Recall: Covering Space \(P : (\tilde{X}, \tilde{x}_0) \to (X, x_0) \) implies Subgroup \(P_* (\pi_1 (\tilde{X}, \tilde{x}_0)) \subset \pi_1 (X, x_0) \) is invariant under isom.

Prop: Suppose \(X \) is path connected and locally path connected. Then any two path connected Covering Space \(p_1 : (\tilde{X}_1, \tilde{x}_1) \to (X, x_0) \) with \(p_1_* (\pi_1 (\tilde{X}_1, \tilde{x}_1)) = p_2_* (\pi_1 (\tilde{X}_2, \tilde{x}_2)) \)

are iso via an isom. \(f : \tilde{X}_1 \to \tilde{X}_2 \) s.t. \(f(\tilde{x}_1) = \tilde{x}_2 \).

Prop (Lifting property)

\[\begin{array}{ccc}
\tilde{X} & \xrightarrow{f} & \tilde{X} \\
P: \text{Covering Space} & & \text{Covering Space} \\
(\tilde{Y}, \tilde{y}_0) & \xrightarrow{f} & (X, x_0) \\
\end{array} \]

0. A lift \(\tilde{f} \) exists \iff \(f_* (\pi_1 (\tilde{Y}, \tilde{y}_0)) \subset P_* (\pi_1 (\tilde{X}, \tilde{x}_0)) \)

0. Lift \(\tilde{f} \) is unique.

Proof: (\(\Rightarrow \)) \checkmark

(\(\Leftarrow \)) To prove a lift \(\tilde{f} \),

\[\tilde{f}(\tilde{y}_0) = \tilde{x}_0. \]

\[\begin{array}{ccc}
\tilde{y}_0 & \xrightarrow{\tilde{f}} & \tilde{x}_0 \\
\tilde{f}(\tilde{y}_0) = \tilde{x}_0 & \Rightarrow & \tilde{f}(\tilde{y}) = \tilde{f}(\tilde{y}(1)) \\
\tilde{f}(\tilde{y}) & \xrightarrow{P} & x_0 \\
\end{array} \]

Well-defined: \checkmark

0. Continuous: Let \(\tilde{U} \) be an open nbd of \(\tilde{f}(y) \). We need to show that there exists an open nbd \(V \) of \(y \) s.t. \(\tilde{f}(V) \subset \tilde{U} \). Let \(U' \) be an evenly covered nbd of \(f(y) \) and \(\tilde{U}' \) be a lift of \(U' \) containing \(\tilde{f}(y) \) s.t. \(p: \tilde{U}' \to U' \) is a homeo.

Then \(\tilde{U} \cap \tilde{U}' \) is an open nbd of \(\tilde{f}(y) \) and \(P(\tilde{U} \cap \tilde{U}') \) is a homeo. \(f \) is conti.

0. Let \(V \) be a path connected open nbd of \(y \) s.t. \(f(V) \subset P(\tilde{U} \cap \tilde{U}') \).

For any \(y' \in V \), take a path \(\eta \) from \(y \) to \(y' \). Then \(\tilde{f}(y') = \tilde{f}(\eta(1)) = \tilde{f}(\eta) \), so \(\tilde{f}(y') \in \tilde{U} \cap \tilde{U}' \) is a lift of \(f(y') \) starting at \(\tilde{f}(y) \) lying in \(\tilde{U} \cap \tilde{U}' \Rightarrow \tilde{f}(y') \in \tilde{U} \cap \tilde{U}' \).

0. Uniqueness: Let \(\tilde{f}_1 \) and \(\tilde{f}_2 \) be lifts of \(f \). Suppose \(\tilde{f}(y) = \tilde{f}_2(y) \). Then take an evenly covered nbd \(U \) of \(f(y) \) and suppose \(\tilde{f}(y) \in \tilde{U} \) and \(\tilde{f}_2(y) \in \tilde{U}_2 \) are lifts.
of U such that $p: \tilde{U}_1 \rightarrow U$ and $p: \tilde{U}_2 \rightarrow U$ is a homeo.

If f_1 and f_2 are Conti \Rightarrow there is a nbd V of y st. $f_1(V) \subset \tilde{U}_1$
and $f_2(V) \subset \tilde{U}_2$ \Rightarrow $f_1(y) = f_2(y)$ for any $y \in V$ \Rightarrow The set of pts \tilde{y} where $f_1(y) = f_2(y)$ is open.

Suppose $y \in Y$ be a pt s.t. $\tilde{f}_1(y) = \tilde{f}_2(y)$. Take an evenly covered nbd U of $f_1(y)$ and
a lift \tilde{U} of U containing $\tilde{f}_1(y) = \tilde{f}_2(y)$ as above. Then for a nbd V of y we have
$\tilde{f}_1(V), \tilde{f}_2(V) \subset \tilde{U}$. $\tilde{f}_1 = \tilde{f}_2$ and $p: \tilde{U} \rightarrow U$ is a homeo. \Rightarrow p is injective on \tilde{U}.

\Rightarrow $f_1 = f_2$ on V. The set of pts where $\tilde{f}_1 = \tilde{f}_2$ is open.

\Rightarrow Y is connected and $\tilde{f}_1(y_0) = \tilde{f}_2(y_0) = \tilde{x}_0$ implies that $\tilde{f}_1 = \tilde{f}_2$.

Prop. $p: (X, x_0) \rightarrow (X, x_0)$ is a path connected covering space of a path connected space X.

The cardinality of the fiber $p^{-1}(x_0)$ is equal to the index of $p_*(\pi_1(X, x_0))$ in
$\pi_1(X, x_0)$.

PF. Let $H = p_*(\pi_1(X, x_0))$, let $\Phi: \text{Cosets of } H \rightarrow p^{-1}(x_0)$

$H[g] \rightarrow \Phi_p([g]) = \tilde{g}(1)$

Well-defined: $H[g_1] = H[g_2] \Rightarrow [g_1][g_2]^{-1} \in H$

$\Rightarrow [g_1][g_2]^{-1} \in H \Rightarrow \tilde{g}_1 \cdot \tilde{g}_2^{-1}$ is a loop.

$\Rightarrow \tilde{g}_1 \cdot \tilde{g}_2^{-1}(1) = \tilde{x}_0 \Rightarrow \tilde{g}_1(1) = \tilde{g}_2(1)$

Surjective: \hat{X} is path connected. For $\tilde{x} \in p^{-1}(x_0)$ take a path γ connecting \tilde{x}_0
to \tilde{x} \Rightarrow let $g = p(\gamma) \Rightarrow \Phi(H[g]) = \hat{\gamma}$.

Injective: Suppose $\Phi(H[g_1]) = \Phi(H[g_2])$ \Rightarrow $\tilde{g}_1(1) = \tilde{g}_2(1)$

$\Rightarrow \tilde{g}_1 \cdot \tilde{g}_2$ is the lift of $g_1 \cdot g_2$. $\Rightarrow [g_1, g_2] \in H$

$\Rightarrow [g_1][g_2]^{-1} \in H \Rightarrow H[g_1] = H[g_2]$.

Q: Suppose X is path connected and locally path connected. Let $H < \pi_1(X, x_0)$. Is there
a path-connected covering space $p: \hat{X} \rightarrow (X, x_0)$ s.t. $p_*(\pi_1(\hat{X}, \hat{x}_0)) = H$?

NO

Def. A top. space X is semi-locally simply connected if for any $x \in X$ there exists
a nbd U of x such that $\pi_1(U, x_2) \rightarrow \pi_1(X, x)$ is trivial.

Why thin Condition is necessary? Let H be the trivial subgroup. Then $p_*(\pi_1(\hat{X}, \hat{x}_0)) = H$
$\Rightarrow \pi_1(\hat{X}, \hat{x}_0)$ is trivial $\Rightarrow \hat{X}$ is simply connected. Take an evenly covered nbd U of x and
let \tilde{U} be a lift of U st. $p: \tilde{U} \rightarrow U$ is a homeo. For any $\tilde{f} \in \pi_1(\tilde{U}, \tilde{x})$, $p^{-1}[\tilde{U}]$.

New Section 1 Page 2
is homotopically trivial in \tilde{X}. Compare null homotopy with p, shows f is null hom.

in $X \xrightarrow{\pi_1(U, x)} \pi_1(X, z)$ is trivial.

Prop: Suppose X is path connected, locally path connected and semi-locally simply connected. Then for any subgroup $H < \pi_1(X, x_0)$ there is a path connected covering space $p: (\tilde{X}_H, \tilde{x}_0) \to (X, x_0)$ such that $p_*(\pi_1(\tilde{X}_H, \tilde{x}_0)) = H$.

Def: The simply connected covering space $p: \tilde{X} \to X$ is called the universal cover of X.

why? \tilde{X} is a covering space for every other covering space of X.

EX: $p: \mathbb{R} \to S^1$

$t \mapsto (\cos(2\pi t), \sin(2\pi t))$

$p_n: S^1 \to S^1$

$z \mapsto z^n$

Covering map

Ex: Möbius band

Universal Cover:

Simply Connected

2-sheeted

cylinder

Ex: Torus

Universal Cover: \mathbb{R}^2

Similarly: \mathbb{R}^2 with an app. map p is the universal cover of the Klein bottle.

EX: \mathbb{R}^2

Universal Cover
Ex. \(\mathbb{R}P^n \cong S^n_{(x \sim -x)} \Rightarrow q: S^n \to \mathbb{R}P^n \) is a covering space. For \(n \geq 2 \), \(S^n \) is simply connected \(\Rightarrow (S^n, q) \) is the universal cover of \(\mathbb{R}P^n \) for \(n \geq 2 \).

\((\mathbb{R}P^1 \cong S^1 \Rightarrow \text{it's universal cover is } \mathbb{R}^1).\)

Idea of proof for H = trivial subgroup:

Suppose \(p: (\tilde{X}, \tilde{x}_0) \to (X, x_0) \) be a simply connected covering space.

- \(\tilde{X} \) is simply connected \(\Rightarrow \) for any \(\tilde{x} \in \tilde{X} \) there is a unique homotopy class of path connecting \(\tilde{x}_0 \) to \(\tilde{x} \).

\[\tilde{x}_0 \sim \tilde{x}, \quad \tilde{y} \]

- \(\gamma_1 \tilde{y} \) is null homotopic \(\Rightarrow \gamma_1 \tilde{y} \tilde{y}_2 \sim C_{\tilde{y}_2} \Rightarrow \gamma_1 \tilde{y} \tilde{y}_2 \sim C. \gamma_2 \)

- \(\Rightarrow \) any \(\tilde{x} \in \tilde{X} \) \(\iff \) a homotopy class of paths starting at \(\tilde{x}_0 \)

- \(\iff \) a homotopy class of paths starting at \(x_0 \).

\[\tilde{X} = \{ [x] \mid x \text{ is a path in } X \text{ starting at } x_0 \} \quad p: \tilde{X} \to X \]

Basis for topology: \(U = \{ U \subseteq X \mid U \text{ is path connected, open}, \pi_1(U) \to \pi_1(X), \text{ trivial} \} \)

(Ex: \(U \) is a basis of topology for \(X \))

For any \(U \in \mathcal{U} \), and a path \(\gamma \) from \(x_0 \) to a pt in \(U \)

\[U_{[\gamma]} = \{ [\gamma_0 \eta] \mid \eta \subseteq U \text{ s.t. } \eta(0) = \gamma(1) \} \]

- \(\{ U_{[\gamma]} \} \) form a basis for topology on \(\tilde{X} \)

- \(p: \tilde{X} \to X \) is a covering space \((p: U_{[\gamma]} \to \gamma(1)) \)

* \(\tilde{X} \) is simply connected.

1. path connected : \([\gamma] \in \tilde{X}\)

\[\gamma_t(s) = \begin{cases} \gamma(s) & 0 \leq s \leq t \\ \gamma(t) & 0 \leq t \leq 1 \end{cases} \]

\(t \to [\gamma_t] : \text{path in } \tilde{X} \text{ connecting } [\gamma_0] = [x_0] \text{ to } [\gamma_1] = [\gamma]. \)

It's invalid the lift of \(\gamma \) starting at \([\tilde{x}_0]\), because \(p[\gamma_t] = \gamma(t) \).

\(\Rightarrow \) For any \([\gamma] \in \pi_1(X, x_0) \) lift of \(\gamma \) starting at \([\tilde{x}_0]\) is a path connecting \([\tilde{x}_0]\) to \([\gamma]\). Thus if \(\gamma \) is null homotopic my lift of \(\gamma \) is not a loop.

\(\Rightarrow \text{im}(p_*) \) is the trivial subgroup of \(\pi_1(X, x_0). \)