Lecture 9
Thursday, February 21, 2019 9:13 AM

Covering space
\[P: (\tilde{X}, \tilde{x}_0) \to (X, x_0) \]
\[\pi_1(P(X, x_0)) \subset \pi_1(X, x_0) \]

Lemma If covering spaces \((\tilde{X}_1, P_1)\) and \((\tilde{X}_2, P_2)\) are isomorphic by \(f: \tilde{X}_1 \to \tilde{X}_2\) that \(f(\tilde{x}_1) = \tilde{x}_2\) then
\[P_1^* (\pi_1(\tilde{X}_1, \tilde{x}_1)) = P_2^* (\pi_1(\tilde{X}_2, \tilde{x}_2)) \]

Proof \[P_2 \circ f = P_1 \Rightarrow P_2^* \circ f^* = P_1^* \]

\[\Rightarrow \text{Im } P_{2*} = \text{Im } P_{1*} \]

Example
\[\pi_1(\tilde{X}_1, \tilde{x}_1) \]

\[P_1 \]

\[a, b, a^2, b^2, ab, a^{-1}b \]

\[\text{Im } P_{1*} \neq \text{Im } P_{2*} \text{ because if } a \in \text{Im } P_{2*} \Rightarrow b \in \text{Im } P_{2*} \Rightarrow \text{Im } P_{2*} = \langle a, b \rangle \cdot \tilde{x}_1 \]

Example
\[\chi = \mathbb{RP}^2 \lor \mathbb{RP}^2 \]

\[\text{2-sheeted cover } S^2 \to \mathbb{RP}^2 \]

\[\tilde{X}_1 \to [x] \]

\[\pi_1(\mathbb{RP}^2 \lor \mathbb{RP}^2) \sim \mathbb{Z}_2 \times \mathbb{Z}_2 \]

\[p_1^* (\pi_1(\tilde{X}, \tilde{x}_1)) \text{ is the subgroup } \mathbb{Z}_2 \times \{0\} \]
Thm: Suppose X is path connected and locally path connected. Any two covering spaces (\tilde{X}_1, p_1) and (\tilde{X}_2, p_1) of X with $P_1(p_1(\tilde{x}_1)) = P_1(p_1(\tilde{x}_2))$ are isomorphic by $f: \tilde{X}_1 \to \tilde{X}_2$ s.t. $f(\tilde{x}_1) = \tilde{x}_2$ ($p_2 \circ f = p_1$).

Prop (Lifting Property): Let (\tilde{X}, p_1) be a covering space of X. For a path connected and locally path connected space Y, a map $f: (Y, y_0) \to (X, x_0)$ has a lift \tilde{f} s.t. $\tilde{f}(y_0) = \tilde{x}_0$ iff $f_*(\pi_1(Y, y_0)) \subseteq P_1(\pi_1(\tilde{X}, \tilde{x}_0))$.

Proof: If such a lift exists, it is unique.

Proof of Thm: X locally path connected, then \tilde{X}_1 and \tilde{X}_2 are locally path connected. The lifts of P_2 are unique:

Prop (Lifting Property) Part 1: $(\Rightarrow) P_1 \tilde{f} = \tilde{f} \Rightarrow P_1 \tilde{f}_* = \tilde{f}_*$.

Diagram: $P_1 \tilde{f}_* = \tilde{f}_*$ for $f_*(\pi_1(Y, y_0)) = P_1(\tilde{f}_*(\pi_1(Y, y_0)))$.

Proof: $P_1 \tilde{f}_* = \tilde{f}_*$ for $f_*(\pi_1(Y, y_0)) = P_1(\tilde{f}_*(\pi_1(Y, y_0)))$.

Diagram: $P_1 \tilde{f}_* = \tilde{f}_*$ for $f_*(\pi_1(Y, y_0)) = P_1(\tilde{f}_*(\pi_1(Y, y_0)))$. $\tilde{f}_* \tilde{f} = \tilde{f}$ uniqe, $\tilde{1} = \tilde{P}_2 \tilde{P}_1 = \tilde{P}_1 \tilde{P}_2$. Similarly, $\tilde{P}_1 \tilde{P}_2 = \tilde{1}$.
(\Leftarrow) Construct $\tilde{f} : \tilde{f}(y_0) = \tilde{z}_0$.

$\tilde{z}_0 \xrightarrow{\tilde{f}} \tilde{f}(y) \xrightarrow{p} f(y)$

Def $\tilde{f}(y) = \tilde{f}_Y(1)$

Well-defined: Y, \tilde{Y}' loop based at y_0

$\Rightarrow \tilde{f}_* \left([Y, \tilde{Y}'] \right) = [\tilde{f}_Y, \tilde{f}_Y'] \in \pi_1(\tilde{X}, \tilde{z}_0)$

\Rightarrow lift of $\tilde{f}_Y, \tilde{f}_Y'$ starting at \tilde{z}_0 is a loop.

$\Rightarrow \tilde{f}_Y(1) = \tilde{f}_Y'(1)$

Continuous: Let U be an evenly covered open nbhd of $f(y)$ i.e. $p^{-1}(U) = \bigcup U_\alpha$

where $p : \tilde{U}_\alpha \to U$ is a homeo. for all α. Let \tilde{U} be the lift of U st. $\tilde{f}(y) \subseteq \tilde{U}$. Consider a path connected nbhd $y \in V$ st. $f(v) \subseteq U$. For any $y' \in V$, \exists a path η from y to y' in V. Then $f\eta \subseteq U$. Lift of $f\eta$ starting at $\tilde{f}(y)$ is $(p|_U)^{-1} f\eta$. Thus $\tilde{f}(y') \subseteq \tilde{U} = \tilde{f}(v) \subseteq \tilde{U}$.
Part 2 (Uniqueness) Let \(\tilde{f}_1 \) and \(\tilde{f}_2 \) be lifts of \(f \), and suppose
\[
\tilde{f}_1(y) \neq \tilde{f}_2(y).
\]
Take an evenly covered nbhd \(U \) of \(f(y) \).

Suppose \(\tilde{f}_1(y) \in \tilde{U}_1 \) and \(\tilde{f}_2(y) \in \tilde{U}_2 \) be lifts of

\[
\tilde{f}(y) \in \tilde{U}_1 \quad \text{and} \quad \tilde{f}(y) \in \tilde{U}_2.
\]

\[u \text{ s.t. } p: \tilde{U}_1 \to U \text{ and } p: \tilde{U}_2 \to U \text{ is a homeo.} \]

\[\exists \text{ a nbhd } y \in V \text{ s.t. } \tilde{f}_1(v) \subset \tilde{U}_1 \text{ and } \tilde{f}_2(v) \subset \tilde{U}_2. \]

i.e. for \(v \in V \), \(\tilde{f}_1(v) \neq \tilde{f}_2(v) \) \(\Rightarrow \) The set of pts that \(\tilde{f}_1(v) = \tilde{f}_2(v) \)

is open.

Suppose \(\tilde{f}_1(y) = \tilde{f}_2(y) \). Take an evenly covered nbhd \(U \) of \(f(y) \) and

a lift \(\tilde{U} \) of \(U \) containing \(\tilde{f}_1(y) = \tilde{f}_2(y) \). Consider a nbhd \(V \)

s.t.

\[
\tilde{f}_1(v), \tilde{f}_2(v) \subset \tilde{U}.
\]

\[
f = p_{\tilde{f}_1} = p_{\tilde{f}_2}, \quad p: \tilde{U} \to U \quad \Rightarrow \quad \tilde{f}_1|_V = \tilde{f}_2|_V = (p|_U)^{-1}f
\]

\(\Rightarrow \) The set of pts that \(\tilde{f}_1 = \tilde{f}_2 \) is open.

Since \(Y \) is connected, \(\tilde{f}_1(y_0) = \tilde{f}_2(y_0) = \tilde{x}_0 \), we have \(\tilde{f}_1 = \tilde{f}_2 \).

Q Suppose \(X \) is path-connected and locally path-connected. Given a

Subgroup \(H \subset \pi_1(X, x_0) \), do there exist a path-connected covering space

\(p: (\tilde{X}, \tilde{x}_0) \to (X, x_0) \text{ s.t. } \pi_1(\tilde{X}, \tilde{x}_0) = H \)?

Special case \(H = \{e\} \Rightarrow \pi_1(\tilde{X}, \tilde{x}_0) = \text{trivial}. \)

Def A simply connected covering space \(p: \tilde{X} \to X \) is called a

universal cover of \(X \).