P = W Conjecture Seminar Notes

Amal Mattoo

1 Wednesday, October 5

There are now two proofs of the P = W conjecture that appeared a few days apart.

1.1 Betti space

Let C be a smooth projective curve over **C**. Considering it in the analytic topology, we have

 $\pi_1(C^{\mathrm{an}}) = \langle \alpha_1, \beta_1, ..., \alpha_g, \beta_g \rangle / (\prod [\alpha_i, \beta_i] = 1)$

Definition 1.1 (Betti space = character variety).

$$\mathcal{M}_B(n,0) := \operatorname{Rep}(n,C) / / \operatorname{GL}_n(\mathbf{C})$$

It is a GIT quotient of $\operatorname{Rep}(n, C) := \{\rho : \pi_1(C^{\operatorname{an}}) \to \operatorname{GL}_n(\mathbf{C})\}.$

Fact 1.2. $\mathcal{M}_B(n,0)$ is an affine variety.

Indeed, $\operatorname{Rep}(n, C)$ is an affine variety given as

$$\{(A_1, B_1, ..., A_g, B_g) \in \operatorname{GL}_n(\mathbf{C})^{2g} : \prod [A_i, B_i] = 1\}$$

and a GIT-quotient of an affine variety is affine.

Definition 1.3 (Twisted character variety).

$$\operatorname{Rep}(n,\ell,C) := \{ (A_1, B_1, ..., A_g, B_g) : \prod [A_i, B_i] = \mu^\ell \}$$

where μ is a primitive *n*-th root of unity. The twisted character variety is $\mathcal{M}_B(n, \ell) := \operatorname{Rep}(n, \ell, C) / / \operatorname{GL}_n(\mathbf{C}).$

Fact 1.4. $\mathcal{M}_B(n, \ell)$ is smooth iff $(n, \ell) = 1$.

For n = 1, $GL_1 = \mathbf{C}^{\times}$, so

$$\mathcal{M}_B(n,0) \simeq \operatorname{Hom}(\pi_1(C^{\operatorname{an}}), \mathbf{C}^{\times}) \simeq \operatorname{Hom}(H_1(C^{\operatorname{an}}), \mathbf{C}^{\times}) \simeq (\mathbf{C}^{\times})^{2g}$$

1.2 De Rham space

Definition 1.5. • Let X/\mathbb{C} be a complex manifold, E be a complex vector bundle on X. A connection is a differential operator

$$\nabla: C^{\infty}(E) \to C^{\infty}(E \otimes \Omega^1)$$

with the property that

$$\nabla(fs) = f\nabla s + df \otimes s$$

for a smooth function f and a section s.

- The curvature of ∇ is $F_{\nabla} := \nabla^2 \in C^{\infty}(\text{End } E \otimes \Omega^1).$
- The connection is *flat* if $F_{\nabla} = 0$.

Theorem 1.6. There is a one to one correspondence between Rep(n, X), local systems on X^{an} of rank n, and vector bundles on X with a flat connection.

Local systems yield a representation via the monodromy representation, and a local system L yields a vector bundle $L \otimes_{\mathbf{C}} \mathcal{O}_X^{\mathrm{an}}$ with $\nabla(L \otimes 1) = 0$.

Let E be a holomorphic vector bundle on X. One can define an operator

$$\overline{\partial}_E: C^{\infty}(E) \to C^{\infty}(E \otimes \Omega^{0,1})$$

as follows. If s_1, \ldots, s_n a local basis of holomorphic sections of E then

$$\overline{\partial}_E(\sum f_i s_i) := \sum \overline{\partial} f_i \otimes s_i$$

The operator $\overline{\partial}_E$ satisfies $\overline{\partial}_E(fs) = f\overline{\partial}_E s + \overline{\partial}f \otimes s$ and $\overline{\partial}_E^2 = 0$.

Theorem 1.7. Holomorphic vector bundles correspond to complex vector bundles with an operator $\overline{\partial}$ satisfying the above requirements.

Consider a connection

$$\nabla \colon C^{\infty} \to C^{\infty}(E \otimes \Omega^{1}) \simeq C^{\infty}(E \otimes \Omega^{1,0}) \oplus C^{\infty}(E \otimes \Omega^{0,1})$$

The (0,1)-part $\nabla^{0,1}$ of ∇ is defined to be the composition of ∇ with the projection $C^{\infty}(E \otimes \Omega^{1}) \to C^{\infty}(E \otimes \Omega^{0,1})$. The flatness of ∇ implies that $(\nabla^{0,1})^{2} = 0$. We thus obtain a holomorphic structure on E and ∇ becomes a holomorphic connection. By definition, a holomorphic connection ∇ on a holomorphic vector bundle E is a connection such that $\nabla^{0,1} = \overline{\partial}_{E}$.

Fact 1.8. Let C be a projective curve. Complex vector bundles with a flat connection on C are in one-to-one correspondence with holomorphic vector bundles E with a holomorphic connection. In their turn, they are in one-to-one correspondence with algebraic vector bundles with an algebraic connection (by GAGA).

Definition 1.9. The *de Rham moduli space* $\mathcal{M}_{dR}(n)$ parametrizes algebraic vector bundles on *C* with an algebraic connection.

A twisted version also exists, which we use here:

Theorem 1.10. There exists a biholomorphism between $\mathcal{M}_B(n, \ell)$ and $\mathcal{M}_{dR}(n, \ell)$. This biholomorphism is not algebraic.

Example. n = 1. A point in $\mathcal{M}_{dR}(1)$ corresponds to a pair $\{L, D\}$ with L a line bundle and D a connection. By forgetting the connection, we get a map $\mathcal{M}_{dR}(1) \to \operatorname{Jac}(C)$.

If ∇, ∇' are algebraic connections, then $\nabla' - \nabla \in H^0(K_C)$ is a holomorphic form. Conversely, a sum of a connection and a 1-form is again a connection. Hence $\mathcal{M}_{dR}(1)$ is an affine bundle over $\operatorname{Jac}(C)$.

Affine bundles over $\Omega^1_{\operatorname{Jac}(C)}$ correspond to elements in $H^1(\operatorname{Jac}(C), \Omega^1_{\operatorname{Jac}(C)})$. The class of $\mathcal{M}_{dR}(1)$ is the class of theta divisor, which we will not prove. We have a biholomorphism

$$(\mathbf{C}^{\times})^{2g} \simeq \mathcal{M}_{dR}(1)$$

It cannot preserve algebraic structures because $(\mathbf{C}^{\times})^{2g}$ does not admit a non-trivial map to an abelian variety.

1.3 Dolbeault space

Definition 1.11. Let *E* be a vector bundle. A *Higgs field* is $\psi \in \text{End}(E) \otimes K_C$. A pair (E, ψ) is called a *Higgs bundle*.

The pair (E, ψ) is *(semi)-stable* if for every ψ -stable sub-bundle $F \subset E$,

$$\frac{\deg F}{\operatorname{rk} F} \le \frac{\deg E}{\operatorname{rk} E}$$

(< for stable).

Theorem 1.12. There exists an algebraic variety $\mathcal{M}_{Dol}(n, d)$ called Dolbeault moduli space parameterizing semi-stable Higgs bundles.

- 1. It's quasi-projective
- 2. The subspace corresponding to stable bundles $\mathcal{M}^s_{Dol}(n,d) \subset \mathcal{M}_{Dol}(n,d)$ is smooth and Zariski open
- 3. If (n, d) = 1 then $\mathcal{M}_{Dol}(n, d)$ is smooth.
- 4. The moduli of semistable vector bundles embeds $M(n,d) \hookrightarrow \mathcal{M}_{Dol}(n,d)$ as a subset of Higgs bundles with a trivial Higgs field.
- 5. The variety $T^*M^s(n,d)$ embeds into $\mathcal{M}_{Dol}(n,d)$ as a Zariski open dense. Indeed,

$$T_{[E]}M(n,d) \simeq H^1(C, End \ E) \simeq H^0(End(E) \otimes K_C)^*$$

6. There exists a holomorphic symplectic form on $\mathcal{M}_{Dol}(n,d)$ which is an extension of the standard holomorphic symplectic form on $T^*M^s(n,d)$.

Theorem 1.13 (Non-abelian Hodge correspondence). There exists a real analytic isomorphism

$$\mathcal{M}_{Dol}(n,d) \simeq \mathcal{M}_{dR}(n,\ell).$$

where d is a function of l. Moreover, the following holds.

- There exists a family $\pi : \mathcal{M}_{Hdg}(n,d) \to \mathbf{A}^1$ with $\pi^{-1}(0) \simeq \mathcal{M}_{Dol}$ and $\pi^{-1}(1) \simeq \mathcal{M}_{dR}$;
- $\overline{\mathcal{M}}_{Hdg} \to \mathbf{A}^1$ is a real analytically trivial deformation.

Hence we have isomorphisms of three moduli spaces

$$\mathcal{M}_{\text{Dol}} \xrightarrow{\simeq} \mathcal{M}_{dR}(n,\ell) \xrightarrow{\simeq} \mathcal{M}_{B}(n,\ell).$$

They give us isomorphisms of cohomology groups:

$$H^{\bullet}(\mathcal{M}_{\mathrm{Dol}}) \simeq H(\mathcal{M}_{dR}) \simeq H^{\bullet}(\mathcal{M}_{B})$$

We will soon endow the leftmost group with a filtration called P-filtration, and the rightmost one with W-filtration.

1.4 Perverse filtration

Let $\psi \in \operatorname{End}(E) \otimes K_C$ be a Higgs field. Send

$$\psi \mapsto (\mathrm{Tr}\psi, \mathrm{Tr}\wedge^2 \psi, ..., \mathrm{Tr}\wedge^n \psi)$$

where $\operatorname{Tr} \wedge^k \psi \in H^0(K_C^{\otimes n})$. Locally $\psi = \varphi \otimes dz$ where $\varphi \in \operatorname{End}(E)$ and ψ is mapped to $(\operatorname{Tr} \varphi \otimes dz, \dots \operatorname{Tr} \wedge^n \otimes dz)$.

Definition 1.14. The *Hitchin map* is the map

$$\mathcal{M}_{\text{Dol}} \to \mathbf{A}^n, \quad (E, \psi) \mapsto (\text{Tr}\psi, ..., \text{Tr} \wedge^n \psi)$$

Fact 1.15. The Hitchin map is a projective morphism. Moreover, it is a Lagrangian fibration. Hence a generic fiber is an abelian variety.

Theorem 1.16 (Deligne). For $f: X \to Y$ smooth proper morphism with X smooth there exists a direct sum decomposition

$$Rf_*\mathbf{Q}_X \simeq \bigoplus_{i=0}^{2d} R^i f_*\mathbf{Q}_x[-i]$$

Theorem 1.17 (BBDG). For $f: X \to Y$ proper with X smooth we have a decomposition

$$Rf_*\mathbf{Q}_X[\dim X] \simeq \bigoplus_{i=0}^{2d} {}^P\mathcal{H}^i(Rf_*\mathbf{Q}_X[\dim X])$$

where ${}^{P}\mathcal{H}^{i}$ are perverse cohomology groups (not defined today).

It follows that there is a decomposition

$$H^{\bullet}(X, \mathbf{Q}_X[\dim X]) \simeq \bigoplus R\Gamma({}^{P}\mathcal{H}^i(Rf_*\mathbf{Q}_X[\dim X]))$$

Direct sum is not canonical, but the following filtration is:

Definition 1.18. Perverse filtration on $H^{\bullet}(X, \mathbf{Q})$ is defined as

$$P_{\ell}(H^{\bullet}(X, \mathbf{Q}[\dim X])) = \bigoplus_{i=0}^{\ell} R\Gamma({}^{P}\mathcal{H}^{i}[\dim X])$$

Theorem 1.19 (de Cataldo, Migliorini). Let $f : X \to Y$ be a proper map, X smooth, Y affine. Embed Y into \mathbf{A}^N . Then

$$P_{\ell}H^{K}(X) = \ker[H^{K}(X) \to H^{K}(f^{-1}\mathbf{A}^{N-K+\ell+1} \cap Y)]$$

The Hitchin map $h: \mathcal{M}_{\text{Dol}} \to \mathbf{A}^N$ induces a filtration $P_{\ell}H^{\bullet}(\mathcal{M}_{\text{Dol}})$ for (n, d) = 1.

Example. Let $\psi \in H^0(\text{End}(E) \otimes K_C)$ be a Higgs field. When n = rk E = 1 we have $\psi \in H^0(K_C)$. Hence

$$\mathcal{M}_{\text{Dol}} = \text{Jac}(C) \times H^0(K_C) \simeq T^* \text{Jac}(C)$$

The Hitchin map is identified with the projection $h : \mathcal{M}_{\text{Dol}} \to H^0(K_C)$ to the second factor. The perverse filtration is trivial i.e.

$$P_{\ell}H^{\ell}(\mathcal{M}_{\mathrm{Dol}}) = H^{\ell}(\mathcal{M}_{\mathrm{Dol}})$$

Definition 1.20. A mixed Hodge structure is a Q-vector space $V_{\mathbf{Q}}$ with two filtrations

- an increasing weight filtration $W^{\bullet}V_{\mathbf{Q}}$;
- a decreasing Hodge filtration $F_{\bullet}V_{\mathbf{C}}$;

such that $\operatorname{Gr}_i^W V_{\mathbf{Q}}$ is a pure Hodge structure $\forall i$.

Theorem 1.21 (Deligne). • The cohomology $H^{\bullet}(X)$ of an algebraic variety X has a natural mixed Hodge structure.

- If X is smooth, weights on $H^i(X)$ are [i, ..., 2i]
- Let $X \subset \overline{X}$ be a compactification of X. Then

$$W^{i}H^{i}(X) = \operatorname{im}(H^{i}(X) \to H^{i}(X))$$

• MHS depends on an algebraic structure!

Example. Let us compute the MHS on the first cohomology of $\mathcal{M}_B(1) = (\mathbf{C}^{\times})^{2g}$. First, let us embed \mathbf{C}^{\times} in \mathbf{P}^1 . The previous theorem implies that $W^1H^1(\mathbf{C}^{\times}) = \operatorname{im} H^1(\mathbf{P}^1) = 0$. Then $W^2H^1 = H^2$. The mixed Hodge structure on $H^1(\mathbf{C}^{\times})$ is pure of weight 2. Kunneth formula implies that the same is true for $H^1(\mathcal{M}_B(1))$.

Consider the projection $\mathcal{M}_{dR}(1) \to \operatorname{Jac}(C)$. It induces an isomorphism $H^1(\operatorname{Jac}(C)) \simeq H^1(\mathcal{M}_{dR}(1))$, which is an isomorphism of mixed Hodge structures. Hence $H^1(\mathcal{M}_{dR}(1))$ is a pure Hodge structure of weight 1. We see that the biholomorphism between $\mathcal{M}_{dR}(1)$ and $\mathcal{M}_B(1)$ does not preserve mixed Hodge structures.

Theorem 1.22 (Curious Hard Lefschetz). Consider the variety $\mathcal{M}_B(n, \ell)$, $(n, \ell) = 1$.

1. There exists a class $\alpha \in H^2(\mathcal{M}_B(n, \ell))$ such that $\forall K, i$ the multiplication by α^K

$$\alpha^{K}: \operatorname{Gr}^{W}_{\dim \mathcal{M}_{B}-2K}H^{i} \to \operatorname{Gr}^{W}_{\dim \mathcal{M}_{B}+2K}H^{i+2K}$$

is an isomorphism.

2. $W_{2K-1}H^{\bullet} = W_{2K}H^{\bullet}$ and all classes in $Gr_{2K}^{W}H^{i}$ are of type (K, K).

Recall that we have a diffeomorphism $\mathcal{M}_{\text{Dol}} \simeq \mathcal{M}_B$ so $H^0(\mathcal{M}_{\text{Dol}}) \simeq H^0(\mathcal{M}_B)$.

Theorem 1.23 (Maulik-Shen'22 Hausel-Mellit-Minetz-Shiffman'22). The perverse and weight filtrations essentially coincide i.e.

$$P_K H^{\bullet}(\mathcal{M}_{Dol}(n,d)) = W_{2K} H^{\bullet}(\mathcal{M}_B(n,d)).$$

Consider the rank 1 case. On \mathcal{M}_B we have

$$W_1(H^1(\mathcal{M}_B)) = 0$$
$$W_2(H^1(\mathcal{M}_B)) = H^1(\mathcal{M}_B) = \mathbf{Q}^{2g}$$
$$P_1H^1(\mathcal{M}_{\text{Dol}}) \simeq H^1(\mathcal{M}_{\text{Dol}}) = H^1(\text{Jac}(C)) \simeq \mathbf{Q}^{2g}$$

so $W_2(H^1(\mathcal{M}_B)) = P_1 H^1(\mathcal{M}_{Dol})$ as the theorem predicts.