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1. Risk measures under transaction costs

d assets (may include different currencies), discrete time Θ,
(Ω, (Ft)t∈Θ, P )

portfolio vectors in physical units (numéraire-free):
(# of units in d assets)

proportional transaction costs at time t: closed convex cone
Rd+ ⊆ Kt(ω) ⊆ Rd (solvency cone), positions transferrable
into nonnegative positions

claim X ∈ Lpd(FT ): payoff (in physical units) at time T

a portfolio vector u ∈Mt (Mt ⊆ Lpd(Ft) linear subspace of
eligible assets, e.g. Euro & Dollar) compensates the risk of
X at time t if

X + u ∈ At
for some set At ⊆ Lpd(FT ) of acceptable positions.
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1. Risk measures under transaction costs

Mt ⊆ Lpd(Ft) (Mt)+ = Mt ∩ Lpd(Ft)+

Conditional Set-Valued Risk Measure

A set-valued function
Rt : Lpd(FT )→ P((Mt)+) = {D ⊆Mt : D = D + (Mt)+} is a
conditional risk measure if

1 Finite at zero: ∅ 6= Rt(0) 6= Mt

2 Mt translative: Rt(X +m) = Rt(X)−m for any m ∈Mt

3 Monotone: if X − Y ∈ Lpd(FT )+ then Rt(X) ⊇ Rt(Y )

A conditional risk measure is normalized if for any
X ∈ Lpd(FT ): Rt(X) +Rt(0) = Rt(X)

dynamic risk measure: sequence (Rt)
T
t=0 of conditional

risk measures
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1. Risk measures under transaction costs

Primal Representation

Risk measures and acceptance sets are one-to-one via

Rt(X) = {u ∈Mt : X + u ∈ At}

and At = {X ∈ Lpd(FT ) : 0 ∈ Rt(X)}.

Rt At

finite at zero ∅ 6= Rt(0) 6= Mt
Mt1I ∩At 6= ∅
Mt1I ∩ (Lpd\At) 6= ∅

monotone
Y −X ∈ Lpd(FT )+ At + Lpd(FT )+ ⊆ At⇒ Rt(Y ) ⊇ Rt(X)

convex convex
positively homogeneous cone
subadditive At +At ⊆ At
closed images directionally closed
lsc closed

market compatible Rt(X) = Rt(X) +KMt
t At + Lpd(K

Mt
t ) ⊆ At
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1. Risk measures under transaction costs

Let G((Mt)+) = {D ⊆Mt : D = cl co(D + (Mt)+)}.

Dual Representation, 1 ≤ p ≤ ∞
A function Rt : Lpd(FT )→ G((Mt)+) is a closed coherent
conditional risk measure if and only if there is a nonempty
set Wq

t,Rt
⊆ Wq

t such that

Rt(X) =
⋂

(Q,w)∈Wq
t,Rt

{EQ
t [−X] +Gt (w)} ∩Mt.

Q vector probability measure with components Qi

(i=1,...,d), dQi
dQ ∈ L

q and EQ
t [X] = (EQ1

t [X1], ..., EQd
t [Xd])

T .

w ∈
(
(Mt)+

)+
Gt(w) = {v ∈ Lpd(Ft) : E[wT v] ≥ 0}.
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1. Risk measures under transaction costs

Wq
t =

{
(Q, w) ∈MP

1,d ×
((

(Mt)+

)+ \ (Mt)
⊥
)

:

diag (w) diag

(
Et

[dQ
dP

])−1 dQ
dP
∈ Lpd(FT )+

}
.

MP
1,d vector probability measures with components Qi

(i=1,...,d), dQi
dQ ∈ L

q.

Proof of dual representation: Set-valued convex analysis.

analog for convex set-valued risk measures

static set-valued risk measures: B Jouini, Touzi, Meddeb (2004),

Hamel, Rudloff (2008), Hamel, Heyde (2010), Hamel, Heyde, Rudloff

(2011)

B. Rudloff Dynamic risk measures in markets with transaction costs



1. Risk measures under transaction costs

Wq
t =

{
(Q, w) ∈MP

1,d ×
((

(Mt)+

)+ \ (Mt)
⊥
)

:

diag (w) diag

(
Et

[dQ
dP

])−1 dQ
dP
∈ Lpd(FT )+

}
.

MP
1,d vector probability measures with components Qi

(i=1,...,d), dQi
dQ ∈ L

q.

Proof of dual representation: Set-valued convex analysis.

analog for convex set-valued risk measures

static set-valued risk measures: B Jouini, Touzi, Meddeb (2004),

Hamel, Rudloff (2008), Hamel, Heyde (2010), Hamel, Heyde, Rudloff

(2011)

B. Rudloff Dynamic risk measures in markets with transaction costs



1. Risk measures under transaction costs

Wq
t =

{
(Q, w) ∈MP

1,d ×
((

(Mt)+

)+ \ (Mt)
⊥
)

:

diag (w) diag

(
Et

[dQ
dP

])−1 dQ
dP
∈ Lpd(FT )+

}
.

MP
1,d vector probability measures with components Qi

(i=1,...,d), dQi
dQ ∈ L

q.

Proof of dual representation: Set-valued convex analysis.

analog for convex set-valued risk measures

static set-valued risk measures: B Jouini, Touzi, Meddeb (2004),

Hamel, Rudloff (2008), Hamel, Heyde (2010), Hamel, Heyde, Rudloff

(2011)

B. Rudloff Dynamic risk measures in markets with transaction costs



1. Risk measures under transaction costs

Wq
t =

{
(Q, w) ∈MP

1,d ×
((

(Mt)+

)+ \ (Mt)
⊥
)

:

diag (w) diag

(
Et

[dQ
dP

])−1 dQ
dP
∈ Lpd(FT )+

}
.

MP
1,d vector probability measures with components Qi

(i=1,...,d), dQi
dQ ∈ L

q.

Proof of dual representation: Set-valued convex analysis.

analog for convex set-valued risk measures

static set-valued risk measures: B Jouini, Touzi, Meddeb (2004),

Hamel, Rudloff (2008), Hamel, Heyde (2010), Hamel, Heyde, Rudloff

(2011)

B. Rudloff Dynamic risk measures in markets with transaction costs



2. Time Consistency

Time Consistency
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2. Time Consistency: Background

Time Consistency: scalar case

A dynamic risk measure (ρt)
T
t=0 is time consistent if for all t

∀X,Y ∈ Lpd(FT ) with ρt+1(X) ≤ ρt+1(Y ) ⇒ ρt(X) ≤ ρt(Y ).

The following are equivalent

(ρt)
T
t=0 is time consistent

ρt(X) = ρt(−ρt+1(X))

At = At,t+1 +At+1 where At,t+1 = At ∩ Lpd(Ft+1)
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2. Time Consistency: Set-Valued

Time Consistency

A dynamic set-valued risk measure (Rt)
T
t=0 is time consistent

if for all t, for all X,Y ∈ Lpd(FT ) with

Rt+1(X) ⊇ Rt+1(Y ) ⇒ Rt(X) ⊇ Rt(Y ).

Multi-Portfolio Time Consistency

A dynamic set-valued risk measure (Rt)
T
t=0 is multi-portfolio

time consistent if for all t, for all A,B ⊆ Lpd(FT ) with⋃
X∈A

Rt+1(X) ⊇
⋃
Y ∈B

Rt+1(Y ) ⇒
⋃
X∈A

Rt(X) ⊇
⋃
Y ∈B

Rt(Y ).

In the scalar case Rt(X) = {u ∈ Lp(Ft) : ρt(X) ≤ u} : (ρt)
T
t=0

time consistent iff multi-portfolio time consistent.
In higher dimensions: multi-portfolio time consistency implies
time consistency.
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2. Time Consistency: Set-Valued

Multi-portfolio time Consistency

For a normalized dynamic set-valued risk measure (Rt)
T
t=0 the

following is equivalent

(Rt)
T
t=0 is multi-portfolio time consistent

Rt(X) =
⋃

Z∈Rt+1(X)

Rt(−Z) =: Rt(−Rt+1(X))

At = A
Mt+1

t,t+1 +At+1 where A
Mt+1

t,t+1 = At ∩Mt+1
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3. Examples

Examples
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3.1 Superhedging

(Kabanov 99, Schachermayer 04, Pennanen, Penner 08,...)

(Vt)
T
t=0 self-financing portfolio process if

Vt − Vt−1 ∈ −Kt P − a.s. ∀t ∈ {0, ..., T} (V−1 ≡ 0)

Lpd(FT )-attainable claims (from zero cost at time t)

Ct,T =
T∑
s=t

−Lpd(Fs;Ks)

Set of superhedging portfolios for X ∈ Lpd(FT )

SHPt(X) := {u ∈ Lpd(Ft) : −X + u ∈ −Ct,T }.

Under robust no arbitrage condition (NAr):
Rt(X) := SHPt(−X) is a closed market-compatible coherent
dynamic risk measure on Lpd(FT ) that is multi-portfolio
time consistent.
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3.1 Superhedging

It follows

SHPt(X) =
⋃

Z∈SHPt+1(X)

SHPt(Z) =: SHPt(SHPt+1(X)),

which is

SHPt(X) = SHPt+1(X) ∩ Lpd(Ft) + Lpd(Ft;Kt).

This is equivalent to a sequence of linear vector
optimization problems that can be solved by Benson’s
algorithm for finite Ω.
Loehne, Rudloff 12 (submitted), Hamel, Loehne, Rudloff 12 (working paper)
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3.1 Superhedging

European Call Option

Asset 0: riskless bond, r = 10%, no transaction cost

Asset 1: stock, CRR, constant transaction cost λ = 0.125%

λ = 0.125% for all t
n 6 250 1800

vert SubHP0(X)

(
−74.434
0.953

) (
−76.348
0.969

) (
−79.049

0.992

)
πb(X) 27.552 27.381 27.191

vert SHP0(X)

(
−73.814
0.948

) (
−72.856
0.941

) (
−70.209

0.921

)
πa(X) 27.854 27.994 28.370

λ = 0.125% for t = 1, ..., T , but no transaction cost at t = 0
n 6 250 1800

πb(X) 27.671 27.502 27.315
πa(X) 27.735 27.876 28.255

last two lines: recover scalar results by Roux (08), Roux, Tokarz, Zastawniak (08), see also

Boyle, Vorst (92), Palmer (01).

Note: small intervals despite Kusuoka (95) result!
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3.1 Superhedging

Multiple vertices

−SHP0(−X), λ = 2%, K = 110, n = 52: 8 vertices

( −34.743 −48.097 −79.757 −88.323 −91.778 −84.331 −54.520 −41.461
0.322 0.445 0.732 0.809 0.840 0.774 0.504 0.384

)

−SHP0(−X), λ = 2%, K = 110, n = 250: 3 vertices(
2.370 −107.125 −110.107
−0.036 0.973 1.001

)
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3.1 Superhedging

Multiple correlated assets (basket options):

Tree approximating (d− 1)-dim Black-Scholes-Model by Korn,
Müller (09)

Example: Exchange Option

physical delivery

X = (X1, X2, X3)T

=
(

0, I{Sa,1T ≥Sa,2T },−I{Sa,1T ≥Sa,2T }
)T

.

(cash delivery: X = ((S1
T − S2

T )+, 0, 0)T )
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3.1 Superhedging

Exchange Option, n = 4, includes transaction costs for bond

r = 5%, λ = (1%, 2%, 4%)T

vertex of SHP0(X)

 13.341 0.000 −7.760
0.347 0.498 0.584
−0.446 −0.331 −0.260


πa
0 (X) (in bonds) 7.418
πa(X) (in cash) 6.988

r = 5%, λ = (0.2%, 0.4%, 0.1%)T

vertex of SHP0(X)

 12.403 8.230 0.000 −6.236 −4.237
0.308 0.353 0.441 0.507 0.486
−0.433 −0.394 −0.317 −0.257 −0.276


πa
0 (X) (in bonds) 4.310
πa(X) (in cash) 4.109
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3.2 AV@R

Definition: set-valued AV@R (static case): Hamel, Rudloff, Yankova 12

Let α ∈ (0, 1]d and X ∈ L1
d.

AV@Rregα (X) =
{

diag (α)−1 E [Z]− z :

Z ∈
(
L1
d

)
+
, X + Z − z1I ∈

(
L1
d

)
+
, z ∈ Rd

}
∩M.

Remark: If m = d = 1: conditions Z ∈
(
L1

1

)
+

and

X + Z − z1I ∈
(
L1

1

)
+

are equivalent to Z ≥ (−X + z1I)+ with

X+ = max {0, X}.
Thus, AV@Rregα (X) = AV@Rscaα (X) + R+ with

AV@Rscaα (X) = inf
z∈R

{
1

α
E
[
(−X + z1I)+]− z}

which is optimized certainty equivalent representation of the
AV@R by Rockafellar and Uryasev ’00.
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Let α ∈ (0, 1]d and X ∈ L1
d.

AV@Rregα (X) =
{

diag (α)−1 E [Z]− z :

Z ∈
(
L1
d

)
+
, X + Z − z1I ∈

(
L1
d

)
+
, z ∈ Rd

}
∩M.

Remark: If m = d = 1: conditions Z ∈
(
L1

1

)
+

and

X + Z − z1I ∈
(
L1

1

)
+

are equivalent to Z ≥ (−X + z1I)+ with

X+ = max {0, X}.
Thus, AV@Rregα (X) = AV@Rscaα (X) + R+ with

AV@Rscaα (X) = inf
z∈R

{
1

α
E
[
(−X + z1I)+]− z}

which is optimized certainty equivalent representation of the
AV@R by Rockafellar and Uryasev ’00.
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3.2 AV@R

Good-deal bounds

The market extension Rmar of a risk measure R satisfies

Rmar (X) = inf
P(M+)

{R (X + Y ) : Y ∈ C0,T } .

AV@Rmarα (X) =
⋃{

AV@Rreg (X − Y ) : Y ∈
T∑
s=0

L1
d (Ks)

}
=
{

diag (α)−1 E [Z]− z :

Z ∈
(
L1
d

)
+
, X + Z − z1I ∈

T∑
s=0

L1
d (Ks) , z ∈ Rd

}
∩M

is a again set-valued coherent risk measure.
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3.2 AV@R

Let Ω be finite.

Then, AV@Rregα (X) and AV@Rmarα (X) can be
calculated by solving a linear vector optimization problem
(using Benson’s algorithm)

minimize P (x) with respect to ≤M+ subject to Bx ≥ b.
Furthermore,

AV@Rregα (X) =
⋂

(Q,w)∈Wα

(
EQ [−X] +G (w)

)
∩M,

where

Wα =

{
(Q,w) ∈ W : diag (w)

(
diag (α)−1 e1I− dQ

dP

)
∈ (L∞d )+

}
,

e = (1, ..., 1)T ∈ Rd. Recall, G (w) =
{
x ∈ Rd : 0 ≤ wTx

}
and

W =

{
(Q,w) ∈MP

1,d × Rd + \M⊥ : diag (w)
dQ

dP
∈ (L∞d )+

}
.
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3.2 AV@R

dynamic version (AV@Rα)t is not multi-portfolio
time-consistent, nor time consistent...

can construct a multi-portfolio time consistent version of
(AV@Rα)t (X) by composition
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4. Construction of mptc risk measures

Construction of multi-portfolio time
consistent risk measures
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4. Construction of mptc risk measures

To construct a multi-portfolio time consistent version of
(Rt)

T
t=0:

R̃T (X) = RT (X),

R̃t(X) =
⋃

Z∈R̃t+1(X)

Rt(−Z)

(R̃t)
T
t=0 is multi-portfolio time consistent

BUT not necessarily finite at zero!

since (AV@Rα)t is normalized closed coherent risk measure
⇒ ( ˜AV@Rα)t is also normalized (and thus finite at zero).

Feinstein, Rudloff (12): Set-valued dynamic risk measures. Submitted
for publication.
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Dynamic Risk Measures in Transaction Cost Markets

Thank you!
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