Trivariate Density Revisited

Steven E. Shreve
Carnegie Mellon University

Conference in Honor of Ioannis Karatzas
Columbia University
June 4-8, 2012

Outline

Rank-based diffusion

Bang-bang control

Trivariate density

Personal reflections

Rank-based diffusion

E. R. Fernholz, T. Ichiba, I. Karatzas \& V. Prokaj, Planar diffusions with rank-based characteristics and perturbed Tanaka equation, Probability Theory and Related Fields, to appear.

B_{1}, B_{2} independent Br . motions

Remarks

Karatzas, et. al. examine:

- Weak and strong existence and uniqueness in law;
- Properties of $X_{1} \vee X_{2}$ and $X_{1} \wedge X_{2}$;
- The reversed dynamics of $\left(X_{1}, X_{2}\right)$;

Remarks

Karatzas, et. al. examine:

- Weak and strong existence and uniqueness in law;
- Properties of $X_{1} \vee X_{2}$ and $X_{1} \wedge X_{2}$;
- The reversed dynamics of $\left(X_{1}, X_{2}\right)$;
- Transition probabilities $\left(X_{1}, X_{2}\right)$.

The difference process

Define

$$
Y(t)=X_{1}(t)-X_{2}(t)
$$

The difference process

Define

$$
Y(t)=X_{1}(t)-X_{2}(t)
$$

Then

$$
d Y=I_{\{Y \leq 0\}}(g+h) d t-I_{\{Y>0\}}(g+h) d t
$$

$$
+I_{\{Y \leq 0\}} \sigma d B_{1}-I_{\{Y \leq 0\}} \rho d B_{2}+I_{\{Y>0\}} \rho d B_{1}-I_{\{Y>0\}} \sigma d B_{2}
$$

The difference process

Define

$$
Y(t)=X_{1}(t)-X_{2}(t)
$$

Then

$$
\begin{aligned}
d Y= & I_{\{Y \leq 0\}}(g+h) d t-I_{\{Y>0\}}(g+h) d t \\
& \quad+I_{\{Y \leq 0\}} \sigma d B_{1}-I_{\{Y \leq 0\}} \rho d B_{2}+I_{\{Y>0\}} \rho d B_{1}-I_{\{Y>0\}} \sigma d B_{2} \\
= & -\lambda \operatorname{sgn}(Y(t)) d t+d W,
\end{aligned}
$$

The difference process

Define

$$
Y(t)=X_{1}(t)-X_{2}(t)
$$

Then

$$
\begin{aligned}
d Y= & I_{\{Y \leq 0\}}(g+h) d t-I_{\{Y>0\}}(g+h) d t \\
& \quad+I_{\{Y \leq 0\}} \sigma d B_{1}-I_{\{Y \leq 0\}} \rho d B_{2}+I_{\{Y>0\}} \rho d B_{1}-I_{\{Y>0\}} \sigma d B_{2} \\
= & -\lambda \operatorname{sgn}(Y(t)) d t+d W,
\end{aligned}
$$

where

$$
\lambda=g+h>0
$$

The difference process

Define

$$
Y(t)=X_{1}(t)-X_{2}(t)
$$

Then

$$
\begin{aligned}
d Y= & I_{\{Y \leq 0\}}(g+h) d t-I_{\{Y>0\}}(g+h) d t \\
& \quad+I_{\{Y \leq 0\}} \sigma d B_{1}-I_{\{Y \leq 0\}} \rho d B_{2}+I_{\{Y>0\}} \rho d B_{1}-I_{\{Y>0\}} \sigma d B_{2} \\
= & -\lambda \operatorname{sgn}(Y(t)) d t+d W,
\end{aligned}
$$

where

$$
\begin{aligned}
\lambda= & g+h>0, \\
d W= & \sigma \underbrace{\left(I_{\{Y \leq 0\}} d B_{1}-I_{\{Y>0\}} d B_{2}\right)}_{d W_{1}} \\
& +\rho \underbrace{\left(I_{\{Y>0\}} d B_{1}-I_{\{Y \leq 0\}} d B_{2}\right)}_{d W_{2}}
\end{aligned}
$$

The sum process
Define

$$
Z(t)=X_{1}(t)+X_{2}(t)
$$

The sum process
Define

$$
Z(t)=X_{1}(t)+X_{2}(t) .
$$

Then

$$
\begin{gathered}
d Z=(g-h) d t+I_{\{Y \leq 0\}} \sigma d B_{1}+I_{\{Y \leq 0\}} \rho d B_{2} \\
+I_{\{Y>0\}} \rho d B_{1}+I_{\{Y>0\}} \sigma d B_{2}
\end{gathered}
$$

The sum process
Define

$$
Z(t)=X_{1}(t)+X_{2}(t) .
$$

Then

$$
\begin{aligned}
d Z= & (g-h) d t+I_{\{Y \leq 0\}} \sigma d B_{1}+I_{\{Y \leq 0\}} \rho d B_{2} \\
& \quad+I_{\{Y>0\}} \rho d B_{1}+I_{\{Y>0\}} \sigma d B_{2} \\
= & \nu d t+d V
\end{aligned}
$$

The sum process
Define

$$
Z(t)=X_{1}(t)+X_{2}(t) .
$$

Then

$$
\begin{aligned}
d Z= & (g-h) d t+I_{\{Y \leq 0\}} \sigma d B_{1}+I_{\{Y \leq 0\}} \rho d B_{2} \\
& \quad+I_{\{Y>0\}} \rho d B_{1}+I_{\{Y>0\}} \sigma d B_{2} \\
= & \nu d t+d V
\end{aligned}
$$

where

$$
\nu=g-h
$$

The sum process
Define

$$
Z(t)=X_{1}(t)+X_{2}(t)
$$

Then

$$
\begin{aligned}
d Z= & (g-h) d t+I_{\{Y \leq 0\}} \sigma d B_{1}+I_{\{Y \leq 0\}} \rho d B_{2} \\
& \quad+I_{\{Y>0\}} \rho d B_{1}+I_{\{Y>0\}} \sigma d B_{2} \\
= & \nu d t+d V
\end{aligned}
$$

where

$$
\begin{aligned}
\nu= & g-h, \\
d V= & \sigma \underbrace{\left(I_{\{Y \leq 0\}} d B_{1}+I_{\{Y>0\}} d B_{2}\right)}_{d V_{1}} \\
& +\rho \underbrace{\left(I_{\{Y>0\}} d B_{1}+I_{\{Y \leq 0\}} d B_{2}\right)}_{d V_{2}}
\end{aligned}
$$

Summary

$$
\begin{aligned}
X_{1}(t)+X_{2}(t) & =Z(t) \\
& =X_{1}(0)+X_{2}(0)+\nu t+V(t),
\end{aligned}
$$

$$
X_{1}(t)-X_{2}(t)=Y(t)
$$

$$
=X_{1}(0)+X_{2}(0)-\lambda \int_{0}^{t} \operatorname{sgn}(Y(s)) d s+W(t)
$$

where V and W are correlated Brownian motions.

Summary

$$
\begin{aligned}
X_{1}(t)+X_{2}(t) & =Z(t) \\
& =X_{1}(0)+X_{2}(0)+\nu t+V(t) \\
X_{1}(t)-X_{2}(t) & =Y(t) \\
& =X_{1}(0)+X_{2}(0)-\lambda \int_{0}^{t} \operatorname{sgn}(Y(s)) d s+W(t)
\end{aligned}
$$

where V and W are correlated Brownian motions.

- To determine transition probabilities for $\left(X_{1}, X_{2}\right)$, it suffices to determine transition probabilites for (Z, Y).

Summary

$$
\begin{aligned}
X_{1}(t)+X_{2}(t) & =Z(t) \\
& =X_{1}(0)+X_{2}(0)+\nu t+V(t) \\
X_{1}(t)-X_{2}(t) & =Y(t) \\
& =X_{1}(0)+X_{2}(0)-\lambda \int_{0}^{t} \operatorname{sgn}(Y(s)) d s+W(t)
\end{aligned}
$$

where V and W are correlated Brownian motions.

- To determine transition probabilities for $\left(X_{1}, X_{2}\right)$, it suffices to determine transition probabilites for (Z, Y).
- (Z, W) is a Gaussian process.
- Y is determined by W by

$$
d Y(t)=-\lambda \operatorname{sgn}(Y(t)) d t+d W(t)
$$

Summary

$$
\begin{aligned}
X_{1}(t)+X_{2}(t) & =Z(t) \\
& =X_{1}(0)+X_{2}(0)+\nu t+V(t) \\
X_{1}(t)-X_{2}(t) & =Y(t) \\
& =X_{1}(0)+X_{2}(0)-\lambda \int_{0}^{t} \operatorname{sgn}(Y(s)) d s+W(t)
\end{aligned}
$$

where V and W are correlated Brownian motions.

- To determine transition probabilities for $\left(X_{1}, X_{2}\right)$, it suffices to determine transition probabilites for (Z, Y).
- (Z, W) is a Gaussian process.
- Y is determined by W by

$$
d Y(t)=-\lambda \operatorname{sgn}(Y(t)) d t+d W(t)
$$

- It suffices to determine the distribution of $(W(t), Y(t))$.

Bang-bang control

Minimize

$$
\mathbb{E} \int_{0}^{\infty} e^{-t} X_{t}^{2} d t
$$

Subject to

$$
X_{t}=x+\int_{0}^{t} u_{s} d s+W_{t}, \quad a \leq u_{t} \leq b, \quad t \geq 0
$$

Bang-bang control

Minimize

$$
\mathbb{E} \int_{0}^{\infty} e^{-t} X_{t}^{2} d t
$$

Subject to

$$
X_{t}=x+\int_{0}^{t} u_{s} d s+W_{t}, \quad a \leq u_{t} \leq b, \quad t \geq 0
$$

Beneš, Shepp \& Witsenhausen (1980): Solution is $u_{t}=f\left(X_{t}\right)$, where

$$
f(x)= \begin{cases}b, & \text { if } x<\delta \\ a, & \text { if } x \geq \delta\end{cases}
$$

and $\delta=\left(\sqrt{b^{2}+2}+b\right)^{-1}-\left(\sqrt{a^{2}+2}-a\right)^{-1}$.

Bang-bang control

Minimize

$$
\mathbb{E} \int_{0}^{\infty} e^{-t} X_{t}^{2} d t
$$

Subject to

$$
X_{t}=x+\int_{0}^{t} u_{s} d s+W_{t}, \quad a \leq u_{t} \leq b, \quad t \geq 0
$$

Beneš, Shepp \& Witsenhausen (1980): Solution is $u_{t}=f\left(X_{t}\right)$, where

$$
f(x)= \begin{cases}b, & \text { if } x<\delta \\ a, & \text { if } x \geq \delta\end{cases}
$$

and $\delta=\left(\sqrt{b^{2}+2}+b\right)^{-1}-\left(\sqrt{a^{2}+2}-a\right)^{-1}$.
What is the transition density for the controlled process X ?
(Beneš, et. al. computed its Laplace transform.)

Transition density by Girsanov

Compute the transition density for X, where

$$
X_{t}=x+\int_{0}^{t} f\left(X_{s}\right) d s+W_{t}
$$

Transition density by Girsanov

Compute the transition density for X, where

$$
X_{t}=x+\int_{0}^{t} f\left(X_{s}\right) d s+W_{t}
$$

Start with a probability measure \mathbb{P}^{X} under which X is a Brownian motion. Define W by

$$
W_{t}=X_{t}-x-\int_{0}^{t} f\left(X_{s}\right) d s
$$

Transition density by Girsanov

Compute the transition density for X, where

$$
X_{t}=x+\int_{0}^{t} f\left(X_{s}\right) d s+W_{t}
$$

Start with a probability measure \mathbb{P}^{X} under which X is a Brownian motion. Define W by

$$
W_{t}=X_{t}-x-\int_{0}^{t} f\left(X_{s}\right) d s
$$

Change to a probability measure \mathbb{P} under which W is a Brownian motion. Compute the transition density for X under \mathbb{P}.

Transition density by Girsanov

Compute the transition density for X, where

$$
X_{t}=x+\int_{0}^{t} f\left(X_{s}\right) d s+W_{t}
$$

Start with a probability measure \mathbb{P}^{X} under which X is a Brownian motion. Define W by

$$
W_{t}=X_{t}-x-\int_{0}^{t} f\left(X_{s}\right) d s
$$

Change to a probability measure \mathbb{P} under which W is a Brownian motion. Compute the transition density for X under \mathbb{P}.

$$
\mathbb{P}\left\{X_{t} \in B\right\}=\mathbb{E}^{X}\left[\left.I_{\left\{X_{t} \in B\right\}} \frac{d \mathbb{P}}{d \mathbb{P}^{X}}\right|_{\mathcal{F}_{t}}\right]
$$

where

$$
\left.\frac{d \mathbb{P}}{d \mathbb{P}^{X}}\right|_{\mathcal{F}_{t}}=\exp \left[\int_{0}^{t} f\left(X_{s}\right) d X_{s}-\frac{1}{2} \int_{0}^{t} f^{2}\left(X_{s}\right) d s\right]
$$

Transition density by Girsanov (continued)

To compute $\mathbb{P}\left\{X_{t} \in B\right\}$, we need the joint distribution of

$$
X_{t}, \quad \int_{0}^{t} f\left(X_{s}\right) d X_{s}, \quad \int_{0}^{t} f^{2}\left(X_{s}\right) d s
$$

Transition density by Girsanov (continued)

To compute $\mathbb{P}\left\{X_{t} \in B\right\}$, we need the joint distribution of

$$
X_{t}, \quad \int_{0}^{t} f\left(X_{s}\right) d X_{s}, \quad \int_{0}^{t} f^{2}\left(X_{s}\right) d s
$$

Assume without loss of generality that $\delta=0$. Define

$$
F(x)=\int_{0}^{x} f(\xi) d \xi= \begin{cases}b x, & \text { if } x \leq 0 \\ a x, & \text { if } x \geq 0\end{cases}
$$

Tanaka's formula implies

$$
F\left(X_{t}\right)=\int_{0}^{t} f\left(X_{s}\right) d X_{s}+\frac{1}{2}(a-b) L_{t}^{X}
$$

SO

$$
\int_{0}^{t} f\left(X_{s}\right) d X_{s}=F\left(X_{t}\right)-\frac{1}{2}(a-b) L_{t}^{X}
$$

Transition density by Girsanov (continued)

To compute $\mathbb{P}\left\{X_{t} \in B\right\}$, we need the joint distribution of

$$
X_{t}, \quad \int_{0}^{t} f\left(X_{s}\right) d X_{s}, \quad \int_{0}^{t} f^{2}\left(X_{s}\right) d s
$$

Assume without loss of generality that $\delta=0$. Define

$$
F(x)=\int_{0}^{x} f(\xi) d \xi= \begin{cases}b x, & \text { if } x \leq 0 \\ a x, & \text { if } x \geq 0\end{cases}
$$

Tanaka's formula implies

$$
F\left(X_{t}\right)=\int_{0}^{t} f\left(X_{s}\right) d X_{s}+\frac{1}{2}(a-b) L_{t}^{X}
$$

so

$$
\int_{0}^{t} f\left(X_{s}\right) d X_{s}=F\left(X_{t}\right)-\frac{1}{2}(a-b) L_{t}^{X}
$$

We need the joint distribution of

$$
X_{t}, \quad L_{t}^{x}, \quad \int_{0}^{t} f^{2}\left(X_{s}\right) d s
$$

Transition density by Girsanov (continued)

Define

$$
\begin{aligned}
& \Gamma_{+}(t)=\int_{0}^{t} I_{(0, \infty)}(X(s)) d s \\
& \Gamma_{-}(t)=\int_{0}^{t} I_{(-\infty, 0)}(X(s)) d s=t-\Gamma_{+}(t)
\end{aligned}
$$

Transition density by Girsanov (continued)

Define

$$
\begin{aligned}
& \Gamma_{+}(t)=\int_{0}^{t} I_{(0, \infty)}(X(s)) d s \\
& \Gamma_{-}(t)=\int_{0}^{t} I_{(-\infty, 0)}(X(s)) d s=t-\Gamma_{+}(t)
\end{aligned}
$$

Then

$$
\int_{0}^{t} f^{2}\left(X_{s}\right) d s=b^{2} \Gamma_{-}(t)+a^{2} \Gamma_{+}(t)=b^{2} t+\left(a^{2}-b^{2}\right) \Gamma_{+}(t)
$$

Transition density by Girsanov (continued)

Define

$$
\begin{aligned}
& \Gamma_{+}(t)=\int_{0}^{t} I_{(0, \infty)}(X(s)) d s \\
& \Gamma_{-}(t)=\int_{0}^{t} I_{(-\infty, 0)}(X(s)) d s=t-\Gamma_{+}(t)
\end{aligned}
$$

Then

$$
\int_{0}^{t} f^{2}\left(X_{s}\right) d s=b^{2} \Gamma_{-}(t)+a^{2} \Gamma_{+}(t)=b^{2} t+\left(a^{2}-b^{2}\right) \Gamma_{+}(t)
$$

We need the joint distribution of

$$
X_{t}, \quad L_{t}^{X}, \quad \Gamma_{+}(t)=\int_{0}^{t} I_{(0, \infty)}\left(X_{s}\right) d s
$$

where X is a Brownian motion.

Trivariate density

Theorem (Karatzas \& Shreve (1984))

Let W be a Brownian motion, let L be its local time at zero, and let

$$
\Gamma_{+}(t) \triangleq \int_{0}^{t} I_{(0, \infty)}\left(W_{s}\right) d s
$$

denote the occupation time of the right half-line. Then for $a \leq 0$, $b \geq 0$, and $0<t<T$,

$$
\begin{aligned}
& \mathbb{P}\left\{W_{T} \in d a, L_{T} \in d b, \Gamma_{+}(T) \in d t\right\} \\
& \quad=\frac{b(b-a)}{\pi \sqrt{t^{3}(T-t)^{3}}} \exp \left[-\frac{b^{2}}{2 t}-\frac{(b-a)^{2}}{2(T-t)}\right] d a d b d t
\end{aligned}
$$

Remark

Because the occupation time of the left half-line is

$$
\Gamma_{-}(T) \triangleq \int_{0}^{T} I_{(-\infty, 0)}\left(W_{t}\right) d t=T-\Gamma_{+}(T)
$$

we also know $\mathbb{P}\left\{W_{T} \in d a, L_{T} \in d b, \Gamma_{-}(T) \in d t\right\}$ for $a \leq 0, b \geq 0$, and $0<t<T$. Applying this to $-W$, we obtain a formula for

$$
\mathbb{P}\left\{W_{T} \in d a, L_{T} \in d b, \Gamma_{+}(T) \in d t\right\}, \quad a \geq 0, b \geq 0,0<t<T
$$

Classic trivariate density

Theorem (Lévy (1948))

Let W be a Brownian motion, let $M_{T}=\max _{0 \leq t \leq T} W_{t}$, and let θ_{T} be the (almost surely unique) time when W attains its maximum on $[0, T]$. Then for $a \in \mathbb{R}, b \geq \max \{a, 0\}$, and $0<t<T$,

$$
\begin{aligned}
& \mathbb{P}\left\{W_{T} \in d a, M_{T} \in d b, \theta_{T} \in d t\right\} \\
& \quad=\frac{b(b-a)}{\pi \sqrt{t^{3}(T-t)^{3}}} \exp \left[-\frac{b^{2}}{2 t}-\frac{(b-a)^{2}}{2(T-t)}\right] d a d b d t
\end{aligned}
$$

The elementary proof uses the reflection principle and the Markov property.

Positive part of Brownian motion

Positive part of Brownian motion

Positive part of Brownian motion

Full decomposition

Full decomposition

Full decomposition

Full decomposition

Local time

Local time at zero of W :

$$
\begin{aligned}
L_{t} & =\frac{1}{2} \int_{0}^{t} \delta_{0}\left(W_{s}\right) d s \\
& =\lim _{\epsilon \downarrow 0} \frac{1}{4 \epsilon} \int_{0}^{t} I_{(-\epsilon, \epsilon)}\left(W_{s}\right) d s \\
& \lim _{\epsilon \downarrow 0} \frac{1}{2 \epsilon} \int_{0}^{t} I_{(0, \epsilon)}\left(W_{s}\right) d s
\end{aligned}=\lim _{\epsilon \downarrow 0} \frac{1}{2 \epsilon} \int_{0}^{t} I_{(-\epsilon, 0)}\left(W_{s}\right) d s .
$$

Tanaka's formula

Tanaka formula:

$$
\max \left\{W_{t}, 0\right\}=\int_{0}^{t} I_{(0, \infty)}\left(W_{s}\right) d W_{s}+\frac{1}{2} \int_{0}^{t} \delta_{0}\left(W_{s}\right) d s
$$

Tanaka's formula

Tanaka formula:

$$
\begin{aligned}
\max \left\{W_{t}, 0\right\} & =\int_{0}^{t} I_{(0, \infty)}\left(W_{s}\right) d W_{s}+\frac{1}{2} \int_{0}^{t} \delta_{0}\left(W_{s}\right) d s \\
& =-B_{t}+L_{t}
\end{aligned}
$$

where

$$
B_{t}=-\int_{0}^{t} I_{(0, \infty)}\left(W_{s}\right) d W_{s}
$$

Tanaka's formula

Tanaka formula:

$$
\begin{aligned}
\max \left\{W_{t}, 0\right\} & =\int_{0}^{t} I_{(0, \infty)}\left(W_{s}\right) d W_{s}+\frac{1}{2} \int_{0}^{t} \delta_{0}\left(W_{s}\right) d s \\
& =-B_{t}+L_{t}
\end{aligned}
$$

where

$$
B_{t}=-\int_{0}^{t} I_{(0, \infty)}\left(W_{s}\right) d W_{s}, \quad\langle B\rangle_{t}=\Gamma_{+}(t)
$$

Tanaka's formula

Tanaka formula:

$$
\begin{aligned}
\max \left\{W_{t}, 0\right\} & =\int_{0}^{t} I_{(0, \infty)}\left(W_{s}\right) d W_{s}+\frac{1}{2} \int_{0}^{t} \delta_{0}\left(W_{s}\right) d s \\
& =-B_{t}+L_{t}
\end{aligned}
$$

where

$$
B_{t}=-\int_{0}^{t} I_{(0, \infty)}\left(W_{s}\right) d W_{s}, \quad\langle B\rangle_{t}=\Gamma_{+}(t)
$$

Then $B_{+}(t) \triangleq B_{\Gamma_{+}^{-1}(t)}$ is a Brownian motion.

Tanaka's formula

Tanaka formula:

$$
\begin{aligned}
\max \left\{W_{t}, 0\right\} & =\int_{0}^{t} I_{(0, \infty)}\left(W_{s}\right) d W_{s}+\frac{1}{2} \int_{0}^{t} \delta_{0}\left(W_{s}\right) d s \\
& =-B_{t}+L_{t}
\end{aligned}
$$

where

$$
B_{t}=-\int_{0}^{t} I_{(0, \infty)}\left(W_{s}\right) d W_{s}, \quad\langle B\rangle_{t}=\Gamma_{+}(t)
$$

Then $B_{+}(t) \triangleq B_{\Gamma_{+}^{-1}(t)}$ is a Brownian motion.
Time-changed Tanaka formula:

$$
W_{+}(t)=-B_{+}(t)+L_{+}(t),
$$

where $L_{+}(t)=L_{\Gamma_{+}^{-1}(t)}$.

Tanaka's formula

Tanaka formula:

$$
\begin{aligned}
\max \left\{W_{t}, 0\right\} & =\int_{0}^{t} I_{(0, \infty)}\left(W_{s}\right) d W_{s}+\frac{1}{2} \int_{0}^{t} \delta_{0}\left(W_{s}\right) d s \\
& =-B_{t}+L_{t}
\end{aligned}
$$

where

$$
B_{t}=-\int_{0}^{t} I_{(0, \infty)}\left(W_{s}\right) d W_{s}, \quad\langle B\rangle_{t}=\Gamma_{+}(t)
$$

Then $B_{+}(t) \triangleq B_{\Gamma_{+}^{-1}(t)}$ is a Brownian motion.
Time-changed Tanaka formula:

$$
W_{+}(t)=-B_{+}(t)+L_{+}(t)
$$

where $L_{+}(t)=L_{\Gamma_{+}^{-1}(t)}$.
Conclusion: W_{+}is a reflected Brownian motion. It is the Brownian motion $-B_{+}$plus the nondecreasing process L_{+}that grows only when W_{+}is at zero.

Skorohod representation

Time-changed Tanaka formula:

$$
W_{+}(t)=-B_{+}(t)+L_{+}(t)
$$

Skorohod representation:
The nondecreasing process added to $-B_{+}$that grows only when $W_{+}=0$ is

$$
L_{+}(t)=\max _{0 \leq s \leq t} B_{+}(s)
$$

In particular,

$$
B_{+}(t)=-W_{+}(t)+L_{+}(t)=-W_{+}(t)+\max _{0 \leq s \leq t} B_{+}(s) .
$$

W_{+}and B_{+}

$$
B_{+}(t)=-W_{+}(t)+L_{+}(t)=-W_{+}(t)+\max _{0 \leq s \leq t} B_{+}(s)
$$

W_{+}and B_{+}

$$
B_{+}(t)=-W_{+}(t)+L_{+}(t)=-W_{+}(t)+\max _{0 \leq s \leq t} B_{+}(s)
$$

W_{+}and B_{+}

$$
B_{+}(t)=-W_{+}(t)+L_{+}(t)=-W_{+}(t)+\max _{0 \leq s \leq t} B_{+}(s)
$$

W_{+}and B_{+}

$$
B_{+}(t)=-W_{+}(t)+L_{+}(t)=-W_{+}(t)+\max _{0 \leq s \leq t} B_{+}(s)
$$

W_{+}and $B_{+} . W_{-}$and B_{-}.

$$
\begin{aligned}
& B_{+}(t)=-W_{+}(t)+L_{+}(t)=-W_{+}(t)+\max _{0 \leq s \leq t} B_{+}(s) \\
& B_{-}(t)=-W_{-}(t)+L_{-}(t)=-W_{-}(t)+\max _{0 \leq s \leq t} B_{-}(s) .
\end{aligned}
$$

W_{+}and $B_{+} . W_{-}$and B_{-}.

$$
\begin{aligned}
& B_{+}(t)=-W_{+}(t)+L_{+}(t)=-W_{+}(t)+\max _{0 \leq s \leq t} B_{+}(s) \\
& B_{-}(t)=-W_{-}(t)+L_{-}(t)=-W_{-}(t)+\max _{0 \leq s \leq t} B_{-}(s) .
\end{aligned}
$$

W_{+}and $B_{+} . W_{-}$and B_{-}.

$$
\begin{aligned}
& B_{+}(t)=-W_{+}(t)+L_{+}(t)=-W_{+}(t)+\max _{0 \leq s \leq t} B_{+}(s) \\
& B_{-}(t)=-W_{-}(t)+L_{-}(t)=-W_{-}(t)+\max _{0 \leq s \leq t} B_{-}(s) .
\end{aligned}
$$

W_{+}and $B_{+} . W_{-}$and B_{-}.

$$
\begin{aligned}
& B_{+}(t)=-W_{+}(t)+L_{+}(t)=-W_{+}(t)+\max _{0 \leq s \leq t} B_{+}(s) \\
& B_{-}(t)=-W_{-}(t)+L_{-}(t)=-W_{-}(t)+\max _{0 \leq s \leq t} B_{-}(s) .
\end{aligned}
$$

W_{+}and $B_{+} . W_{-}$and B_{-}.

$$
\begin{aligned}
& B_{+}(t)=-W_{+}(t)+L_{+}(t)=-W_{+}(t)+\max _{0 \leq s \leq t} B_{+}(s) \\
& B_{-}(t)=-W_{-}(t)+L_{-}(t)=-W_{-}(t)+\max _{0 \leq s \leq t} B_{-}(s) .
\end{aligned}
$$

W_{+}and $B_{+} . W_{-}$and B_{-}.

$$
\begin{aligned}
& B_{+}(t)=-W_{+}(t)+L_{+}(t)=-W_{+}(t)+\max _{0 \leq s \leq t} B_{+}(s) \\
& B_{-}(t)=-W_{-}(t)+L_{-}(t)=-W_{-}(t)+\max _{0 \leq s \leq t} B_{-}(s) .
\end{aligned}
$$

W_{+}and $B_{+} . W_{-}$and B_{-}.

$$
\begin{aligned}
& B_{+}(t)=-W_{+}(t)+L_{+}(t)=-W_{+}(t)+\max _{0 \leq s \leq t} B_{+}(s) \\
& B_{-}(t)=-W_{-}(t)+L_{-}(t)=-W_{-}(t)+\max _{0 \leq s \leq t} B_{-}(s) .
\end{aligned}
$$

W_{+}and $B_{+} . W_{-}$and B_{-}.

$$
\begin{aligned}
& B_{+}(t)=-W_{+}(t)+L_{+}(t)=-W_{+}(t)+\max _{0 \leq s \leq t} B_{+}(s) \\
& B_{-}(t)=-W_{-}(t)+L_{-}(t)=-W_{-}(t)+\max _{0 \leq s \leq t} B_{-}(s) .
\end{aligned}
$$

W_{+}and $B_{+} . W_{-}$and B_{-}.

$$
\begin{aligned}
& B_{+}(t)=-W_{+}(t)+L_{+}(t)=-W_{+}(t)+\max _{0 \leq s \leq t} B_{+}(s) \\
& B_{-}(t)=-W_{-}(t)+L_{-}(t)=-W_{-}(t)+\max _{0 \leq s \leq t} B_{-}(s) .
\end{aligned}
$$

Local time $L_{+}(T)=L_{T}$ time has become the maximum.
$\Gamma_{+}(T)$ has become the time of the maximum.

Personal reflections

In the beginning....

S. Shreve, Reflected Brownian motion in the "bang-bang" control of Browian drift, SIAM J. Control Optimization 19, 469-478, (1981).

In the beginning....

S. Shreve, Reflected Brownian motion in the "bang-bang" control of Browian drift, SIAM J. Control Optimization 19, 469-478, (1981).

Acknowledgment in the paper

The author wishes to acknowledge the aid of V. E.
Beneš, who found an error in some preliminary work on this subject and suggested the applicability of Tanaka's formula. He also wishes to thank the referee for pointing out the uniqueness of the transition density corresponding to the weak solution in Section 5.

In the beginning....

S. Shreve, Reflected Brownian motion in the "bang-bang" control of Browian drift, SIAM J. Control Optimization 19, 469-478, (1981).

Acknowledgment in the paper

The author wishes to acknowledge the aid of V. E.
Beneš, who found an error in some preliminary work on this subject and suggested the applicability of Tanaka's formula. He also wishes to thank the referee for pointing out the uniqueness of the transition density corresponding to the weak solution in Section 5.

- Work on stochastic control (monotone follower, bounded variation follower, finite-fuel,)

In the beginning....

S. Shreve, Reflected Brownian motion in the "bang-bang" control of Browian drift, SIAM J. Control Optimization 19, 469-478, (1981).

Acknowledgment in the paper

The author wishes to acknowledge the aid of V. E.
Beneš, who found an error in some preliminary work on this subject and suggested the applicability of Tanaka's formula. He also wishes to thank the referee for pointing out the uniqueness of the transition density corresponding to the weak solution in Section 5.

- Work on stochastic control (monotone follower, bounded variation follower, finite-fuel,)
- Work on optimal investment, consumption and duality with John Lehoczky, Suresh Sethi, Gan-Lin Xu, Jaksa Cvitanič
.... and then THE BOOK,
....and then THE BOOK,

Columbia University in the City of New York
department of statistics

New York, N. Y. 10027
618 Mathematics
(212) 280-3852
(212) 280-3682

25 ley 1985

Dear Stere:
I just received in the mail the Dirichlet section for Chapter 4, as well as your introduction and changer (for Dood). I plan to read there things as soon as I can, and get back to you with my comments. It looks like you have put a lot of work into the Dirichlet thing!

This morning I went downtown and delivered to Kaufmann-Bühler his copy of Chapters 1-3 and a copy of the contract. He was "all smiles". He seems to be very pleased with us so far and he liked air deadline of Sept. 1 , 1986. His only advice was a wanking against "too muck perfectionism". Do we suffer from that? Perhaps, I do not know. How can one be too careful with a project like this?

You won't hear from me for some time, because I am still on my extended vocation. Please let me know, though, how the Las Vegas meeting goes.

Greetings to $D_{0} t$ and to the kiddies.
Yours,

and mathematical finance took off.

and mathematical finance took off.

Ten things I learned from loannis Karatzas

Ten things I learned from loannis Karatzas

- Greek culture

Ten things I learned from loannis Karatzas

- Greek culture

10. Macedonia is a province in Greece.

Ten things I learned from loannis Karatzas

- Greek culture

10. Macedonia is a province in Greece.
11. All Greeks plan to return home some day,

Ten things I learned from loannis Karatzas

- Greek culture

10. Macedonia is a province in Greece.
11. All Greeks plan to return home some day, until the opportunity to do so actually arises.

Ten things I learned from loannis Karatzas

- Greek culture

10. Macedonia is a province in Greece.
11. All Greeks plan to return home some day, until the opportunity to do so actually arises.

- Spelling

Ten things I learned from loannis Karatzas

- Greek culture

10. Macedonia is a province in Greece.
11. All Greeks plan to return home some day, until the opportunity to do so actually arises.

- Spelling

8. Lemmata

Ten things I learned from loannis Karatzas

- Greek culture

10. Macedonia is a province in Greece.
11. All Greeks plan to return home some day, until the opportunity to do so actually arises.

- Spelling

8. Lemmata (From the Greek $\lambda \eta \mu \mu \alpha \tau \alpha$; not commonly used in West Virginia dialect.)

Ten things I learned from loannis Karatzas

- Greek culture

10. Macedonia is a province in Greece.
11. All Greeks plan to return home some day, until the opportunity to do so actually arises.

- Spelling

8. Lemmata (From the Greek $\lambda \eta \mu \mu \alpha \tau \alpha$; not commonly used in West Virginia dialect.)
9. Coördinate

Ten things I learned from loannis Karatzas

- Greek culture

10. Macedonia is a province in Greece.
11. All Greeks plan to return home some day, until the opportunity to do so actually arises.

- Spelling

8. Lemmata (From the Greek $\lambda \eta \mu \mu \alpha \tau \alpha$; not commonly used in West Virginia dialect.)
9. Coördinate (Diaeresis: [Ancient Greek] The separate pronunciation of two vowels in a diphthong.)

Ten things I learned from loannis Karatzas

- Greek culture

10. Macedonia is a province in Greece.
11. All Greeks plan to return home some day, until the opportunity to do so actually arises.

- Spelling

8. Lemmata (From the Greek $\lambda \eta \mu \mu \alpha \tau \alpha$; not commonly used in West Virginia dialect.)
9. Coördinate (Diaeresis: [Ancient Greek] The separate pronunciation of two vowels in a diphthong.)

- Scholarship

Ten things I learned from loannis Karatzas

- Greek culture

10. Macedonia is a province in Greece.
11. All Greeks plan to return home some day, until the opportunity to do so actually arises.

- Spelling

8. Lemmata (From the Greek $\lambda \eta \mu \mu \alpha \tau \alpha$; not commonly used in West Virginia dialect.)
9. Coördinate (Diaeresis: [Ancient Greek] The separate pronunciation of two vowels in a diphthong.)

- Scholarship

6. Appreciate the work of others.

Ten things I learned from loannis Karatzas

- Greek culture

10. Macedonia is a province in Greece.
11. All Greeks plan to return home some day, until the opportunity to do so actually arises.

- Spelling

8. Lemmata (From the Greek $\lambda \eta \mu \mu \alpha \tau \alpha$; not commonly used in West Virginia dialect.)
9. Coördinate (Diaeresis: [Ancient Greek] The separate pronunciation of two vowels in a diphthong.)

- Scholarship

6. Appreciate the work of others.
7. Revise, revise, revise.

Ten things I learned from loannis Karatzas

- Greek culture

10. Macedonia is a province in Greece.
11. All Greeks plan to return home some day, until the opportunity to do so actually arises.

- Spelling

8. Lemmata (From the Greek $\lambda \eta \mu \mu \alpha \tau \alpha$; not commonly used in West Virginia dialect.)
9. Coördinate (Diaeresis: [Ancient Greek] The separate pronunciation of two vowels in a diphthong.)

- Scholarship

6. Appreciate the work of others.
7. Revise, revise, revise.

- Advising

Ten things I learned from loannis Karatzas

- Greek culture

10. Macedonia is a province in Greece.
11. All Greeks plan to return home some day, until the opportunity to do so actually arises.

- Spelling

8. Lemmata (From the Greek $\lambda \eta \mu \mu \alpha \tau \alpha$; not commonly used in West Virginia dialect.)
9. Coördinate (Diaeresis: [Ancient Greek] The separate pronunciation of two vowels in a diphthong.)

- Scholarship

6. Appreciate the work of others.
7. Revise, revise, revise.

- Advising

4. Choose excellent students.

Ten things I learned from loannis Karatzas

- Greek culture

10. Macedonia is a province in Greece.
11. All Greeks plan to return home some day, until the opportunity to do so actually arises.

- Spelling

8. Lemmata (From the Greek $\lambda \eta \mu \mu \alpha \tau \alpha$; not commonly used in West Virginia dialect.)
9. Coördinate (Diaeresis: [Ancient Greek] The separate pronunciation of two vowels in a diphthong.)

- Scholarship

6. Appreciate the work of others.
7. Revise, revise, revise.

- Advising

4. Choose excellent students.
5. Teach students to appreciate the work of others and to revise, revise, revise.

Ten things I learned from loannis Karatzas

- Greek culture

10. Macedonia is a province in Greece.
11. All Greeks plan to return home some day, until the opportunity to do so actually arises.

- Spelling

8. Lemmata (From the Greek $\lambda \eta \mu \mu \alpha \tau \alpha$; not commonly used in West Virginia dialect.)
9. Coördinate (Diaeresis: [Ancient Greek] The separate pronunciation of two vowels in a diphthong.)

- Scholarship

6. Appreciate the work of others.
7. Revise, revise, revise.

- Advising

4. Choose excellent students.
5. Teach students to appreciate the work of others and to revise, revise, revise.

- Administration

Ten things I learned from loannis Karatzas

- Greek culture

10. Macedonia is a province in Greece.
11. All Greeks plan to return home some day, until the opportunity to do so actually arises.

- Spelling

8. Lemmata (From the Greek $\lambda \eta \mu \mu \alpha \tau \alpha$; not commonly used in West Virginia dialect.)
9. Coördinate (Diaeresis: [Ancient Greek] The separate pronunciation of two vowels in a diphthong.)

- Scholarship

6. Appreciate the work of others.
7. Revise, revise, revise.

- Advising

4. Choose excellent students.
5. Teach students to appreciate the work of others and to revise, revise, revise.

- Administration

2. Avoid it.

Number one

Number one

1. A professional colleague who is also a friend is more precious than Euros/Drachmae.

Number one

1. A professional colleague who is also a friend is more precious than Euros/Drachmae.

Thank you, Yannis,

Number one

1. A professional colleague who is also a friend is more precious than Euros/Drachmae.

Thank you, Yannis,

for all you have done

- for your students,
- for your colleagues,
- for science,
- and for me personally.

