \mathbf{P}$ as $n \rightarrow \infty$.
- T is strongly mixing iff $\mathbf{P} \circ\left(T^{0}, T^{n}\right)^{-1} \xrightarrow{w} \mathbf{P} \otimes \mathbf{P}$ as $n \rightarrow \infty$.

Ergodicity and weak convergence

In our case $\Omega=C[0, \infty)$ is a polish space (complete, separable, metric space).
Theorem
Ω polish, T is a measure preserving transform of $(\Omega, \mathcal{B}(\Omega), \mathbf{P})$. Then

- T is ergodic iff $\frac{1}{n} \sum_{k=0}^{n-1} \mathbf{P} \circ\left(T^{0}, T^{k}\right)^{-1} \xrightarrow{w} \mathbf{P} \otimes \mathbf{P}$ as $n \rightarrow \infty$.
- T is strongly mixing iff $\mathbf{P} \circ\left(T^{0}, T^{n}\right)^{-1} \xrightarrow{w} \mathbf{P} \otimes \mathbf{P}$ as $n \rightarrow \infty$.

Note that both families of measures are tight:

$$
\left\{\mathbf{P} \circ\left(T^{0}, T^{n}\right)^{-1}: n \geq 0\right\} \quad \text { and } \quad\left\{\frac{1}{n} \sum_{k=0}^{n-1} \mathbf{P} \circ\left(T^{0}, T^{n}\right)^{-1}: n \geq 0\right\}
$$

If $C \subset \Omega$ compact, with $\mathbf{P}(\Omega \backslash C)<\varepsilon$ then
$\mathbf{P}\left(\left(T^{0}, T^{k}\right) \notin C \times C\right) \leq \mathbf{P}\left(T^{0} \notin C\right)+\mathbf{P}\left(T^{k} \notin C\right)<2 \varepsilon$.

Convergence of finite dim. marginals $(\xrightarrow{\text { f.d. }})$ is enough

Some notations:

- β is the canonical process on $\Omega=C[0, \infty)$,
- $h:[0, \infty) \times C[0, \infty)$ progressive, $|h|=1 d t \otimes d \mathbf{P}$ a.e.

$$
\left.T: \Omega \rightarrow \Omega, \quad T \beta=\int_{0} h(s, \beta) d \beta_{s}, \quad \text { (e.g. } h(s, \beta)=\operatorname{sign}\left(\beta_{s}\right)\right) .
$$

- $\beta^{(n)}=T^{n} \beta$ is the n-th iterated path.
- $h^{(0)}=1, h_{s}^{(n)}=\prod_{k=0}^{n-1} h\left(s, \beta^{(k)}\right)$ for $n>0$, so $\beta_{t}^{(n)}=\int_{0}^{t} h_{s}^{(n)} d \beta_{s}$.

Convergence of finite dim. marginals $(\xrightarrow{\text { f.d. }})$ is enough

Some notations:

- β is the canonical process on $\Omega=C[0, \infty)$,
- $h:[0, \infty) \times C[0, \infty)$ progressive, $|h|=1 d t \otimes d \mathbf{P}$ a.e.

$$
T: \Omega \rightarrow \Omega, \quad T \beta=\int_{0} h(s, \beta) d \beta_{s}, \quad\left(\text { e.g. } h(s, \beta)=\operatorname{sign}\left(\beta_{s}\right)\right) .
$$

- $\beta^{(n)}=T^{n} \beta$ is the n-th iterated path.
- $h^{(0)}=1, h_{s}^{(n)}=\prod_{k=0}^{n-1} h\left(s, \beta^{(k)}\right)$ for $n>0$, so $\beta_{t}^{(n)}=\int_{0}^{t} h_{s}^{(n)} d \beta_{s}$.

Then

- The distribution of $\left(\beta, \beta^{(n)}\right)$ is $\mathbf{P} \circ\left(T^{0}, T^{n}\right)^{-1}$
- Let k_{n} is uniform on $\{0,1, \ldots, n-1\}$ and independent of β. The law of $\left(\beta, \beta^{\left(\kappa_{n}\right)}\right)$ is $\frac{1}{n} \sum_{k=0}^{n-1} \mathbf{P} \circ\left(T^{0}, T^{k}\right)^{-1}$.
- T is strongly mixing, iff $\left(\beta, \beta^{(n)}\right) \xrightarrow{\text { f.d. }} B M-2$.
- Similarly, T is ergodic, iff $\left(\beta, \beta^{\left(k_{n}\right)}\right) \xrightarrow{\text { f.d. }}$ BM-2.
- Reason: Tightness $+\xrightarrow{\text { f.d. }}=$ convergence in law.

Characteristic function

- Fix $t_{1}, \ldots, t_{r} \geq 0$ and $\alpha=\left(a_{1}, \ldots, a_{r}, b_{1}, \ldots, b_{r}\right) \in \mathbb{R}^{2 r}$
- The characteristic function of $\left(\beta_{t_{1}}, \ldots, \beta_{t_{r}}, \beta_{t_{1}}^{(n)}, \ldots, \beta_{t_{r}}^{(n)}\right)$ at α is

$$
\varphi_{n}=\mathbf{E}\left(e^{i\left(\int f(s) d \beta_{s}+\int g(s) d \beta_{s}^{(n)}\right)}\right)=\mathbf{E}\left(e^{i \int\left(f(s)+g(s) h_{s}^{(n)}\right) d \beta_{s}}\right)
$$

where $f=\sum_{j=1}^{r} a_{j} \mathbb{1}_{\left[0, t_{j}\right]}, g=\sum_{j=1}^{r} b_{j} \mathbb{1}_{\left[0, t_{j}\right]}$.

- Finite dim. marginals has the right limit, if for all choices $r \geq 1$, $\alpha \in \mathbb{R}^{2 r}, t_{1}, \ldots, t_{r} \geq 0$

$$
\begin{aligned}
& \varphi_{n} \rightarrow \exp \left\{-\frac{1}{2} \int f^{2}+g^{2}\right\} \quad \text { for strong mixing, } \\
& \frac{1}{n} \sum_{k=0}^{n-1} \varphi_{k} \rightarrow \exp \left\{-\frac{1}{2} \int f^{2}+g^{2}\right\} \quad \text { for ergodicity. }
\end{aligned}
$$

Estimate for $\left|\varphi_{n}-\varphi\right|$, where $\varphi=e^{-\frac{1}{2} \int f^{2}+g^{2}}$

- $M_{t}=\int_{0}^{t}\left(f(s)+h_{s}^{(n)} g(s)\right) d \beta_{s}$.
- M is a closed martingale and so is $Z=\exp \left\{i M+\frac{1}{2}\langle M\rangle\right\}$.
- $Z_{0}=1 \Longrightarrow \mathbf{E}\left(Z_{\infty}\right)=1$.
- $\langle M\rangle_{\infty}=\int_{0}^{\infty} f^{2}(s)+g^{2}(s) d s+2 \int_{0}^{\infty} h_{s}^{(n)} f(s) g(s) d s$

$$
\varphi=\varphi \mathbf{E}\left(Z_{\infty}\right)=\mathbf{E} \exp \left\{i \int_{0}^{\infty}\left(f d \beta+g d \beta^{(n)}\right)+\int_{0}^{\infty} f g h^{(n)}\right\}
$$

- Recall that $f g=\sum_{j} a_{j} b_{j} \mathbb{1}_{\left[0, t_{j}\right]}$. Then with $X_{n}(t)=\int_{0}^{t} h_{s}^{(n)} d s$

$$
\left|\varphi_{n}-\varphi\right| \leq \mathbf{E}\left|1-e^{\int_{0}^{\infty} f g h^{(n)}}\right| \leq e^{\int|f g|} \mathbf{E}\left|\int_{0}^{\infty} f g h^{(n)}\right| \leq C \sum_{j=1}^{r} \mathbf{E}\left|X_{n}\left(t_{j}\right)\right|,
$$

where $C=C(f, g)=C\left(\alpha, t_{1}, \ldots, t_{r}\right)$ does not depend on n.

$X_{n}(t)=\int_{0}^{t} h_{s}^{(n)} d s \xrightarrow{p} 0$ for all $t \geq 0$ would be enough

Theorem

1. If $X_{n}(t) \xrightarrow{p} 0$ for all $t \geq 0$, then T is strongly mixing.
2. T is ergodic if and only if $\frac{1}{n} \sum_{k=0}^{n-1} X_{k}^{2}(t) \xrightarrow{p} 0$ for all $t \geq 0$.

Strong mixing:

- The only missing part is the convergence of finite dimensional marginals.
- If $X_{n}(t) \xrightarrow{p} 0$ then $\mathbf{E}\left|X_{n}(t)\right| \rightarrow 0$ since $\left|X_{n}(t)\right| \leq t$.
- Then $\left|\varphi_{n}-\varphi\right| \leq C \sum_{j} \mathbf{E}\left|X_{n}\left(t_{j}\right)\right| \rightarrow 0 \Longrightarrow\left(\beta, \beta^{(n)}\right) \xrightarrow{\text { f.d. }} \mathrm{BM}$-2.

Remember, that:

- $\left(\beta, \beta^{(n)}\right) \xrightarrow{\text { f.d. }} \mathrm{BM}-2+$ tightness gives: $\left(\beta, \beta^{(n)}\right) \xrightarrow{D} \mathrm{BM}-2$.
- $\left(\beta, \beta^{(n)}\right) \xrightarrow{D} \mathrm{BM}-2 \Leftrightarrow T$ strong mixing.

$X_{n}(t)=\int_{0}^{t} h_{s}^{(n)} d s \xrightarrow{p} 0$ for all $t \geq 0$ would be enough

Theorem

1. If $X_{n}(t) \xrightarrow{p} 0$ for all $t \geq 0$, then T is strongly mixing.
2. T is ergodic if and only if $\frac{1}{n} \sum_{k=0}^{n-1} X_{k}^{2}(t) \xrightarrow{p} 0$ for all $t \geq 0$.

Ergodicity. \Leftarrow.

- By Cauchy-Schwarz and $\left|X_{k}(t)\right| \leq t$

$$
\mathbf{E}\left(\frac{1}{n} \sum_{k=0}^{n-1}\left|X_{k}(t)\right|\right) \leq \mathbf{E}^{1 / 2}\left(\frac{1}{n} \sum_{k=0}^{n-1} X_{k}^{2}(t)\right) \rightarrow 0 .
$$

- Then $\left|\frac{1}{n} \sum_{k=0}^{n-1} \varphi_{k}-\varphi\right| \leq C \sum_{j} \mathbf{E} \frac{1}{n} \sum_{k=0}^{n-1}\left|X_{k}\left(t_{j}\right)\right| \rightarrow 0 \Longrightarrow$

$$
\left(\beta, \beta^{\left(k_{n}\right)}\right) \xrightarrow{\text { f.d. }} \mathrm{BM}-2 .
$$

Remeber that

- κ_{n} is uniform on $\{0, \ldots, n-1\}$ and independent of β
- $\left(\beta, \beta^{\left(k_{n}\right)}\right) \xrightarrow{\text { f.d. }} \mathrm{BM}-2+$ tightness gives: $\left(\beta, \beta^{\left(k_{n}\right)}\right) \xrightarrow{D} \mathrm{BM}-2$.
- $\left(\beta, \beta^{\left(K_{n}\right)}\right) \xrightarrow{D} \mathrm{BM}-2 \Leftrightarrow T$ ergodic.

$X_{n}(t)=\int_{0}^{t} h_{s}^{(n)} d s \xrightarrow{p} 0$ for all $t \geq 0$ would be enough

Theorem

1. If $X_{n}(t) \xrightarrow{p} 0$ for all $t \geq 0$, then T is strongly mixing.
2. T is ergodic if and only if $\frac{1}{n} \sum_{k=0}^{n-1} X_{k}^{2}(t) \xrightarrow{p} 0$ for all $t \geq 0$.

Ergodicity. \Rightarrow (outline of the proof)

- Fix $0<s<t$. Then the following limits exist a.s and in L^{2} :

$$
Z_{u}=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=0}^{n-1} h_{s}^{(k)} h_{u}^{(k)} \quad \text { for } s \leq u \leq t, \quad Z=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=0}^{n-1} h_{s}^{(k)}\left(\beta_{t}^{(k)}-\beta_{s}^{(k)}\right)
$$

moreover $|Z|$ and $\left|Z_{u}\right|$ are invariant for T, hence they are non-random.

- Then $h_{s}^{(k)}\left(\beta_{t}^{(k)}-\beta_{s}^{(k)}\right)=\int_{s}^{t} h_{s}^{(k)} h_{u}^{(k)} d \beta_{u}$ and

$$
Z=\int_{s}^{t} Z_{u} d \beta_{u}=\int_{s}^{t}\left|Z_{u}\right| d \tilde{\beta}_{u}, \quad \text { where } \quad \tilde{\beta}=\int_{s} \operatorname{sign}\left(Z_{u}\right) d \beta_{u}
$$

- $Z \sim N\left(0, \sigma^{2}\right)$ since $\left|Z_{u}\right|$ is non-random. But $|Z|$ is also non-random.
$\Longrightarrow Z=0 . \Longrightarrow Z_{u}=0 . \Longrightarrow \frac{1}{n} \sum_{k=0}^{n-1} X_{k}^{2}(t) \rightarrow 0$.

A variant of the mean ergodic theorem

- T is a measure preserving transformation of Ω,
- ε_{0} is r.v. taking values in $\{-1,+1\}, \varepsilon_{k}=\varepsilon_{0} \circ T^{k}$.
- For $\xi \in L^{2}(\Omega), U \xi=\xi \circ T \varepsilon_{0}$ is an isometry.
- von Neumann's mean errgodic theorem says, that

$$
\frac{1}{n} \sum_{k=0}^{n-1} U^{k} \xi \rightarrow P \xi, \in L^{2}
$$

where P is the projection onto

$$
\left\{X \in L^{2}: X \circ T \varepsilon_{0}=U X=X\right\}
$$

- $|P \xi|$ is invariant under T.
- what is $U^{k} \xi$?

$$
U \xi=\xi \circ T \varepsilon_{0}, \quad U^{2} \xi=\xi \circ T^{2} \varepsilon_{1} \varepsilon_{0}, \quad \ldots \quad U^{k} \xi=\xi \circ T^{k} \prod_{j=0}^{k-1} \varepsilon_{j},
$$

- Almost sure convergence also holds by the subadditive ergodic theorem.

Lévy transformation

- The Lévy transformation \mathbf{T} is scaling invariant, that is, if for $x>0$ $\Theta_{x}: C[0, \infty) \rightarrow C[0, \infty)$ denotes $\Theta_{x}(w)(t)=x w\left(t / x^{2}\right)$ then

$$
\Theta_{x} \mathbf{T}=\mathbf{T} \Theta_{x}
$$

- As before $\beta^{(n)}=\beta \circ \mathbf{T}^{n}, h_{t}^{(n)}=\prod_{k=0}^{n-1} \operatorname{sign}\left(\beta_{t}^{(k)}\right), X_{n}(t)=\int_{0}^{t} h_{s}^{(n)} d s$.

By scaling we get:
Theorem

1. If $X_{n}(1) \xrightarrow{p} 0$ as $n \rightarrow \infty$, then \mathbf{T} is strongly mixing.
2. \mathbf{T} is ergodic, if and only if $\frac{1}{n} \sum_{k=0}^{n-1} X_{k}^{2}(1) \xrightarrow{p} 0$ as $n \rightarrow \infty$.

Behaviour of $X_{n}(1)$

Figure: $s d^{2}[n]=\mathbf{E}\left(X_{n}^{2}(1)\right)$, sample size: 2000 , number of steps of SRW: 10^{6}. Pink crosses denotes $n \times \mathbf{E}^{1 / 2}\left(\tilde{X}_{n}^{2}\right)$, where $\tilde{X}_{n}=\int_{0}^{1} \prod_{k=0}^{n-1} \operatorname{sign}\left(\tilde{\beta}_{s}^{(k)}\right) d s$ with independent BM -s $\left(\tilde{\beta}^{(k)}\right)_{k \geq 0}$. We have $\mathbf{E}^{1 / 2}\left(\tilde{X}_{n}^{2}\right) \approx \frac{\pi}{n \sqrt{2}} \approx \frac{2.22}{n}$.
Conjecture
$\mathbf{E}\left(X_{n}^{2}(1)\right)=O\left(1 / n^{2}\right)$. This would give: $X_{n}(1)=\int_{0}^{1} h_{s}^{(n)} d s \rightarrow 0$ almost surely.

Simplification

- Goal: $X_{n}(1)=\int_{0}^{1} h_{s}^{(n)} d s \xrightarrow{p} 0$.
- Enough: $X_{n}(1) \rightarrow 0$ in L^{2}.

$$
\mathbf{E}\left(X_{n}^{2}(1)\right)=2 \int_{0<u<v<1} \mathbf{E}\left(h_{u}^{(n)} h_{v}^{(n)}\right) d u d v=2 \int_{0<u<v<1} \operatorname{cov}\left(h_{u}^{(n)}, h_{v}^{(n)}\right) d u d v .
$$

- Enough:

$$
\mathrm{E}\left(h_{s}^{(n)} h_{1}^{(n)}\right) \rightarrow 0, \quad \text { for } 0<s<1
$$

by boundedness and scaling.

- New goal: fixing $s \in(0,1)$,

$$
\mathbf{P}\left(h_{s}^{(n)} h_{1}^{(n)}=1\right) \approx \mathbf{P}\left(h_{s}^{(n)} h_{1}^{(n)}=-1\right), \quad \text { for } n \text { large } .
$$

Idea: coupling.

Coupling I.

- Assume that $S: C[0, \infty) \rightarrow C[0, \infty)$ preserves \mathbf{P}.
- Denote by $\tilde{\beta}^{(n)}$ the shadow path $\beta^{(n)} \circ S$.
- Assume also that there is an event A such that on A the sequences

$$
\operatorname{sign}\left(\beta_{s}^{(n)}\right) \operatorname{sign}\left(\beta_{1}^{(n)}\right) \quad \text { and } \quad \operatorname{sign}\left(\tilde{\beta}_{s}^{(n)}\right) \operatorname{sign}\left(\tilde{\beta}_{1}^{(n)}\right)
$$

differ at exactly one index denoted by v.
Then

$$
\limsup _{n \rightarrow \infty}\left|\mathbf{E}\left(h_{s}^{(n)} h_{1}^{(n)}\right)\right| \leq \mathbf{P}\left(A^{c}\right)
$$

Reason:

$$
\left|\mathbf{E} h_{s}^{(n)} h_{1}^{(n)}\right|=\left|\mathbf{E}\left(\frac{h_{s}^{(n)} h_{1}^{(n)}+\tilde{h}_{s}^{(n)} \tilde{h}_{1}^{(n)}}{2}\right)\right| \leq \mathbf{P}\left(A^{c}\right)+\mathbf{P}(n<v) .
$$

Coupling.

Proposition
If there is a stopping time τ, s.t.

- $s<\tau<1$,
- exists $v<\infty$, s.t. $\beta_{\tau}^{(v)}=0$,
$-\min _{0 \leq k<v}\left|\beta_{\tau}^{(k)}\right|>C \sqrt{1-\tau}$,

$$
\begin{aligned}
& \Longrightarrow \quad \limsup _{n}\left|\mathbf{E} h_{s}^{(n)} h_{1}^{(n)}\right| \leq \\
& \\
& \mathbf{P}\left(\max _{s \in[0,1]}\left|\beta_{s}\right|>C\right) .
\end{aligned}
$$

Coupling.

Proposition

If there is a stopping time τ, s.t.

- $s<\tau<1$,
- exists $v<\infty$, s.t. $\beta_{\tau}^{(v)}=0$,
- $\min _{0 \leq k<v}\left|\beta_{\tau}^{(k)}\right|>C \sqrt{1-\tau}$,

$$
\begin{aligned}
& \Longrightarrow \quad \limsup _{n}\left|\mathbf{E} h_{s}^{(n)} h_{1}^{(n)}\right| \leq \\
& \mathbf{P}\left(\max _{s \in[0,1]}\left|\beta_{s}\right|>C\right) .
\end{aligned}
$$

- S reflects β after τ :

$$
(S \beta)_{t}=\tilde{\beta}_{t}=\beta_{t \wedge \tau}-\left(\beta_{t}-\beta_{t \wedge \tau}\right) .
$$

- $A=\left\{\max _{t \in[\tau, 1]}\left|\beta_{t}^{(0)}-\beta_{\tau}^{(0)}\right| \leq C \sqrt{1-\tau}\right\}$.
- Then

$$
\mathbf{P}\left(A^{c}\right)=\mathbf{P}\left(\max _{s \in[0,1]}\left|\beta_{s}\right|>C\right)
$$

by strong Markov property and scaling.

Coupling.

Proposition

If there is a stopping time τ, s.t.

- $s<\tau<1$,
- exists $v<\infty$, s.t. $\beta_{\tau}^{(v)}=0$,
- $\min _{0 \leq k<v}\left|\beta_{\tau}^{(k)}\right|>C \sqrt{1-\tau}$,

$$
\begin{aligned}
\Longrightarrow \quad \limsup _{n} \mid \mathbf{E} & h_{s}^{(n)} h_{1}^{(n)} \mid \leq \\
& \mathbf{P}\left(\max _{s \in[0,1]}\left|\beta_{s}\right|>C\right) .
\end{aligned}
$$

- S reflects β after τ :

$$
(S \beta)_{t}=\tilde{\beta}_{t}=\beta_{t \wedge \tau}-\left(\beta_{t}-\beta_{t \wedge \tau}\right) .
$$

- $A=\left\{\max _{t \in[\tau, 1]}\left|\beta_{t}^{(0)}-\beta_{\tau}^{(0)}\right| \leq C \sqrt{1-\tau}\right\}$.
- We need that
$\operatorname{sign}\left(\beta_{s}^{(n)} \beta_{1}^{(n)}\right)$ differs from $\operatorname{sign}\left(\tilde{\beta}_{s}^{(n)} \tilde{\beta}_{1}^{(n)}\right)$ at exactly one place, when $n=v$.
- Recall that $\mathbf{T} \beta=|\beta|-L$.

Coupling.

Proposition

If there is a stopping time τ, s.t.

- $s<\tau<1$,
- exists $v<\infty$, s.t. $\beta_{\tau}^{(v)}=0$,
- $\min _{0 \leq k<v}\left|\beta_{\tau}^{(k)}\right|>C \sqrt{1-\tau}$,

$$
\begin{aligned}
& \Longrightarrow \quad \limsup _{n}\left|\mathbf{E} h_{s}^{(n)} h_{1}^{(n)}\right| \leq \\
& \mathbf{P}\left(\max _{s \in[0,1]}\left|\beta_{s}\right|>C\right) .
\end{aligned}
$$

- S reflects β after τ :

$$
\begin{gathered}
(S \beta)_{t}=\tilde{\beta}_{t}=\beta_{t \wedge \tau}-\left(\beta_{t}-\beta_{t \wedge \tau}\right) . \\
-A=\left\{\max _{t \in[\tau, 1]}\left|\beta_{t}^{(0)}-\beta_{\tau}^{(0)}\right| \leq C \sqrt{1-\tau}\right\} .
\end{gathered}
$$

- We need that
$\operatorname{sign}\left(\beta_{s}^{(n)} \beta_{1}^{(n)}\right)$ differs from $\operatorname{sign}\left(\tilde{\beta}_{s}^{(n)} \tilde{\beta}_{1}^{(n)}\right)$ at exactly one place, when $n=v$.
- Recall that $\mathbf{T} \beta=|\beta|-L$.

Coupling.

Proposition

If there is a stopping time τ, s.t.

- $s<\tau<1$,
- exists $v<\infty$, s.t. $\beta_{\tau}^{(v)}=0$,
- $\min _{0 \leq k<v}\left|\beta_{\tau}^{(k)}\right|>C \sqrt{1-\tau}$,

$$
\begin{aligned}
& \Longrightarrow \quad \limsup _{n}\left|\mathbf{E} h_{s}^{(n)} h_{1}^{(n)}\right| \leq \\
& \mathbf{P}\left(\max _{s \in[0,1]}\left|\beta_{s}\right|>C\right) .
\end{aligned}
$$

- S reflects β after τ :

$$
(S \beta)_{t}=\tilde{\beta}_{t}=\beta_{t \wedge \tau}-\left(\beta_{t}-\beta_{t \wedge \tau}\right)
$$

- $A=\left\{\max _{t \in[\tau, 1]}\left|\beta_{t}^{(0)}-\beta_{\tau}^{(0)}\right| \leq C \sqrt{1-\tau}\right\}$.
- We need that
$\operatorname{sign}\left(\beta_{s}^{(n)} \beta_{1}^{(n)}\right) \quad$ differs from $\quad \operatorname{sign}\left(\tilde{\beta}_{s}^{(n)} \tilde{\beta}_{1}^{(n)}\right)$ at exactly one place, when $n=v$.
- Recall that $\mathbf{T} \beta=|\beta|-L$.

Coupling.

Proposition

If there is a stopping time τ, s.t.

- $s<\tau<1$,
- exists $v<\infty$, s.t. $\beta_{\tau}^{(v)}=0$,
- $\min _{0 \leq k<v}\left|\beta_{\tau}^{(k)}\right|>C \sqrt{1-\tau}$,

$$
\begin{aligned}
& \Longrightarrow \quad \limsup _{n}\left|\mathbf{E} h_{s}^{(n)} h_{1}^{(n)}\right| \leq \\
& \mathbf{P}\left(\max _{s \in[0,1]}\left|\beta_{s}\right|>C\right) .
\end{aligned}
$$

- S reflects β after τ :

$$
(S \beta)_{t}=\tilde{\beta}_{t}=\beta_{t \wedge \tau}-\left(\beta_{t}-\beta_{t \wedge \tau}\right)
$$

- $A=\left\{\max _{t \in[\tau, 1]}\left|\beta_{t}^{(0)}-\beta_{\tau}^{(0)}\right| \leq C \sqrt{1-\tau}\right\}$.
- We need that
$\operatorname{sign}\left(\beta_{s}^{(n)} \beta_{1}^{(n)}\right) \quad$ differs from $\quad \operatorname{sign}\left(\tilde{\beta}_{s}^{(n)} \tilde{\beta}_{1}^{(n)}\right)$ at exactly one place, when $n=v$.
- Recall that $\mathbf{T} \beta=|\beta|-L$.

Coupling.

Proposition

If there is a stopping time τ, s.t.

- $s<\tau<1$,
- exists $v<\infty$, s.t. $\beta_{\tau}^{(v)}=0$,
- $\min _{0 \leq k<v}\left|\beta_{\tau}^{(k)}\right|>C \sqrt{1-\tau}$,

$$
\begin{aligned}
& \Longrightarrow \quad \limsup _{n}\left|\mathbf{E} h_{s}^{(n)} h_{1}^{(n)}\right| \leq \\
& \mathbf{P}\left(\max _{s \in[0,1]}\left|\beta_{s}\right|>C\right) .
\end{aligned}
$$

- S reflects β after τ :

$$
(S \beta)_{t}=\tilde{\beta}_{t}=\beta_{t \wedge \tau}-\left(\beta_{t}-\beta_{t \wedge \tau}\right) .
$$

- $A=\left\{\max _{t \in[\tau, 1]}\left|\beta_{t}^{(0)}-\beta_{\tau}^{(0)}\right| \leq C \sqrt{1-\tau}\right\}$.
- We need that
$\operatorname{sign}\left(\beta_{s}^{(n)} \beta_{1}^{(n)}\right)$ differs from $\operatorname{sign}\left(\tilde{\beta}_{s}^{(n)} \tilde{\beta}_{1}^{(n)}\right)$ at exactly one place, when $n=v$.
- Recall that $\mathbf{T} \beta=|\beta|-L$.

Simplification

Proposition
If there is a random time τ, s.t,

1. $s<\tau<1$,
2. exists $v<\infty$, s.t. $\beta_{\tau}^{(v)}=0$,
3. $\min _{0 \leq k<v}\left|\beta_{\tau}^{(k)}\right|>C \sqrt{1-\tau}$,
then there is also a stopping time
\Longrightarrow with similar properties (replacing C by $C / 2$ in 3.).

Simplification

Proposition

If there is a random time τ, s.t,

1. $s<\tau<1$,
2. exists $v<\infty$, s.t. $\beta_{\tau}^{(v)}=0$,
3. $\min _{0 \leq k<v}\left|\beta_{\tau}^{(k)}\right|>C \sqrt{1-\tau}$,
\Longrightarrow with similar properties (replacing C by $C / 2$ in 3.).
then there is also a stopping time

$$
\tau_{n}=\inf \left\{t \geq s: \beta_{t}^{(n)}=0, \min _{0 \leq k<n}\left|\beta_{t}^{(k)}\right| \geq C \sqrt{(1-t) \vee 0}\right\}, \quad \tilde{\tau}=\inf _{n} \tau_{n} .
$$

- $\tau_{n}, \tilde{\tau}$ are stopping times.
- By the condition $s \leq \tilde{\tau}<1$.
- If for some $\omega \in \Omega, \tilde{\tau}(\omega)<\tau_{n}(\omega)$ for all n then by continuity

$$
\inf _{n \geq 0}\left|\beta_{\tilde{\tau}}^{(n)}\right| \geq C \sqrt{1-\tilde{\tau}}>0 \quad \text { at } \omega
$$

- This can only happen with probability zero due to Malric's density theorem!!

Good time points

Definition

For $s \in(0,1), C>0$

$$
\begin{aligned}
& A(C, s)=\left\{t \geq 0: \exists \gamma, n, s \cdot t<\gamma<t, \beta_{\gamma}^{(n)}=0\right. \\
& \left.\qquad \min _{0 \leq k<n}\left|\beta_{\gamma}^{(n)}\right|>C \sqrt{t-\gamma}\right\}
\end{aligned}
$$

is the set of good time points.
That is, t is good, if some iterated path has a zero close to t and previous iterates are sufficiently large.

Good time points

Definition

For $s \in(0,1), C>0$

$$
\begin{aligned}
& A(C, s)=\left\{t \geq 0: \exists \gamma, n, s \cdot t<\gamma<t, \beta_{\gamma}^{(n)}=0\right. \\
& \left.\qquad \min _{0 \leq k<n}\left|\beta_{\gamma}^{(n)}\right|>C \sqrt{t-\gamma}\right\}
\end{aligned}
$$

is the set of good time points.
That is, t is good, if some iterated path has a zero close to t and previous iterates are sufficiently large.
Goal:

$$
\mathbf{P}(1 \in A(C, s))=1, \quad \text { for all } C>0, s \in(0,1) .
$$

Set of good points II.

$$
A(C, s)=\left\{t \geq 0: \exists \gamma, n, s \cdot t<\gamma<t, \beta_{\gamma}^{(n)}=0\right.
$$

$$
\left.\min _{0 \leq k<n}\left|\beta_{\gamma}^{(n)}\right|>C \sqrt{t-\gamma}\right\}
$$

- $\mathbf{P}(t \in A(C, s))$ does not depend on t.
- $\mathbf{P}(1 \in A(C, s))=1 \Leftrightarrow A(C, s)$ has full Lebesgue measure almost surely Proof: Let Z exponential independent of $\beta^{(0)}$. Then

$$
1=\mathbf{P}(Z \in A(C, s))=\int_{0}^{\infty} \mathbf{P}(t \in A(C, s)) e^{-t} d t
$$

New goal:
The random set of good time points $A(C, s)$ is of full Lebesgue measure almost surely.

Good time points, a picture $s=.9$ and $C=2$

If γ is a zero of $\beta^{(n)}$ and $\min _{0 \leq k<n}\left|\beta_{\gamma}^{(k)}\right|=\xi>0$ then

$$
I=(\gamma, \gamma+L) \subset A(C, s), \quad \text { where } \quad L=\frac{\xi^{2}}{C^{2}} \wedge \frac{(1-s) \gamma}{s}
$$

$A(C, s)$ is a dense open set! May have small Lebesgue measure.

Porous sets

- H is porous at $x \Longrightarrow$ the Lebesgue density of H at x cannot be 1 .

Porous sets

Definition

The set $H \subset \mathbb{R}$ is porous at x if

- H is porous at $x \Longrightarrow$ the Lebesgue density of H at x cannot be 1 .
- H is Borel and porous at Lebesgue almost every point of $\mathbb{R} \Longrightarrow H$ is of Lebesgue measure zero.

Porous sets

Definition

The set $H \subset \mathbb{R}$ is porous at x if

$$
\underset{r \rightarrow 0}{\lim s u p} \frac{\text { length of the largest subinterval of }(x-r, x+r) \backslash H}{2 r}>0 .
$$

- H is porous at $x \Longrightarrow$ the Lebesgue density of H at x cannot be 1 .
- H is Borel and porous at Lebesgue almost every point of $\mathbb{R} \Longrightarrow H$ is of Lebesgue measure zero.
- For $H=[0, \infty) \backslash A(C, s)$ the set of bad time points
$\mathbf{P}(H$ is porous at 1$)=1 \quad \Longrightarrow \quad \forall t>0, \mathbf{P}(H$ is porous at $t)=1$
$\Longrightarrow \mathbf{P}(H$ is porous at a.e. $t>0)=1 \quad \Longrightarrow \quad \mathbf{P}(\lambda(H)=0)=1$

Porous sets

Definition

The set $H \subset \mathbb{R}$ is porous at x if

$$
\underset{r \rightarrow 0}{\lim s u p} \frac{\text { length of the largest subinterval of }(x-r, x+r) \backslash H}{2 r}>0 .
$$

- H is porous at $x \Longrightarrow$ the Lebesgue density of H at x cannot be 1 .
- H is Borel and porous at Lebesgue almost every point of $\mathbb{R} \Longrightarrow H$ is of Lebesgue measure zero.
- For $H=[0, \infty) \backslash A(C, s)$ the set of bad time points
$\mathbf{P}(H$ is porous at 1$)=1 \quad \Longrightarrow \quad \forall t>0, \mathbf{P}(H$ is porous at $t)=1$
$\Longrightarrow \mathbf{P}(H$ is porous at a.e. $t>0)=1 \quad \Longrightarrow \quad \mathbf{P}(\lambda(H)=0)=1$
New goal:
The set of good time points contains sufficiently large intervals near 1.
$\limsup _{n \rightarrow \infty} \frac{\min _{0 \leq k<n}\left|\beta_{r_{n}^{*}}^{(k)}\right|}{\sqrt{1-\gamma_{n}^{*}}}>0$ a.s. is enough for strong mixing
- Here $\gamma_{n}=\sup \left\{t \leq 1: \beta_{t}^{(n)}=0\right\}, \gamma_{n}^{*}=\max _{0 \leq k \leq n} \gamma_{k}$.
$\limsup _{n \rightarrow \infty} \frac{\min _{0 \leq k<n}\left|\beta_{r_{n}^{*}}^{(k)}\right|}{\sqrt{1-\nu_{n}^{*}}}>0$ a.s. is enough for strong mixing
- Here $\gamma_{n}=\sup \left\{t \leq 1: \beta_{t}^{(n)}=0\right\}, \gamma_{n}^{*}=\max _{0 \leq k \leq n} \gamma_{k}$.
- By Malric's density theorem $\gamma_{n}^{*} \rightarrow 1$.
$\limsup _{n \rightarrow \infty} \frac{\min _{0 \leq k<n}\left|\beta_{\gamma_{n}^{*}}^{(k)}\right|}{\sqrt{1-\gamma_{n}^{*}}}>0$ a.s. is enough for strong mixing
- Here $\gamma_{n}=\sup \left\{t \leq 1: \beta_{t}^{(n)}=0\right\}, \gamma_{n}^{*}=\max _{0 \leq k \leq n} \gamma_{k}$.
- By Malric's density theorem $\gamma_{n}^{*} \rightarrow 1$.

$$
\begin{aligned}
& \left|\beta_{\gamma_{n}}^{(1)}\right| \text {. } \\
& \left|\beta_{\gamma_{n}}^{(0)}\right| \text {. } \quad I \subset A(C, s)=\left\{t>0: \exists n, \exists \gamma \in(s t, t), \beta_{\nu}^{(n)}=0, \min _{k<n}\left|\beta_{\gamma}^{()^{(1)}}\right|>C \sqrt{t-\gamma}\right\} \\
& |I|=\frac{\xi^{2} \wedge C^{2}}{C^{2}}\left(1-\gamma_{n}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { s } \quad \gamma_{n}^{*}=\gamma_{n} \\
& 1
\end{aligned}
$$

- $I \subset A(C, s)$, the length of I is proportional to $\left(1-\gamma_{n}\right)=\delta^{\prime}$.
- $A(C, s)$ is of full Lebesgue measure for all C, s, etc..
$\liminf _{n \rightarrow \infty} \frac{Z_{n+1}}{Z_{n}}<1$ a.s. also guarantees strong mixing
- Here $Z_{n}=\min _{0 \leq k<n}\left|\beta_{1}^{(k)}\right|$.
$\liminf _{n \rightarrow \infty} \frac{Z_{n+1}}{Z_{n}}<1$ a.s. also guarantees strong mixing
- Here $Z_{n}=\min _{0 \leq k<n}\left|\beta_{1}^{(k)}\right|$.
- This condition is obtained similarly, by considering the right neighborhood of 1.

Remark on $X=\liminf \frac{Z_{n+1}}{Z_{n}}$ and $Y=\lim \sup \frac{\min _{0 \leq k<n}\left|\beta_{p_{n}^{*}}^{(k)}\right|}{\sqrt{1-\gamma_{n}^{*}}}$
Here $Z_{n}=\min _{0 \leq k<n}\left|\beta_{1}^{(k)}\right|, v_{n}^{*}=\max _{0 \leq k \leq n} \gamma_{k}, \gamma_{k}=\sup \left\{t \leq 1: \beta_{t}^{(k)}=0\right\}$.
Working a bit harder, one can obtain that both X and Y are invariant, and

- Either $Y=0$ a.s.,
- or $0<\mathbf{P}(Y=0)<1$ and \mathbf{T} is not ergodic,
- or $Y>0$ a.s. and then $Y=\infty$ and \mathbf{T} is strongly mixing.

Also

- Either $X=1$,
- or $0<\mathbf{P}(X=1)<1$ and \mathbf{T} is not ergodic,
- or $X<1$ a.s. and then $X=0$ and $Y=\infty$ and \mathbf{T} is strongly mixing.

Remark on $X=\liminf \frac{Z_{n+1}}{Z_{n}}$ and $Y=\lim \sup \frac{\min _{0 \leq k<n}\left|\beta_{p_{n}^{*}}^{(k)}\right|}{\sqrt{1-Y_{n}^{*}}}$
Here $Z_{n}=\min _{0 \leq k<n}\left|\beta_{1}^{(k)}\right|, v_{n}^{*}=\max _{0 \leq k \leq n} \gamma_{k}, \gamma_{k}=\sup \left\{t \leq 1: \beta_{t}^{(k)}=0\right\}$.
Working a bit harder, one can obtain that both X and Y are invariant, and

- Either $Y=0$ a.s.,
- or $0<\mathbf{P}(Y=0)<1$ and \mathbf{T} is not ergodic,
- or $Y>0$ a.s. and then $Y=\infty$ and \mathbf{T} is strongly mixing.

Also

- Either $X=1$,
- or $0<\mathbf{P}(X=1)<1$ and \mathbf{T} is not ergodic,
- or $X<1$ a.s. and then $X=0$ and $Y=\infty$ and \mathbf{T} is strongly mixing.

Remark: There is a hope that $\mathbf{P}(X=1)=1$ is impossible. Then

- $\mathbf{P}(X=1)>0 \Longrightarrow X$ is not constant, hence X is a nontrivial invariant variable.
- Both X, and Y characterize ergodicity: $X<1 \Leftrightarrow Y>0 \Leftrightarrow \mathbf{T}$ is strongly mixing.
$\liminf \operatorname{in\searrow }_{x \searrow 0} \frac{\left|\beta_{1}^{(\nu(x))}\right|}{x}<1 \Leftrightarrow X=\liminf _{n \rightarrow \infty} \frac{Z_{n+1}}{Z_{n}}$
- Here $v(x)=\inf \left\{n \geq 0:\left|\beta_{1}^{(n)}\right|<x\right\}$ and $Z_{n}=\min _{k \leq 0<n}\left|\beta_{1}^{(k)}\right|$.

$$
X=\liminf _{n \rightarrow \infty} \frac{Z_{n+1}}{Z_{n}}=\liminf _{x \searrow 0} \frac{\left|\beta_{1}^{(v(x))}\right|}{x} .
$$

$\liminf _{x \searrow 0} \frac{\left\lvert\, \frac{\left|1_{1}^{(1)() \mid}\right|}{x}<1 \Leftrightarrow X=\liminf _{n \rightarrow \infty} \frac{Z_{n+1}}{Z_{n}}\right.}{}$

- Here $v(x)=\inf \left\{n \geq 0:\left|\beta_{1}^{(n)}\right|<x\right\}$ and $Z_{n}=\min _{k \leq 0<n}\left|\beta_{1}^{(k)}\right|$.

$$
X=\liminf _{n \rightarrow \infty} \frac{Z_{n+1}}{Z_{n}}=\liminf _{x \searrow 0} \frac{\left|\beta_{1}^{(v(x))}\right|}{x} .
$$

- Claim. $\{x v(x): x \in(0,1)\}$ is tight $\Longrightarrow X=\liminf _{x \backslash 0} \frac{\left|\beta_{1}^{(v(x))}\right|}{x}<1$ a.s. $\Longrightarrow \mathbf{T}$ is strongly mixing.
- Proof: $\mathbb{1}_{(X>1-\delta)} \leq \lim \inf \mathbb{1}_{\left(\left|\beta_{1}^{(\nu x)}\right| \mid x>1-\delta\right)}$.
$\liminf _{x \searrow 0} \frac{| |_{1}^{(1)(x) \mid}}{x}<1 \Leftrightarrow X=\liminf _{n \rightarrow \infty} \frac{Z_{n+1}}{Z_{n}}$
- Here $v(x)=\inf \left\{n \geq 0:\left|\beta_{1}^{(n)}\right|<x\right\}$ and $Z_{n}=\min _{k \leq 0<n}\left|\beta_{1}^{(k)}\right|$.

$$
X=\liminf _{n \rightarrow \infty} \frac{Z_{n+1}}{Z_{n}}=\liminf _{x \searrow 0} \frac{\left|\beta_{1}^{(v(x))}\right|}{x}
$$

- Claim. $\{x v(x): x \in(0,1)\}$ is tight $\Longrightarrow X=\liminf _{x \searrow 0} \frac{\left|\beta_{1}^{(v(x))}\right|}{x}<1$ a.s. $\Longrightarrow \mathbf{T}$ is strongly mixing.
- Proof: $\mathbb{1}_{(X>1-\delta)} \leq \lim \inf \mathbb{1}_{\left(\left|\beta_{1}^{(\nu(x)}\right| / x>1-\delta\right)^{\prime}}$. By Fatou-lemma

$$
\mathbf{P}(X>1-\delta) \leq \liminf _{x \rightarrow 0^{+}} \mathbf{P}\left(\left|\beta_{1}^{(v(x))}\right|>(1-\delta) x\right)
$$

$\liminf _{x \searrow 0} \frac{| |_{1}^{(1)(x) \mid}}{x}<1 \Leftrightarrow X=\liminf _{n \rightarrow \infty} \frac{Z_{n+1}}{Z_{n}}$

- Here $v(x)=\inf \left\{n \geq 0:\left|\beta_{1}^{(n)}\right|<x\right\}$ and $Z_{n}=\min _{k \leq 0<n}\left|\beta_{1}^{(k)}\right|$.

$$
X=\liminf _{n \rightarrow \infty} \frac{Z_{n+1}}{Z_{n}}=\liminf _{x \searrow 0} \frac{\left|\beta_{1}^{(v(x))}\right|}{x}
$$

- Claim. $\{x v(x): x \in(0,1)\}$ is tight $\Longrightarrow X=\liminf _{x \searrow 0} \frac{\left|\beta_{1}^{(v(x))}\right|}{x}<1$ a.s. $\Longrightarrow \mathbf{T}$ is strongly mixing.
- Proof: $\mathbb{1}_{(X>1-\delta)} \leq \lim \inf \mathbb{1}_{\left(\left|\beta_{1}^{(\nu(x))}\right| \mid x>1-\delta\right)}$. By Fatou-lemma

$$
\begin{aligned}
\mathbf{P}(X>1-\delta) & \leq \liminf _{x \rightarrow 0^{+}} \mathbf{P}\left(\left|\beta_{1}^{(v(x))}\right|>(1-\delta) x\right) \\
& \leq \liminf _{x \rightarrow 0^{+}} \mathbf{P}(x v(x)>K)+(1+K / x) \mathbf{P}\left(1-\delta<\left|\beta_{1}\right| / x<1\right)
\end{aligned}
$$

$\liminf _{x \searrow 0} \frac{| |_{1}^{(1)(x) \mid}}{x}<1 \Leftrightarrow X=\liminf _{n \rightarrow \infty} \frac{Z_{n+1}}{Z_{n}}$

- Here $v(x)=\inf \left\{n \geq 0:\left|\beta_{1}^{(n)}\right|<x\right\}$ and $Z_{n}=\min _{k \leq 0<n}\left|\beta_{1}^{(k)}\right|$.

$$
X=\liminf _{n \rightarrow \infty} \frac{Z_{n+1}}{Z_{n}}=\liminf _{x \searrow 0} \frac{\left|\beta_{1}^{(v(x))}\right|}{x} .
$$

- Claim. $\{x v(x): x \in(0,1)\}$ is tight $\Longrightarrow X=\liminf _{x \backslash \downarrow} \frac{\left|\beta_{1}^{(v(x))}\right|}{x}<1$ a.s. $\Longrightarrow \mathbf{T}$ is strongly mixing.
- Proof: $\mathbb{1}_{(X>1-\delta)} \leq \lim \inf \mathbb{1}_{\left(\left|\beta_{1}^{(\nu(x))}\right| \mid x>1-\delta\right)}$. By Fatou-lemma

$$
\begin{aligned}
\mathbf{P}(X>1-\delta) & \leq \liminf _{x \rightarrow 0^{+}} \mathbf{P}\left(\left|\beta_{1}^{(v(x))}\right|>(1-\delta) x\right) \\
& \leq \liminf _{x \rightarrow 0^{+}} \mathbf{P}(x v(x)>K)+(1+K / x) \mathbf{P}\left(1-\delta<\left|\beta_{1}\right| / x<1\right) \\
& \leq \sup _{x \in(0,1)} \mathbf{P}(x v(x)>K)+(1+K) \delta .
\end{aligned}
$$

$$
\mathbf{P}(X=1) \leq \inf _{K} \inf _{\delta} \mathbf{P}(x v(x)>K)+(1+K) \delta .
$$

Is $\{x v(x): x>0\}$ tight?
Recall that
$\sup _{x \in(0,1)} \mathbf{E}(x v(x))<\infty \Longrightarrow\{x v(x): x \in(0,1)\}$ is thight (by Markov inequality) $\Longrightarrow \mathbf{T}$ is strongly mixing.

Figure: $\mathbf{E}\left(v^{*}(x)\right.$) estimated from long runs of a SRW (number of iteration: 10^{5}, number of steps of SRW: 10^{9}).
On the x-axis the probability $p(x)=\mathbf{P}\left(\left|\beta_{1}^{(0)}\right|<x\right)$ is given.

Density of $\frac{1}{x}\left|\beta_{1}^{(v(x))}\right|$

- Consider the natural extension of $(\Omega, \mathcal{B}, \mathbf{P}, T)$. Then T is an invertible measure preserving transformation on the extension.
That is
- $\Omega=\mathbb{C}[0, \infty)^{\mathbb{Z}}$,
- for $\omega=\left(\omega_{n}\right)_{n \in \mathbb{Z}}(T \omega)_{n}=\omega_{n+1}$ and $\beta^{(n)}(\omega)=\omega_{n}$,
- \mathbf{P} is such that $\beta^{(k)}, \beta^{(k+1)}, \ldots$ has the same joint law as $\left(\beta, \mathbf{T}^{1} \beta, \ldots\right)$ for all $k \in \mathbb{Z}$.

Density of $\frac{1}{x}\left|\beta_{1}^{(v(x))}\right|$

- Consider the natural extension of $(\Omega, \mathcal{B}, \mathbf{P}, T)$. Then T is an invertible measure preserving transformation on the extension.
- Put $v^{*}(x)=\inf \left\{n \geq 1:\left|\beta_{1}^{(-n)}\right|<x\right\}$, the return time for the inverse Lévy transform.

Density of $\frac{1}{x}\left|\beta_{1}^{(v(x))}\right|$

- Consider the natural extension of $(\Omega, \mathcal{B}, \mathbf{P}, T)$. Then T is an invertible measure preserving transformation on the extension.
- Put $v^{*}(x)=\inf \left\{n \geq 1:\left|\beta_{1}^{(-n)}\right|<x\right\}$, the return time for the inverse Lévy transform.
- Then by the tower decomposition of Ω, for $A \subset C[0, \infty)$ and $\tilde{A}=\left\{\beta^{(0)} \in A\right\}$.

$$
\mathbf{P}\left(\beta^{(v(x))} \in A\right)=\mathbf{E}\left(v^{*}(x) \mathbb{1}_{\left\{\left|\beta_{1}^{(0)}\right|<x\right\}} \mathbb{1}_{\left\{\beta^{(0)} \in A\right\}}\right)
$$

Density of $\frac{1}{x}\left|\beta_{1}^{(\nu(x))}\right|$

- Consider the natural extension of $(\Omega, \mathcal{B}, \mathbf{P}, T)$. Then T is an invertible measure preserving transformation on the extension.
- Put $v^{*}(x)=\inf \left\{n \geq 1:\left|\beta_{1}^{(-n)}\right|<x\right\}$, the return time for the inverse Lévy transform.
- Then by the tower decomposition of Ω, for $A \subset C[0, \infty)$ and $\tilde{A}=\left\{\beta^{(0)} \in A\right\}$.

$$
\mathbf{P}\left(\beta^{(v(x))} \in A\right)=\mathbf{E}\left(v^{*}(x) \mathbb{1}_{\left\{\left|\beta_{1}^{(0)}\right|<x\right\}} \mathbb{1}_{\left\{\beta^{(0)} \in A\right\}}\right)
$$

Density of $\frac{1}{x}\left|\beta_{1}^{(\nu(x))}\right|$

- Consider the natural extension of $(\Omega, \mathcal{B}, \mathbf{P}, T)$. Then T is an invertible measure preserving transformation on the extension.
- Put $v^{*}(x)=\inf \left\{n \geq 1:\left|\beta_{1}^{(-n)}\right|<x\right\}$, the return time for the inverse Lévy transform.
- Then by the tower decomposition of Ω, for $A \subset C[0, \infty)$ and $\tilde{A}=\left\{\beta^{(0)} \in A\right\}$.

$$
\mathbf{P}\left(\beta^{(\nu(x))} \in A\right)=\mathbf{E}\left(v^{*}(x) \mathbb{1}_{\left\{\left|\beta_{1}^{(0)}\right|<x\right\}} \mathbb{1}_{\left\{\beta^{(0)} \in A\right\}}\right)
$$

- The density f_{x} of $\frac{1}{x}\left|\beta_{1}^{(\nu(x))}\right|$ is obtained by conditioning

$$
f_{x}(y)=2 \varphi(y x) \mathbf{E}\left(x v^{*}(x)| | \beta_{1}^{(0)} \mid=y x\right), \quad \text { for } y \in(0,1)
$$

The density $\mathbf{E}\left(x v^{*}(x)| | \beta_{1}^{(0)} \mid=y x\right)$?

Joint behaviour of $\left|\beta_{1}^{(0)}\right|$ and $v^{*}(x)$ given $\left|\beta_{1}^{(0)}\right|<x$. Both are rescaled to uniform variables.
$\frac{1}{x}\left|\beta_{1}^{(0)}\right|$ seems to be conditionally independent of $x v^{*}(x)$, (From one long random walk: number of steps 10^{13}, number of iterated paths 10^{6}.)
$\lim _{x \rightarrow 0^{+}} \mathbf{E}\left(x v^{*}(x)| | \beta_{1}^{(0)} \mid=y x\right)=?$

- Conjecture: $\frac{1}{x}\left|\beta_{1}^{(\nu(x))}\right|$ converges in distribution to a uniform variable. Actually the density seems to go to 1 as $x \rightarrow 0^{+}$.
- Playing with two types of expected return times one can show that

$$
\liminf _{x \rightarrow 0^{+}} \mathbf{P}\left(\left|\beta_{1}^{(\nu(x))}\right|<x / 2\right)>0 .
$$

- This is enough

$$
\liminf _{x \rightarrow 0^{+}} \frac{\left|\beta_{1}^{(\nu(x))}\right|}{x}<1 \text { with positive probability. }
$$

- Recall that then both

$$
X=\liminf _{x \rightarrow 0^{+}} \frac{\min _{0 \leq k \leq n}\left|\beta_{1}^{(k)}\right|}{\min _{0 \leq k<n}\left|\beta_{1}^{(k)}\right|}, \quad Y=\limsup _{x \rightarrow 0^{+}} \frac{\min _{0 \leq k<n}\left|\beta_{\gamma_{n}^{*}}^{(k)}\right|}{\sqrt{1-\gamma_{n}^{*}}}
$$

characterize ergodicity: $X<1 \Leftrightarrow Y>0 \Leftrightarrow \mathbf{T}$ is strongly mixing $\Leftrightarrow \mathbf{T}$ is ergodic.

Conclusion

- Marc Malric has proved that the orbit of a typical sample path meets every open set.
- To prove strong mixing only certain open sets has to be considered.
- For these open sets
- Tightness of the family rescaled hitting times would be enough.
- or a quantitative result is needed: the expected hitting times do not growth faster than the inverse of the size of these open sets.

Thank you for your attention!
Happy birthday!

