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Rank-based diffusion

E. R. Fernholz, T. Ichiba, I. Karatzas & V. Prokaj, Planar
diffusions with rank-based characteristics and perturbed Tanaka
equation, Probability Theory and Related Fields, to appear.

dX, = g dt + o dB;
— dXo = —hdt + pdBy —

- dX, = —hdt + pdBy —b
dXo =gdt+odB;

pPP+o2=1
g+h>0

Bi, By independent Br. motions
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Remarks

Karatzas, et. al. examine:
» Weak and strong existence and uniqueness in law;
» Properties of X7 V Xo and X1 A Xo;
» The reversed dynamics of (X1, X2);
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Weak and strong existence and uniqueness in law;
Properties of X1 V Xo and X1 A Xo;

The reversed dynamics of (X1, X2);

Transition probabilities (X1, X2).
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The difference process
Define
Y(t) = Xi(t) — Xo(t).
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The difference process
Define
Y(t) = Xi(t) — Xo(t).

Then

dY = ly<oy(g + h)dt — liy-oy(g + h) dt

+I{Y§0}O- dB; — I{YSO}p dB, + /{y>0}p dB; — I{y>0}0 dB>

= —Asgn(Y(t)) dt + dW,
where
A = g+h>0,
dW = o (I{YSO} dBl - I{y>0} dB2)
W
2 (l{y>0) dB1 — v <o} dBy) .

dW,
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The sum process
Define
Z(t) = X1(t) + Xo(2).
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The sum process
Define
Z(t) = Xq(t) + Xa(t).

Then

dZ = (g—h)dt+ I{YSO}O- dB; + I{YSO}p dBy
+lyso1p dB1 + lfy~gy0 dB>
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The sum process
Define
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The sum process

Define
Z(t) = X1(t) + Xo(2).
Then
dZ = (g—h)dt+ I{YSO}O- dB; + I{YSO}p dBy
+/{y>0}p dBy + I{y>0}0' dBs
= vdt+dV,
where

v = g-—h,
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The sum process

Define
Z(t) = X1(t) + Xo(2).
Then
dZ = (g - h) dt + I{YSO}O- dBy + I{YSO}p dB,
+/{y>0}p dBy + /{y>0}0' dBs
— vdt+dV,
where
v = g-—h,
dv = o (I{Y§0} dB; + I{y>0} dB2)

dvi
+p (/{y>0} dB; + I{ygo} dBQ) .

N

dV»
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Summary

Xi(t) + Xo(t) =
= X1(0) + X2(0) + vt + V/(1),

Xi(t) — Xao(t) = Y(t)
— X4(0) + X (0) — )\/O sgn(Y(s)) ds + W(t),

where VV and W are correlated Brownian motions.
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Summary

Xi(t) + Xa(t) =
= X1(0) + X2(0) + vt + V(1),
Xi(t) — Xao(t) = Y(t)
— X,(0) + Xa(0) — )\/O sgn(Y(s)) ds + W(t),

where VV and W are correlated Brownian motions.

» To determine transition probabilities for (X1, X2), it suffices to
determine transition probabilites for (7, Y).
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where VV and W are correlated Brownian motions.

» To determine transition probabilities for (X1, X2), it suffices to
determine transition probabilites for (7, Y).

» (Z, W) is a Gaussian process.

> Y is determined by W by

dY(t) = —Asgn(Y(t)) dt + dW(t).
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Summary

Xi(t) + Xo(t) =
= X1(0) + X2(0) + vt + V/(1),

Xi(t) — Xao(t) = Y(t)
— X4(0) + X (0) — )\/O sgn(Y(s)) ds + W(t),

where VV and W are correlated Brownian motions.

» To determine transition probabilities for (X1, X2), it suffices to
determine transition probabilites for (7, Y).

» (Z, W) is a Gaussian process.

> Y is determined by W by

dY(t) = —Asgn(Y(t)) dt + dW(t).

» It suffices to determine the distribution of (W/(t), Y(t)).
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Bang-bang control

Minimize
[oe)
E/ e tX2dt,
0

Subject to

t
Xt:X+/ U5d5+Wt, agutﬁb, tZO
0
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Bang-bang control

Minimize
[oe)
IE/ e tX2dt,
0

Subject to

t
Xt:X+/ U5d$+Wt, aSUtSb, tZO
0

Benes, Shepp & Witsenhausen (1980): Solution is uy = f(X¢),

where

b, if x <9,
f(X):{ a, ifx>4,

and 6 = (Vb2 +2+b) 1 — (Va2 +2—a)"L.
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Bang-bang control

Minimize

o
E / e tX2dt,
0

t
Xt:X+/ U5d5+Wt, aSUtSb, tZO
0

Subject to

Benes, Shepp & Witsenhausen (1980): Solution is uy = f(X¢),

where
b, if x <9,
f(X)_{ a, ifx>4,
and 6 = (Vb2 +2 4+ b) 1 — (Va2 +2 —a)7 L,
What is the transition density for the controlled process X7
(Benes, et. al. computed its Laplace transform.)
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Transition density by Girsanov
Compute the transition density for X, where

t
Xt =X +/ f(Xs) ds + Wt"
0
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Transition density by Girsanov
Compute the transition density for X, where

t
Xt:X+/ f(Xs)d5+Wt
0

Start with a probability measure PX under which X is a Brownian
motion. Define W by

t
Wt = Xt — X — / f(XS) ds.
0
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Transition density by Girsanov
Compute the transition density for X, where

t
Xt:X+/ f(Xs)d5+Wt
0

Start with a probability measure PX under which X is a Brownian
motion. Define W by

t
Wt—Xt—X—/ f(XS) ds.
0

Change to a probability measure P under which W is a Brownian
motion. Compute the transition density for X under P.
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Transition density by Girsanov
Compute the transition density for X, where

t
Xt:X+/ f(Xs)d5+Wt
0

Start with a probability measure PX under which X is a Brownian
motion. Define W by

t
Wt = Xt — X — / f(XS) ds.
0

Change to a probability measure P under which W is a Brownian
motion. Compute the transition density for X under P.

fj 7
1

N = exp [/Ot f(Xs) dXs — 5 !/Oit F2(Xs) ds} .

dP

P{X; € B} = EX lix.eB} JPX

where
dP
dPX

26
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Transition density by Girsanov (continued)
To compute P{X; € B}, we need the joint distribution of

t t
X, /f(XS)dXS, /f2(Xs)ds.

0 0

27 /94



Transition density by Girsanov (continued)
To compute P{X; € B}, we need the joint distribution of

t t
X;, /f(XS)dXS, /fz(Xs)ds.
0

J0

Assume without loss of generality that 6 = 0. Define
X bx, if x <0,
Flx) = /0 F() d€ = { ax, if x>0.

Tanaka's formula implies

FOu) = [ 100 9 + 5o b

/t F(Xs) dXs = F(X;) — %(a — b)LY.
0
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Transition density by Girsanov (continued)
To compute P{X; € B}, we need the joint distribution of

t t
X;, /f(XS)dXS, /fz(Xs)ds.
0

J0

Assume without loss of generality that 6 = 0. Define
bx, if x <0,

Fo) = [ rede={ 20 X 2p

Tanaka's formula implies

FOu) = [ 100 9 + 5o b

/t F(Xs) dXs = F(X;) — %(a — b)LY.
0

We need the joint distribution of

t
Xe, LY, /f2(X5)ds.
JO
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Transition density by Girsanov (continued)

Define
() :/0 I(O,Oo)(X(S)) ds,
r(¢) = /0 o) (X()) ds = £ — T (2).
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Transition density by Girsanov (continued)

Define
r(t) = /0 t 0,00) (X(5)) ds,
r(¢) = /ot o) (X()) ds = £ — T (2).
Then

/t F2(X;) ds = BT _(t) 4 a°T . (t) = b2t + (a® — b?)[ . (t).
J0
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Transition density by Girsanov (continued)

Define
F+(t) :/0 1(0700)()((5)) ds,
r(¢) = /0 o) (X()) ds = £ — T (2).

Then

/t F2(X;) ds = BT _(t) 4 a°T . (t) = b2t + (a® — b?)[ . (t).
J0

We need the joint distribution of

t

Xe, LY, |_+(t):/0 l(0,00)(Xs) s,

where X is a Brownian motion.
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Trivariate density

Theorem (Karatzas & Shreve (1984))

Let W be a Brownian motion, let L be its local time at zero, and
let

t
"0 2 [ oW ds

denote the occupation time of the right half-line. Then for a <0,
b>0,and0<t< T,

P{Wr € da, L1 € db, T (T) € dt}

b(b — a) b?>  (b— a)?
— mexp |:_2t — 2(_,__ t):| dadbdt.
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Remark
Because the occupation time of the left half-line is

]
r(me /0 ooy (We)dt = T — T ,(T),

we also know P{Wt € da, Lt € db,I _(T) € dt} fora<0, b>0,
and 0 < t < T. Applying this to —W, we obtain a formula for

P{Wr e da, LT € db,T (T) e dt}, a>0,b>0,0<t<T.

34
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Classic trivariate density

Theorem (Lévy (1948))

Let W be a Brownian motion, let Mt = maxgo<i<7 W;, and let 01
be the (almost surely unique) time when W attains its maximum
on [0, T]. Then fora € R, b > max{a,0}, and0 <t < T,

]P’{ Wt € da, Mt € db,0 € dt}

b(b— a) b> (b a)?
= m exp [21& — 2(7__1_)] dadbdt.

The elementary proof uses the reflection principle and the Markov
property.

35/94



Positive part of Brownian motion

AN
0 \/\/\/ \/\Tt




Positive part of Brownian motion
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Positive part of Brownian motion
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Full decomposition
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Local time

Local time at zero of W:

-4

- I:H)] Z I(O,e)(

—|im— I( €.€
el0 4e

) ds = lim —

2 !IHze/ (oo
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Tanaka's formula
Tanaka formula:

t t
max{W,,0} = /01(0700)(W5)dWs+;/0 So(W,) ds
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Tanaka's formula
Tanaka formula:

t t
max{W,,0} = /()I(Opo)(Ws)dWs—l—;/o So(W,) ds
= —-B:+ L

where .
B: = / I(O,oo)(WS) dWs,
0
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Tanaka's formula
Tanaka formula:

t t
max{W,,0} = /()I(Opo)(Ws)dWs—l—;/o So(W,) ds

= —B:+ L,

where

t
B; = / l0,00)(Ws) dWs,  (B): = T (t).
0
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Tanaka's formula
Tanaka formula:

t t
max{W,,0} = /()I(Opo)(Ws)dWs—l—;/o So(W,) ds
= —-B:+ L

where .
B: = / I(O,Oo)(Ws) dWs, (B): =T4(t).
0

Then B, (t) £ Bl—ll(t) is a Brownian motion.
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Tanaka's formula
Tanaka formula:

t t
max{W,,0} = /()I(Opo)(Ws)dWs—l—;/o So(W,) ds
= —-B:+ L

where .
B: = / I(O,Oo)(Ws) dWs, (B): =T4(t).
0

Then B, (t) £ Bl—ll(t) is a Brownian motion.
Time-changed Tanaka formula:

Wi(t) = —Bi(t) + Li(1),

where L (t) = Lr—1y)-
+
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Tanaka's formula
Tanaka formula:

t t
max{W,,0} = /()I(Opo)(Ws)dWs—l—;/o So(W,) ds
= —-B:+ L

where .
B: = / I(O,Oo)(Ws) dWs, (B): =T4(t).
0

Then B, (t) £ Bl—ll(t) is a Brownian motion.
Time-changed Tanaka formula:

Wi(t) = —Bi(t) + Li(1),

where L (t) = Lr—1y)-

+
Conclusion: W, is a reflected Brownian motion. It is the Brownian
motion — B plus the nondecreasing process L, that grows only

when W, is at zero.
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Skorohod representation

Time-changed Tanaka formula:

Wi (t) = =B (t) + L(1).

Skorohod representation:
The nondecreasing process added to — B, that grows only when
W, =0is
Li(t) = B .
+(t) 02?§t +(s)

In particular,

Bi(t) = ~Wa(8) + Lu(t) = ~Wa(e) + max Bi(s)
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b¢(+ af]d £3+

By (t) = =W, (t) + Li(t) = =Wy (t) + max Bi(s).

0<s<t




W (t) £
r ! >
0 ry(m t
1 1 >
0 t



W+ and B_|_

By (t) = =Wy (t) + L (t) = =Wy (1) + o2, By (s)-

o-
-

il

3




W+ and B_|_

By (t) = =Wy (t) + L (t) = =Wy (1) + o2, By (s)-

1 >
ro(7) ¢t

/ i/-+(:) = maxo<e<r. (1) B+(t)
t

O =™
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W, and B,. W_ and B_.
B (t) = =Wy (t) + L (t) = —Wi(t) + max Bi(s)

0<s<t

B_(t) = —W_(t)+ L_(t)= —W_(t) + max B_(s).

0<s<t

W,

~V



W, and B,. W_ and B_.
B (t) = =Wy (t) + L (t) = —Wi(t) + max Bi(s)

0<s<t

B_(t) = —W_(t)+ L_(t)= —W_(t) + max B_(s).

0<s<t

W,




W, and B,. W_ and B_.
B (t) = =Wy (t) + L (t) = —Wi(t) + max Bi(s)

0<s<t

B_(t) =—-W_(t)+ L_(t)= —W_(t) + Jnax. B_(s).

W_ run backwards




W, and B,. W_ and B_.
B (t) = =Wy (t) + L (t) = —Wi(t) + max Bi(s)

0<s<t

B_(t) =—-W_(t)+ L_(t)= —W_(t) + Jnax. B_(s).

W_ run backwards

(e)
~



W, and B.. W_ and B._.

B (t) = =Wy (t) + L (t) = —Wi(t) + max Bi(s)

0<s<t

B_(t) =—-W_(t)+ L_(t)= —W_(t) + Jnax. B_(s).

W_ run backwards

~V

—W_ run backwards

~V



W, and B.. W_ and B._.

B (t) = =Wy (t) + L (t) = —Wi(t) + max Bi(s)

0<s<t

B_(t) =—-W_(t)+ L_(t)= —W_(t) + Jnax. B_(s).

W_ run backwards

~V

—W_ run backwards

~V



W, and B,. W_ and B_.
Bi(t) = =Wy (t) + L (t) = =W (1) + o2, B.(s)

B_(t) =—-W_(t)+ L_(t)= —W_(t) + Jnax. B_(s).
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W, and B,. W_ and B_.
Bi(t) = =Wy (t) + L (t) = =W (1) + o2, B.(s)

B_(t) =—-W_(t)+ L_(t)= —W_(t) + Jnax. B_(s).

W_ run backwards

0 re(T) \/\T
run backwards

AB

~V

—W_ run backwards
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W, and B,. W_ and B_.
Bi(t) = =Wy (t) + L (t) = =W (1) + o2, B.(s)

B_(t) =—-W_(t)+ L_(t)= —W_(t) + Jnax. B_(s).

W_ run backwards

} >
0 r(7) \/\T t
run backwards

AB

~V

—W_ run backwards

Local time L(T) = Lt time has become the maximum.
I (T) has become the time of the maximum. o



Personal reflections
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In the beginning....

S. Shreve, Reflected Brownian motion in the “bang-bang” control
of Browian drift, SIAM J. Control Optimization 19, 469-478,
(1981).
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In the beginning....
S. Shreve, Reflected Brownian motion in the “bang-bang” control
of Browian drift, SIAM J. Control Optimization 19, 469-478,

(1981).

Acknowledgment in the paper
The author wishes to acknowledge the aid of V. E.
Benes, who found an error in some preliminary work on
this subject and suggested the applicability of Tanaka'’s
formula. He also wishes to thank the referee for pointing
out the uniqueness of the transition density
corresponding to the weak solution in Section 5.
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In the beginning....
S. Shreve, Reflected Brownian motion in the “bang-bang” control
of Browian drift, SIAM J. Control Optimization 19, 469-478,

(1981).

Acknowledgment in the paper
The author wishes to acknowledge the aid of V. E.
Benes, who found an error in some preliminary work on
this subject and suggested the applicability of Tanaka'’s
formula. He also wishes to thank the referee for pointing
out the uniqueness of the transition density
corresponding to the weak solution in Section 5.

» Work on stochastic control (monotone follower, bounded
variation follower, finite-fuel, ....)
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In the beginning....
S. Shreve, Reflected Brownian motion in the “bang-bang” control
of Browian drift, SIAM J. Control Optimization 19, 469-478,

(1981).

Acknowledgment in the paper
The author wishes to acknowledge the aid of V. E.
Benes, who found an error in some preliminary work on
this subject and suggested the applicability of Tanaka'’s
formula. He also wishes to thank the referee for pointing
out the uniqueness of the transition density
corresponding to the weak solution in Section 5.

» Work on stochastic control (monotone follower, bounded
variation follower, finite-fuel, ....)
» Work on optimal investment, consumption and duality with

John Lehoczky, Suresh Sethi, Gan-Lin Xu, Jaksa Cvitani¢ ....
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....and then THE BOOK,

69 /94



....and then THE BOOK,

Columbia University in the City of New York New York, N.Y. 10027
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and mathematical finance took off.
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and mathematical finance took off.

of Hodern Financial Markets

~
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Ten things | learned from loannis Karatzas
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Ten things | learned from loannis Karatzas

» Greek culture
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Ten things | learned from loannis Karatzas

> Greek culture
10. Macedonia is a province in Greece.
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Ten things | learned from loannis Karatzas

> Greek culture
10. Macedonia is a province in Greece.
9. All Greeks plan to return home some day, until the opportunity
to do so actually arises.
> Spelling
8. Lemmata (From the Greek Anupuara; not commonly used in
West Virginia dialect.)
7. Coodrdinate (Diaeresis: [Ancient Greek] The separate
pronunciation of two vowels in a diphthong.)
» Scholarship

6. Appreciate the work of others.
5. Reuvise, revise, revise.
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Number one
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Number one

1. A professional colleague who is also a friend is more precious
than Euros/Drachmae.
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Thank you, Yannis,
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1. A professional colleague who is also a friend is more precious
than Euros/Drachmae.

Thank you, Yannis,

for all you have done
» for your students,
» for your colleagues,
» for science,

» and for me personally.
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