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The classical Merton problem
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The classical Merton problem

• (Ω,F ,P) ; W standard Brownian motion

• Traded securities {
dSt = µSt dt + σSt dWt , S0 > 0

dBt = 0 , B0 = 1

• Self-financing strategies π0
t (bond allocation), πt (stock allocation)

• Value of allocation Xt = π0
t + πt

dXt = σπt(λ dt + dWt) ; λ =
µ

σ
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Value function

• Trading horizon [0, T ], T <∞

• Utility function at T : U(x), x ≥ 0

• Value function

V (x, t) = sup
A
EP
(
U(XT )/Xt = x

)
• Set of admissible strategies A

A =

{
π : πs ∈ Fs , EP

∫ T

t
π2
s ds < +∞ , Xπ ≥ 0 , a.e.

}
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Optimality and HJB equation

• The value function V : [0,∞)× [0, T ]→ [0,∞)

(HJB)

 Vt + max
π

(
1

2
σ2π2Vxx + µπVx

)
= 0

V (x, T ) = U(x)

• Optimal feedback controls

π∗(x, t) = −λ
σ

Vx(x, t)

Vxx(x, t)

• Optimal wealth process

dX∗s = µπ∗(Xs, s) ds + σπ∗(Xs, s) dWs ; Xt = x

• Optimal allocations : π
0,∗
s = X∗s − π∗s (bond), π∗s = π∗(X∗s , s) (stock)
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Questions

The optimal feedback portfolio and investment weight are given by

π∗(x, t;T ) =
λ

σ
r(x, t;T ) and w∗(x, t;T ) =

λ

σ

r(x, t;T )

x
,

where r is the local risk tolerance function,

r(x, t;T ) = − Vx(x, t;T )

Vxx(x, t;T )

We want to investigate for π∗(x, t;T ), w∗(x, t;T ) and r(x, t;T )

• Spatial monotonicity

• Spatial concavity/convexity

• Temporal monotonicity

• Sensitivities w.r.t. market parameters and horizon (portfolio greeks)
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Fundamental Question

Which properties, qualitative and structural, of quantities prescribed at T (e.g. risk

aversion, risk tolerance, utility, marginal utility, inverse marginal utility, prudence,...)

are propagated to the analogous quantities at previous trading times?

Previous work

• Spatial monotonicity (Borell; same model)

• Time monotonicity (Gollier; discrete time)

• Rich body of work in one-period models (Arrow, Ross, Kimball, Mossin, Roll,

Pratt,...)
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Optimal quantities

and related partial differential equations
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Related PDE

• Value function V (x, t) — HJB equation

Vt −
1

2
λ2 V

2
x

Vxx
= 0 ; V (x, T ) = U(x)

• Wealth function H(x, t) — heat equation

r
(
H(x, t), t

)
= Hx(x, t)

Ht +
1

2
λ2Hxx = 0 ; H(x, T ) = I(e−x) , I = (U ′)(−1)

• Risk tolerance r(x, t) — fast diffusion equation

rt +
1

2
λ2 r2rxx = 0 ; r(x, T ) = −U

′(x)

U ′′(x)

• Risk aversion γ(x, t) — porous medium equation

γt −
1

2
λ2
(

1

γ

)
xx

= 0 ; γ(x, T ) = −U
′′(x)

U ′(x)
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Related PDE and optimal processes

• Wealth function H(x, t) — heat equation

r
(
H(x, t), t

)
= Hx(x, t)

Ht +
1

2
λ2Hxx = 0 ; H(x, T ) = I(e−x) , I = (U ′)(−1)

• Optimal wealth process (for convenience, initial time is set at zero)

X
∗,x
t = H

(
H(−1)(x, 0) + λ2t + λWt, t

)
• Optimal stock allocation process

π
∗,x
t =

λ

σ
Hx
(
H(−1)(X

∗,x
t , t), t

)
=
λ

σ
Hx
(
H(−1)(x, 0) + λ2t + λWt, t

)

The above optimal processes, X
∗,x
t and π

∗,x
t , are readily constructed via dual-

ity arguments but the above alternative representations are quite convenient for

addressing the questions herein.
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Temporal and spatial properties

of optimal portfolios
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Spatial monotonicity of local risk tolerance

Result: If the investor’s risk tolerance RT (x) = −U
′(x)

U ′′(x)
is increasing, then, for all

t ∈ [0, T ), the local risk tolerance r(x, t) is also increasing in x.

Proof: Recall that r(H(x, t), t) = Hx(x, t) with
Ht +

1

2
λ2Hxx = 0 ; H(x, T ) = I(e−x)

Hxt +
1

2
λ2Hxxx = 0 ; Hx(x, T ) = −e−xI ′(e−x) > 0

Therefore, rx(x, t) =
Hxx(H(−1)(x, t), t)

Hx(H(−1)(x, t), t)

Similarly, RT ′(x) =
Hxx(H(−1)(x, T ), T )

Hx(H(−1)(x, T ), T )
and RT ′(x) > 0

A direct application of the comparison principle for the heat equations
satisfied by Hx and Hxx yields the result. The above provides a short proof
of Borell’s result.
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Spatial concavity/convexity of local risk tolerance

Result: If the investor’s risk tolerance RT (x) is concave/convex, then, for all

t ∈ [0, T ), the local risk tolerance r(x, t) is also concave/convex.

Proof: Using again that r(H(x, t), t) = Hx(x, t), we deduce

rxx(x, t) =
1

r2(x, t)
det

∣∣∣∣∣∣Hx(H(−1), t) Hxx(H(−1), t)

Hxx(H(−1), t) Hxxx(H(−1), t)

∣∣∣∣∣∣
Similarly

RT ′′(x) =
1

RT 2(x)
det

∣∣∣∣∣∣Hx(H(−1), T ) Hxx(H(−1), T )

Hxx(H(−1), T ) Hxxx(H(−1), T )

∣∣∣∣∣∣
The sign of the above Hankel determinants depends on the

log concavity/log convexity of the function Hx(x, t), 0 ≤ t ≤ T .
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Proof (con’d)

On the other hand, Hx solves the heat equation

Hxt +
1

2
λ2Hxxx = 0 ; Hx(x, T ) = −e−xI ′(e−x)

Moreover, RT (x) is concave/convex iff Hx(x, T ) is log concave/log convex.

Classical results for the heat equation (e.g., Keady (1990)) yield the

preservation of log concavity/log convexity of the solution Hx(x, t).

15



Temporal monotonicity of risk tolerance

Result: If the investor’s risk tolerance RT (x) is concave/convex, then, the local risk

tolerance r(x, t) is increasing/decreasing with respect to time.

Proof: The fast diffusion equation yields

rt +
1

2
λ2r2rxx = 0 ; r(x, T ) = RT (x)

If RT (x) is concave/convex, the previous result yields that r(x, t) is also

concave/convex.

Then, the above equation gives that rt > 0 (< 0).

Therefore, if the investor’s risk tolerance RT (x) is concave/convex,

then, the optimal feedback stock allocation, π∗(x, t) = λ
σr(x, t),

increases/decreases as the time to maturity decreases.
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Robustness of risk tolerance

and dependence on market parameters
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Comparison result

Result: Assume that RT 1(x) ≤ RT 2(x), all x ≥ 0. Then, for all x ≥ 0,

r1(x, t) ≤ r2(x, t) , t ∈ [0, T ) .

Proof: Recall that r solves rt +
1

2
λ2r2rxx = 0.

Comparison for such equations might not hold.

Let F (x, t) = r2(x, t). Then F solves the quasilinear equation

Ft +
1

2
FFxx −

1

4
F 2
x = 0 ; F (x, t) = RT 2(x)

Establish comparison for the above equation (use results of Fukuda et al. (1993)).

Use positivity of risk tolerance to conclude.

Previous comparison results were produced for RT i(x) being linear ((Huang-Z.),

(Back et al.)). The above result was proved by a combination of duality and

penalization arguments by Xia.
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Consequences of the comparison result

Recall that π∗(x, t) and r(x, t) solve

π∗t +
1

2
σ2π∗π∗xx = 0 ; π∗(x, T ) =

λ

σ
RT (x)

rt +
1

2
λ2r2rxx = 0 ; r(x, t) = RT (x)

Result: If RT (x) is concave/convex, then r(x, t) is increasing/decreasing with

respect to the stock’s Sharpe ratio λ.

Proof: RT (x) concave −→ r(x, t) concave. If λ1 ≤ λ2, then r1(x, t) satisfies

r1,t +
1

2
λ2

1r
2
1r1,xx = r1,t +

1

2
λ2

2r
2
1r1,xx +

1

2
(λ2

1 − λ
2
2)r2

1r1,xx︸ ︷︷ ︸
>0

≥ r1,t +
1

2
λ2

2r
2
1r1,xx .

Therefore, r1 is a subsolution to the equation satisfied by r2, and, thus

r1(x, t) ≤ r2(x, t)
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Consequences of the comparison result (con’d)

• If RT (x) is concave/convex, then r(x, t) is increasing/decreasing with

respect to the mean rate of return, µ, and decreasing/increasing with respect

to the volatility σ.

• The optimal portfolio π∗(x, t;σ, λ) =
λ

σ
r(x, t;σ, λ) is always increasing in λ

and decreasing in σ.

• If RT (x) is concave/convex, then for all (x, t),

r(x, t) ≤
(≥)

RT ′(0)x and π∗(x, t) ≤ λ

σ
RT ′(0)x
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The optimal wealth process

and space-time harmonic functions
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The optimal wealth process

X
∗,x
t = H

(
H(−1)(x, 0) + λ2t + λWt, t

)
where

Ht +
1

2
λ2Hxx = 0 ; H(x, T ) = I(e−x)

• Therefore, the process

H(−1)(X
∗,x
t )−H(−1)(x, 0) = λ2t + λWt

is independent of risk preferences, across all investors!

• The function H(−1) plays a very important role in several key calculations.

(See, also, a recent preprint of Shkolnikov (2012))
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The inverse wealth function H(−1)

• The function h(x, t) = H(−1)(x, t) solves the “reciprocal” HJB equation,

ht +
1

2
λ2 hxx

h2
x

= 0 ; h(x, T ) =
(
I(e−x)

)(−1)

• Spatial increment

H(−1)(y, t)−H(−1)(x, t) =

∫ y

x
γ(z, t) dz

• Temporal increment

H(−1)(x, t)−H(−1)(x, s) =
1

2

∫ t

s
rx(x, ρ) dρ
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Important application

The transition probability of the optimal wealth process

P
(
X
∗,x
t ≤ y

)
= P

(
H
(
H(−1)(x, 0) + λ2t + λWt, t

)
≤ y

)
= P

(
λ2t + λWt ≤ H(−1)(y, t)−H(−1)(x, 0)

)
= P

(
λWt ≤

(
H(−1)(y, t)−H(−1)(x, t)

)︸ ︷︷ ︸
aggregate risk aversion

(space)

+
(
H(−1)(x, t)−H(−1)(x, 0)

)︸ ︷︷ ︸
aggregate derivative

of risk tolerance
(time)

−λ2t

)
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Therefore,

P(X
∗,x
t ≤ y) = P

(
Wt ≤

1

λ

(∫ y

x
γ(z, t) dz +

1

2

∫ t

0
rx(x, s) ds

)
− λt

)

= N
(

1

λ
√
t
A(x, y, 0, t)− λ

√
t

)
;

A(x, y, 0, t) =

∫ y

x
γ(z, t) dz +

1

2

∫ t

0
rx(x, s) ds

Moreover,

• ∂

∂y
P(X

∗,x
t ≤ y) =

1

λ
√
t
γ(y, t)n

( 1

λ
√
t
A(x, y, 0, t)− λ

√
t
)

• ∂

∂x
P(X

∗,x
t ≤ y) =

(
−γ(x, t)

λ
√
t

+
1

2

∫ t

0
rxx(x, s) ds

)
n
( 1

λ
√
t
A(x, y, 0, t)− λ

√
t
)

• ∂

∂t
P(X

∗,x
t ≤ y) =

∂

∂t

(
1

λ
√
t
A(x, y, 0, t)− λ

√
t

)
n

(
1

λ
√
t
A(x, y, 0, t)− λ

√
t

)
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Special case: y = x

P(X
∗,x
t ≤ x) = P

(
Wt ≤

1

2λ
√
t

∫ t

0
rx(x, s) ds− λ

√
t

)

• ∂P
∂x

(X∗,xt ≤ x) =

(
1

2λ
√
t

∫ t

0
rxx(x, s) ds

)
n

(
1

2λ
√
t

∫ t

0
rx(x, s) ds− λ

√
t

)

• ∂P
∂t

(X∗,xt ≤ x) =
λ

2
√
t

(
1

λ2
rx (x, t)− 1

2λ2t

∫ t

0
rx (x, s) ds− 1

)
n

(
1

2λ
√
t

∫ t

0
rx(x, s) ds− λ

√
t

)

Therefore,

• If RT (x) is concave/convex, then P(X
∗,x
t ≤ x) is decreasing/increasing with

respect to x, for all t ∈ [0, T )

• If RT ′(x) < λ2, then P(X
∗,x
t ≤ x) is decreasing with respect to t, for all

x ≥ 0; stricter bounds may be obtained from further assumptions on RT ′ (x) .
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Extensions

27



Temporal propagation of key properties

at maturity
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Some properties at T which also hold at t ∈ [0, T )

• Monotonicity of utility function

• Concavity of utility function

• Monotonicity of absolute risk tolerance

• Monotonicity of relative risk tolerance

• Concavity/convexity of absolute risk tolerance

• Positivity of prudence

Are there other meaningful and intuitive properties (qualitative or structural)

which also propagate?
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Investment horizon flexibility

30



Investment horizon flexibility

• So far,

V (x, s;T ) U(x)

| | | |
0 t s T

• What if the investor decides at intermediate time, say s ∈ (t, T ), to prolong

the investment horizon?

U(x)

| | | |
0 t s T

>

• Can this be done? How and how far out? What criterion do we impose

in the “new horizon”?
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Flexible investment horizon, optimality

and time consistency

Essentially, we are looking for T and UT such that

V (x, s;U, T ) U(x) U(x)

| | | | |
0 t s T T

V (x, s;U, T )

We must have

V (x, s;U, T ) = V (x, s;U, T ) !

Is this always possible?
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Main results

• Let I(x) = (U ′)(−1)(x). Then, if the function I(e−x) is absolutely

monotonic, the Merton problem can be extended for every T > T .

• If I(e−x) is absolutely monotonic, the Bernstein-Widder theorem yields,

for a positive finite measure ν,

I(e−x) =

∫ +∞

0
exyν(dy)

• Therefore, I(x) is completely monotonic of the form,

I(x) =

∫ +∞

0
x−yν(dy)
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• Moreover, if I(x) = (U ′)(−1)(x) is of this form, the inverse marginal value

function is of the same form, i.e.

V
(−1)
x (x, t) =

∫ +∞

0
x−yν(t, dy) 0 < t < T

• In other words, complete monotonicity of (U ′)(−1)(x) at T is inherited to the

inverse of the marginal value function.

• This is in contrast of classical results of complete monotonicity of U ′

(Brockett-Golden, Hammond, Gaballé and Pomansky, Bennett,...)
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Summary of results

U ′(x) C.M. I(x) C.M.

U(x) stochastic dominance U(x) stochastic dominance
of any degree up to degree 3

Vx(x, t) fails to inherit C.M. V
(−1)
x (x, t) preserves C.M.

Merton problem extends
to arbitrary horizon

?
— — —> <\— — — — — —/

No
U ′ C.M. =⇒I C.M./

y y

×
y y

y
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