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Setting

o Fix a natural number N € N, real numbers by, by, ..., by and positive

real number 01,02,...,0pN.

o Consider a system of interacting diffusions (particles) on R:

N N
AXi(t) = 3 by Lixi(o=xy(0) 4t + 3 0 Lpx=xg ) AW (1),

j=1 j=1
where Wi, Wh, ..., Wy are i.i.d. standard Brownian motions and

some initial values X1(0), X2(0), ..., Xn(0) are fixed.



Some historic remarks

@ Model appeared '87 in this form in paper by Bass and Pardoux in
the context of filtering theory. They proved existence and uniqueness
in law.

@ Model reappeared in stochastic porfolio theory (‘02 book by
Fernholz, '06 survey by Fernholz and Karatzas): diffusions

X1, X2, ..., Xy represent logarithmic capitalizations:
log (stock price x number of stocks). (1)

Model assumes that dynamics depends only on ranks. True in the

long run: explains following picture.



Capital distribution curves
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Figure: Capital distribution curves 1929-1989



Concentration results

o Chatterjee and Pal '07: for particle system above, vector of market
weights
eXi(t)

(ZN 1 eXi(t) ’

i:1,2,...,N) (2)

is a Markov process and its invariant distribution concentrates
around curves of above type as N — oco. Moreover, the limit N — oo
is given by a Poisson-Dirichlet point process of first kind.

e Pal, S. '10 and Ichiba, Pal, S. '11: strong concentration of paths of
market weights on any [0, t] as N — oo and fast mean-reversion as

t — oo for any fixed N € N.



Back to particle system

All previous results for market weights, which correspond to the spacings

process in

N N
AXi(t) = D b Lix(ey=xgy (0} A+ D ) Lpx(e=x;y (0 AWi(D),
=1 =1

What about the particle system itself? Can we understand evolution of

particle density:

N
1
N § :



Preliminaries

Here: will look at limit N — oo, which corresponds to a hydrodynamic
limit.

First question: how to choose drift and diffusion coefficients for different
N to have a meaningful limit?

Crucial observation: for fixed N the particle system can be written as
dXi(t) = b(Fyn() (Xi(1))) dt + o (Fyn(ey (Xi(2))) dWi(t)

for functions b: [0,1] — R, o : [0,1] — (0, c0).

= particle system is of mean-field type.



Aside on mean-field models

Systems of the form
dX;(t) = b(e" (1), Xi(1)) dt + (0" (2), Xi(t)) dWi(t) (3)

appeared in statistical physics.

See: McKean '69, Funaki '84, Oelschlager '84, Nagasawa, Tanaka '85,

'87, Sznitman '86, Leonard '86, Dawson, Gartner '87, Gartner '88.

In Gartner '88, limit limy_., 0"V(t) is obtained under two assumptions.



Previous results |

Theorem. (Girtner '88) Fix T > 0 and suppose b, & continuous (1), &

strictly positive.

Let QN be the law of oV(t), t € [0, T] on C([0, T], Mi(R)). Then the

sequence @V, N € N is tight. Moreover, under any limit point Q°°:
vt (@(t),f)—(@(o)jf)Z/Ot(Q(S),Lg(s)f) ds (4)
for all t € [0, T] almost surely. Hereby:
(0(6).F) = | 7ot

. 1.
Lysf = b(o(s), )" + 55(o(s), )2



Previous results |1

In particular, if
U5 (ol6).) = (0000 = [ (000 o) ds 6
has a unique solution > in C([0, T], M1(R)), then it must hold
oV = 0™, N — 0o in probability. (6)

This is not known in general (some conditions in work of Sznitman '86)!



Diffusions interacting through their mean-field, intuition

How can one guess the limiting dynamics?
@ Suppose we already knew oV — o™ with 9> deterministic

@ Then for large N the system of diffusions should behave as

dXi(t) = b(e™(t), Xi(t)) dt + &(™ (1), X;(t)) dWi(t) (7)
@ Thus, the empirical measure converges to the law of

dX(t) = b(e™(t), X (1)) dt +8(™(t), X(t)) AW(2) (8)
e Ito’s formula for f(X(t)) and Z(X(t)) = 0°°(t) imply:

((t). F) — (¢=(0). F) = /0 (6(5), Ly(s)f) ds



Previous results |1l

Theorem. (Dawson, Gartner '87) Fix T > 0 and suppose b continuous,
g=1(Y)
Then the sequence (0V(t), t € [0, T]), N € N satisfies a large deviations
principle on C([0, T], M1(R)) with the good rate function
T 1
1) =g [(2(7).8) - (20).) - | 6.Rie+ @]

and scale N. Hereby:

. 1
Rig =g+ b(o(s),)ex + 58



Relation to Burger's equation

Remarks:

o Goodness of rate function + LDP imply: o™ will concentrate around
the set {v: I(v) = 0}.

o If we apply this result with b(o(s),-) = —Fy(s)(+) (discontinuity!),
then only point with /() = 0 is the one, whose path of cdfs
R(t,-) = Fy)() is the unique weak solution of viscous Burger’s
equation: R; = —%(R2)X + %RXX.
l.e.: particle system approximation of R. Same result for a particle

system with local time interactions in Sznitman '86.



Our results |

Theorem 1. (Dembo, Krylov, S., Varadhan, Zeitouni '12) Fix T > 0 and
suppose b(o(t), x) = b(Fy)(x)), & = 0(Fy)(x)); b and A := 102 nice.
Then, (oM(t), t € [0, T]), N € N satisfies an LDP on C([0, T], M1(R))
with scale N and good rate function J defined by

1 U(R) Rt - (A(R)Rx)x b(R) 2
JR) = EH 2 AR)R)V2 a(R)(RX)1/2

L2(RT)

for all R € Co(R7) with Ry, Ry, R € L3/2(R7), Ry € L3(R7), Ry having
finite (1 + &) moment, t — (R«(t,-),g(t,-)) abs. cont.; J = co otherwise.
Hereby, R = F,(,(-).



Our results |l

Consequences:

e Goodness of rate function and LDP imply that o" concentrates
around the set {y: J(y) = 0}.

@ The only path 7 with J(y) = 0 corresponds to the unique weak
solution of the generalized porous medium equation with
convection: R; = ¥(R)x + O(R)x.

@ Hence, we found a particle system approximation for the solution

of the latter, which converges exponentially fast.



Our results I

In the course of the proof show the following regularity result in nonlinear
PDEs:
Theorem 2. Consider a weak solution of the Cauchy problem for the

tilted generalized porous medium equation:
R: — (A(R)Rx)x = hA(R) R, R(0,:) = Ro.
such that R € Cp(R7) and R(t,-)dx is a probability measure for every t.

If fRT h?> Ry dm < oo and Ry has finite (1 4+ ) moment, then R;, Ry, Rux

exist as elements of L3/2(R7), R, € L3(R7) and

R2 R?
/ X dm < oo, —tLdm < .
&, R %, R



Proof sketch, general principles |

Localization: LDP holds, if we can show weak/local LDP:

lim sup— logP(o" € C) < — |nf J(~y) for all compacts C,
N—oo N ~veC

I|m|an log P(o" € U) > — |nf J() for all open sets U
N—oo Y

and exponential tightness:

1
VK > 0 3Ck compact : lim sup logP(o" ¢ Cx) < —K.

N—oo



Proof sketch, general principles |l

Alternative characterization of weak/local LDP:

S 1 N
: — < —
Yy I(;lm0 I|Nm sup logP(0" € B(7,9)) J(v),
T 1 N
Yy ldlimo I|Nm|nf N logP(0" € B(7,9)) J(v)

What we prove:

@ Local upper bound holds with a Dawson-Gartner type rate

function /
@ Local lower bound holds with the desired rate function J

e J<I.



Proof sketch, upper bound around a path ~

Appropriate variational problem:

10) = sup [(+(7). ) = (0.8~ | (4(0). Rl + SAR)N &) de,
ges 0

where Rig = gt + b(R)gx + A(R)gxx, R = F,(y(+)-
Why appropriate? On the event oV € B(v,6), our particle system is

close to solution of
dYi(t) = b(Fy5)(Yi(t))) dt + o(Fy 1) (Yi(t))) dWi(t), i=1,2,..., N.

on exponential scale.



Proof sketch, upper bound around a path ~

Pick test function g, apply 1t6’s formula:

dg(t, Yi(t)) = (gt + b(R)gx + A(R)gw)(t, Yi(t)) dt

+8x(t, Yi(t)) o (Fy () (Yi(t))) dWi(t).

Hence,

d(o¥(t). g(t,-)) = (0¥ (t), & + b(R)gx + A(R)gw) dt

N
g D 8t Vi) Fo (i) AW (2)
i=1

Note: martingale part of order % Freidlin-Wentzell type problem!



Proof sketch, upper bound around a path ~

Thus, for fixed g, rate is given by

2
du.

com L [T |F(u) = (v(u). 8 + b(R)gx + A(R)gw.) |
0= | ORI

2
We are interested in f(t) = (v(t),g(t,-)). Plug it in, integrate by parts,

take sup: upper bound with

I(v) = Sug/g((v(t%g(t, )))-

Done with local UBD!



Proof sketch, lower bound around a path ~

Consider a v such that J(7) < oc. Then, view R = F,(,y(+) as solution of
R — (A(R)Rx)x = hA(R) R..

That is, set h = %. This form allows for a tilting argument:

Main idea: apply Girsanov’s Theorem to change particle system to:

dXi(t) = —h(t, Xi(£) A(Fon () (Xi())) dt + o (Fou() (Xi(2))) dWi(2),

dPV
dPN

IimN—>oo QN =7

then show

~ e NJ on {pN € B(v,0)} and LLN under PV:



Proof sketch, lower bound around a path ~

The proof of LLN in the usual way:
o First, show tightness of oV, N € N.

@ Then, show every limit point 4 corresponds to a weak solution of
R: — (A(R)R)x = hA(R) R,

via R’ = F;;,()()
e Finally, show that weak solution of PDE unique, thus: v = 7.

Technical point: for Girsanov, tightness, passing to the limit, uniqueness

need: h € Cp(R7), Lipschitz.



Proof sketch, lower bound around a path ~

~ e NJO) on {pN € B(v,0)}?

What do we mean by 4 dP’V

o By Girsanov’s Theorem:

P(e" € B(,8)) = EP[eMD=MN2L g, 4]
o Apply Holder’s inequality to lower bound P(o" € B(,6)) by

EP [e s MTHSMUTD21=Pla BN ¢ By, 6))P.



Proof sketch, lower bound around a path ~

o Next, complete the martingale:
Ef?[e—%M(T)—F%(M)(T)] _ P [e—%M(T)—%UVI)(T)—F(%—F%)(MXT)].
o Finally,

N(J(y) —e) < (M)(T) < N(J(7) +2),

since we work under P now! Remains to take limits N — 0o, § | 0,

pT oo, gl l e] 0. Done with local LBD!



Proof sketch, comparison of rate functions |

What did we prove? local UBD with /, local LBD with J.

Need to show: J < [:
e Fix . Can assume /() < oc.

@ Use /() < oo to deduce regularity of R = ()(-)'
Re, Re, R € L32(R7), Ry € L3(R7), ) Je, 7 R = dm < oo,
Jr, R—i dm < oo.

@ Recall I defined as supremum over g € S of

.
[(’Y(T),g) = (7(0),8) - /O (7(1), gt + A(R)gxx + %A(R)(gx)z)dt ,

would like to take gx = % = h.



Proof sketch, comparison of rate functions |l

@ This is OK due to regularity: h € L?>(R7, R,) and denseness of S in
the latter.

@ Done, since J(~y 4fR h? R, dm.

@ Now, redo this with drift and end up with

JR) HO’(R ) Rt — (A(R)R«)x  b(R) R)1/2 2

ARYR)Z o(R) ) o

T2

as desired.



Under the rug

Regularity results from /() < oco.

Getting rid of the atoms: used continuity of R at various places,
e.g. uniqueness of solutions to tilted generalized porous medium

equation.

@ Uniqueness of weak solutions to tilted PME.

Exponential tightness.
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