From Feix–Kaledin metric to algebraic geometry

Anna Abasheva

Department of Mathematics Columbia University

also Higher School of Economics and Independent University of Moscow

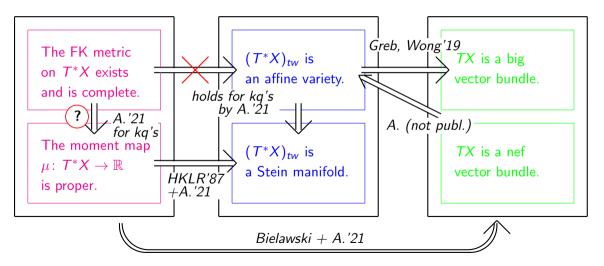
> KCL/UCL Junior Geometry Seminar May 27, 2021

1. Hyperkähler geometry

- 2. Feix-Kaledin metric and twisted cotangent bundles
- 3. When are twisted cotangent bundles Stein/affine?
- 4. Big and nef tangent bundles

Most results mentioned in the talk are contained in

[A.'21] A. Abasheva. *Feix–Kaledin metric on the total spaces of cotangent bundles to Kähler quotients,* Int. Math. Res. Not., 2021, rnab047, https://doi.org/10.1093/imrn/rnab047, arXiv:2007.05773



Complex structures on manifolds

Let V be a vector space, $I \in End(V)$, $I^2 = -1$ an **almost complex structure**. Consider the eigenvalue decomposition

$$V\otimes \mathbb{C}=V^{1,0}\oplus V^{0,1}$$

 $V_X=\sqrt{-1}x ext{ for } x\in V^{1,0}, extsf{lx}=-\sqrt{-1}x ext{ for } x\in V^{0,1}$

Consider a smooth manifold X equipped with an **almost complex structure** $I \in End(TX)$. Then one has the decomposition

$$TX\otimes \mathbb{C}=T^{1,0}X\oplus T^{0,1}X$$

Definition

An almost complex structure I on X is called **integrable** or just a **complex structure** if

 $[T^{1,0}X, T^{1,0}X] \subset T^{1,0}X$

Kähler manifolds

Let V be a vector space with a complex structure I. Let g be an **Hermitian metric** on V i.e. a Euclidean metric on V s.t.

$$g(lv, lu) = g(v, u)$$

Then $\omega(v, u) := g(lv, u)$ is a skew-symmetric 2-form. Let X be a complex manifold, g a Hermitian metric on X, $\omega(v, u) := g(lv, u)$.

Definition

A complex manifold X is called **Kähler** if $d\omega = 0$.

Examples

Examples of Kähler manifolds

- 1. $\mathbb{C}P^n$, all smooth projective varieties $X \subset \mathbb{C}P^n$;
- 2. Complex tori \mathbb{C}^n/Λ ;
- 3. A complex submanifold of a Kähler manifold is Kähler.

Notation: \mathbb{H} is the quaternion algebra, it is generated by I, J, K, $I^2 = J^2 = K^2 = -1, IJ = -JI = K$.

Fact

An element
$$L \in \mathbb{H}$$
 satisfies $L^2 = -1$ iff $L = xI + yJ + zK$, $x^2 + y^2 + z^2 = 1$.

Definition

A manifold X is called **almost hypercomplex** if \mathbb{H} acts on TX. It is called **hypercomplex** if every complex structure on X induced from \mathbb{H} is integrable.

Definition

Let (X, g) be a hypercomplex manifold, g a metric on X which is Hermitian wrt I, J, K. Define $\omega_L(x, y) := g(Lx, y)$ for L = I, J, K. If $d\omega_L = 0$ for L = I, J, K then X is called **hyperkähler**.

Consider the 2-form $\Omega := \omega_J + \sqrt{-1}\omega_K$

Fact

The form Ω is **holomorphic symplectic** i.e. it is a closed non-degenerate holomorphic (2,0)-form wrt the complex structure *I*.

Remark

If X is compact then Kähler + holomorphic symplectic implies hyperkähler by Calabi–Yau. If X is non-compact then Calabi–Yau does not work.

Twistor spaces

Let X be a hyperkähler manifold. We are going to construct the **twistor space** Tw(X) of X.

 $\mathsf{Tw}(X) = X \times S^2$

as a real manifold. An (a priori almost) complex structure I on Tw(X) is

 $I_{(x,t)}(v,u) := (I_t v, I_{\mathbb{C}P^1} u)$

where I_t is the complex structure corresponding to $t \in S^2 \subset \mathbb{H}$.

Fact

The almost complex structure I on Tw(X) is integrable.

There is a natural holomorphic map

$$\mathsf{Tw}(X) o \mathbb{C}P^1 \quad (x,t) \mapsto t$$

Cotangent bundles

Let X be a complex manifold. Consider the total space T^*X of the cotangent bundle to X, $\pi: T^*X \to X$. The **tautological holomorphic** 1-form on T^*X is defined as

$$au_{\mathsf{x},lpha}(\mathsf{v}) := lpha(\pi_*\mathsf{v})$$

where $x \in X$, $\alpha \in T_x^*X$. Or in holomorphic coordinates $(z^1, ..., z^n, w^1 := \frac{\partial}{\partial z^1}, ..., w_n := \frac{\partial}{\partial z^n})$ on T^*X

$$\tau = \sum_{i=1}^{\prime\prime} w^i dz^i$$

Define

$$\Omega:=-d\tau=\sum_{i=1}^n dz^i\wedge dw^i$$

Fact

 Ω is a holomorphic symplectic form on T^*X . It is called the **standard holomorphic** symplectic form on T^*X .

Feix–Kaledin theorem

 T^*X comes with the holomorphic action of $U(1) \subset \mathbb{C}^{\times}$ by fiberwise multiplications. This action satisfies $\lambda^*\Omega = \lambda\Omega$, $\forall \lambda \in U(1)$.

Theorem(B. Feix'01, D. Kaledin'99)

Let X be a Kähler manifold with a real analytic metric g. Then there exists a U(1)-invariant neighbourhood of the zero section $X \subset T^*X$ and a hyperkähler metric (h, I, J, K) on T^*X s.t.

- The corresponding holomorphic symplectic form $\Omega := \omega_J + \sqrt{-1}\omega_K$ is the standard one.
- The action of U(1) preserves h and "rotates the complex structures" i.e.

$$L_{\xi}I = 0, \quad L_{\xi}J = K, \quad L_{\xi}K = -J$$

where ξ is the vector field tangent to the U(1)-action.

• The metric *h* restricts to the given Kähler metric on *X* embedded as the zero section.

Both existing proofs are non-trivial.

Twisted cotangent bundles. Part 1

Let X be a complex manifold, V, W two vector bundles on X.

Fact

The isomorphism classes of short exact sequences of the form

 $0 \rightarrow \textit{V} \rightarrow \textit{E} \rightarrow \textit{W} \rightarrow 0$

are classified by the group $H^1(X, W^* \otimes V))$.

Assume that (X, ω) is compact Kähler. Consider $W = \mathcal{O}_X$, $V = \Omega_X$. Then the extensions of the form

$$0 o \Omega_X o \mathcal{E} o \mathcal{O}_X o 0$$

are classified by $H^1(X, \Omega_X) = H^{1,1}(X)$. There is the natural extension \mathcal{E} corresponding to the Kähler class $[\omega] \in H^{1,1}(X)$.

Consider the total space E of the vector bundle $\mathcal E$ constructed in the previous slide as an extension

$$0
ightarrow \Omega_X
ightarrow \mathcal{E}
ightarrow \mathcal{O}_X
ightarrow 0$$

The complex manifold E comes together with the holomorphic map

$$P \colon E \to X \times \mathbb{C} \to \mathbb{C} \subset \mathbb{C}P^1$$

The fiber of *P* over $0 \in \mathbb{C}$ is T^*X .

Definition

The fiber of P over $1 \in \mathbb{C}$ is called the **twisted cotangent bundle** of X and is denoted by $(T^*X)_{tw}$

Theorem (Feix, Kaledin + A.'21)

Let X be a Kähler manifold. Assume that the Feix–Kaledin metric is defined on T^*X . Let $P_1: \operatorname{Tw}(T^*X) \to \mathbb{C}P^1$ be the twistor projection. Then there exists an isomorphism $E \cong P_1^{-1}(\mathbb{C})$ s.t. the following diagram is commutative.

$$\begin{array}{ccc} E & \longrightarrow & \operatorname{Tw}(X) \\ \downarrow & & & P_1 \\ \mathbb{C} & \longrightarrow & \mathbb{C}P^1 \end{array}$$

Corolla<u>ry</u>

In the assumptions of the theorem above the twisted cotangent bundle $(T^*X)_{tw}$ is isomorphic to $(T^*X)_J$ as a complex manifold.

Consider the **Euler exact sequence** of vector bundles on $\mathbb{P}^n = \mathbb{P}(V)$ (the set of lines $I \subset V$).

$$0 o \Omega_{\mathbb{P}(V)} o \mathcal{O}_{\mathbb{P}(V)}(-1) \otimes V^* o \mathcal{O}_{\mathbb{P}(V)} o 0$$

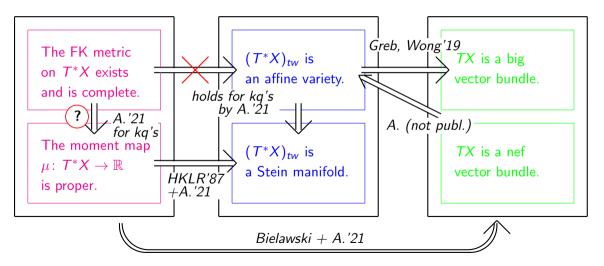
This short exact sequence is non-trivial and $h^{1,1}(\mathbb{P}(V)) = 1 \Longrightarrow E = \operatorname{Tot}(\mathcal{O}_{\mathbb{P}(V)}(-1) \otimes V^*)$

The fiber of E over $[I] \in \mathbb{P}(V)$ is $I \otimes V^* \subset V \otimes V^* = \text{End}(V)$. We obtain a map

$$F \colon E \longrightarrow \{A \in \operatorname{End}(V) \mid \operatorname{rk} A \leq 1\}$$

The map F is a **birational morphism** and is an **isomorphism outside of the zero section** $\mathbb{P}(V) \subset E$. This map identifies $(\mathcal{T}^*\mathbb{P}(V))_{tw}$ with the affine variety

$$\{A \in \mathsf{End}(\mathsf{V}) \mid \mathsf{rk}\, A = 1, \, \mathsf{tr}\, A = 1\}$$



The moment for the U(1)-action

Assume that the Feix–Kaledin metric is defined on T^*X . Let ξ be the vector field tangent to the U(1)-action. One can show that there exists a **moment map** $\mu: T^*X \to \mathbb{R}_{\geq 0}$ for the U(1)-action i.e. the function s.t.

$$d\mu = -\iota_{\xi}\omega_{I}$$

Fact (HKLR'87)

The function μ is a **Kähler potential** on $(T^*X)_J$ i.e.

$$dd_J^c \mu = \omega_J, \quad d_J^c = JdJ$$

Proof:

$$dd_J^c \mu = dJd\mu = -dJ(\omega_I(\xi, -)) = -d\omega_I(\xi, J-) = dh(\xi, IJ-) = -d\omega_K(\xi, -) = -L_{\xi}\omega_K = \omega_J$$

When $(T^*X)_{tw}$ is Stein? Part 1

Definition

A complex manifold Y is called **Stein** if it is a complex submanifold of \mathbb{C}^N .

(solution to) Levi's problem

A complex manifold Y is Stein iff \exists a proper function $\mu: Y \to \mathbb{R}_{\geq 0}$ s.t. $dd^c \mu$ is a Kähler form.

Corollary

Assume that the FK metric is defined on T^*X . Suppose that the moment map $\mu: T^*X \to \mathbb{R}_{\geq 0}$ is proper. Then $(T^*X)_{tw}$ is a Stein manifold.

Proof: According to the previous slide $dd_J^c \mu = \omega_J$ is a Kähler form on $(T^*X)_J$. By Levi's problem $(T^*X)_J$ is Stein. The complex manifold $(T^*X)_{tw}$ is isomorphic to $(T^*X)_J$.

When $(T^*X)_{tw}$ is Stein? Part 2

Open question

Assume that the FK metric on T^*X exists and is complete. Does it follow that the moment map $\mu: T^*X \to \mathbb{R}_{\geq 0}$ is proper?

Remark 1

The question above has an affirmative answer when X is a **Kähler quotient** by [A.'21] (see the next slide for the definition of a Kähler quotient).

Remark 2

Stein manifolds are affine. But there exists a **smooth non-affine algebraic variety** Y whose analytification is Stein. In addition to that, such a manifold Y might be biholomorphic to an affine variety. An example is given by $(T^*X)_{tw}$ for X a torus (see f.e. [Greb, Wong'19]).

A digression on Kähler quotients

Let G be a connected compact Lie group acting holomorphically on a Kähler manifold (X, ω) . Assume that G preserves ω . Then $\forall \xi \in \mathfrak{g}$

$$0 = \mathrm{L}_{\xi}\omega = d\iota_{\xi}\omega + \iota_{\xi}d\omega = d\iota_{\xi}\omega$$

Suppose that \exists a *G*-equivariant smooth function $\mu \colon X \to \mathfrak{g}^*$ s.t.

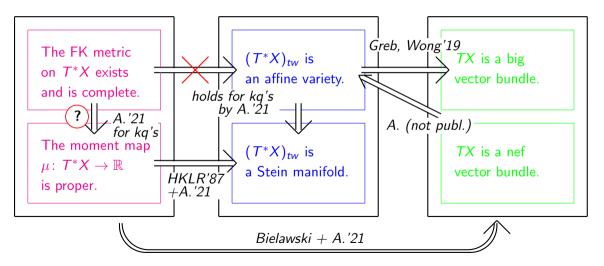
$$d\mu_{\xi} = -\iota_{\xi}\omega, \quad \mu_{\xi}(x) := \langle \mu(x), \xi
angle$$

Then μ is called a **moment map**.

Theorem (Marsden–Weinstein)

The subset $\mu^{-1}(t)$ is *G*-invariant for every $t \in \mathfrak{g}^*$. If *t* is a regular value of $\mu \colon X \to \mathfrak{g}^*$ then the quotient $\mu^{-1}(t)/G$ is naturally a Kähler manifold.

Let X is be an Hermitian vector space, $G \to U(V)$ a unitary representation. In this case quotients $\mu^{-1}(t)/G$ are called **Kähler quotients**. They include toric varieties, grassmanians, moduli of hypersurfaces etc



Big and nef vector bundles

Definition 1

Let L be a line bundle on a compact Kähler manifold X. It is called

- nef = numerically effective if c₁(L) ∈ H^{1,1}(X) ∩ H²(X, Z) can be realized as a limit of Kähler classes;
- **big** if $h^0(L^d) = O(d^n)$ where $n = \dim X$.

Ample line bundles can be defined as those for which $c_1(L)$ is a Kähler class. They are big and nef. The opposite is not true.

Let V be a vector bundle on a Kähler manifold X. Let $\mathbb{P}(V)$ denote the **projectivization** of V (the set of **hyperplanes** in V). The manifold $\mathbb{P}(V)$ is equipped with the natural line bundle $\mathcal{O}_{\mathbb{P}(V)}(1)$.

Definition 2

A vector bundle V is called **big/nef/ample** if $\mathcal{O}_{\mathbb{P}(V)}(1)$ a big/nef/ample line bundle on $\mathbb{P}(V)$.

From Feix-Kaledin metric towards Campana-Peternell

(a version of the) Campana-Peternell conjecture

Let X be a compact Kähler manifold whose tangent bundle TX is **big and nef**. Then X is a **complex homogeneous variety**.

Remark

In the assumptions of the conjecture above the manifold X is necessarily **Fano** (in particular, projective).

Theorem (Greb, Wong'19)

Assume that $(T^*X)_{tw}$ is **affine**. Then the vector bundle TX is **big**.

Theorem (Bielawski + A.'21)

Assume that the FK metric exists on T^*X and is **complete**. Assume also that the moment map $\mu: T^*X \to \mathbb{R}_{>0}$ is **proper**. Then the vector bundle TX is **nef**.

Theorem (Bielawski + A.'21)

Assume that the FK metric exists on T^*X and is **complete**. Assume also that the moment map $\mu: T^*X \to \mathbb{R}_{\geq 0}$ is **proper**. Then the vector bundle TX is **nef**.

A sketch of the proof: Step 1. Choose $\mu: T^*X \to \mathbb{R}_{\geq 0}$ in such a way that $X = \mu^{-1}(0)$. For any t > 0 one has the following diagram

$$egin{array}{cccc} \mu^{-1}(t) & \stackrel{\iota_t}{\longrightarrow} & \mathcal{T}^*X\setminus\{0\} \ & & \downarrow \ & & \downarrow \ & & \mu^{-1}(t)/\mathrm{U}(1) & \longrightarrow & (\mathcal{T}^*X\setminus\{0\})/\mathbb{C}^{ imes} = \mathbb{P}(\mathcal{T}X) \end{array}$$

One can show that the map $\mu^{-1}(t)/U(1) \longrightarrow \mathbb{P}(TX)$ is an isomorphism of complex manifolds $\forall t > 0$. Thus we obtain a family ω_t of Kähler forms on $\mathbb{P}(TX)$ s.t. $p_t^* \omega_t = \iota_t^* \omega_l$.

Theorem (Bielawski + A.'21)

Assume that the FK metric exists on T^*X and is **complete**. Assume also that the moment map $\mu: T^*X \to \mathbb{R}_{\geq 0}$ is **proper**. Then the vector bundle TX is **nef**.

Step 2. In [Pedersen, Poon'91] the authors study Kähler Ricci-flat manifolds with a U(1)-action. It follows from their results that the forms ω_t on $\mathbb{P}(TX)$ satisfy the following differential equation:

$$C\frac{d}{dt}\omega_t = \rho_t + dd^c f_t$$

where C is a constant, ρ_t is the Ricci form of ω_t and $f_t \colon \mathbb{P}(TX) \to \mathbb{R}$ is a smooth family of functions. In [Bielawski'02] the author proves that $C = \dim_{\mathbb{C}} X =: n$. As $[\rho_t] = c_1(\mathbb{P}(TX))$ we obtain

$$n\frac{d}{dt}[\omega_t] = c_1(\mathbb{P}(TX))$$

Theorem (Bielawski + A.'21)

Assume that the FK metric exists on T^*X and is **complete**. Assume also that the moment map $\mu: T^*X \to \mathbb{R}_{\geq 0}$ is **proper**. Then the vector bundle TX is **nef**.

Step 3: Let $\pi: Z := \mathbb{P}(X) \to X$ denote the natural projection, $n := \dim X$. By using the relative Euler exact sequence for $\mathbb{P}(TX)$

$$0
ightarrow \Omega_{Z/X}
ightarrow \pi^* TX(-1)
ightarrow \mathcal{O}_Z
ightarrow 0$$

and the short exact sequence

$$0 o \pi^* \Omega_X o \Omega_Z o \Omega_{Z/X} o 0$$

one can show that the canonical line bundle \mathcal{K}_X of X is $\mathcal{K}_X = \mathcal{O}(-n)$. Hence $c_1(Z) = -c_1(\mathcal{K}_X) = nc_1(\mathcal{O}(1))$. From the previous step

$$c_1(\mathcal{O}(1)) = \frac{d}{dt}[\omega_t] = \lim_{t \to \infty} \frac{1}{t}[\omega_t] \Longrightarrow TX \text{ is nef} \quad \blacksquare$$

Theorem (A.'21)

Let X be a Kähler quotient. Assume that the Feix–Kaledin metric on T^*X is **complete**. Then

- The moment map $\mu \colon T^*X \to \mathbb{R}$ is proper.
- The twisted cotangent bundle $(T^*X)_{tw}$ is affine (and not only Stein).
- The tangent bundle *TX* is **big and nef**.

Proof: For the first two assertions see [A.'21]. The fact that TX is **nef** follows form the first one, while the fact that TX is **big** follows from the second.

Theorem (A., unpublished)

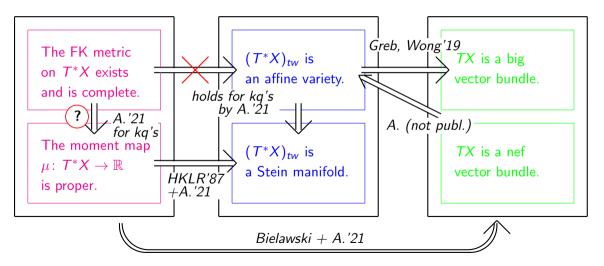
Let X be a projective manifold whose tangent bundle TX is nef and big. Then the twisted cotangent bundle $(T^*X)_{tw}$ is an affine variety.

Sketch of the proof: Step 1 Consider the extension $0 \to \Omega_X \to E \to \mathcal{O}_X \to 0$. We compute that $\mathcal{K}_{\mathbb{P}(E^*)} = \mathcal{O}_{\mathbb{P}(E^*)}(-n-1)$.

Step 2: We use Kawamata–Shokurov theorem to conclude that $\mathcal{O}_{\mathbb{P}(E^*)}(r)$ is generated by global sections for r big enough.

Step 3: We can realize $(T^*X)_{tw}$ as the complement of the divisor $D := \mathbb{P}(TX) \subset \mathbb{P}(E^*)$. Next, we show that $(T^*X)_{tw}$ does not contain compact curves.

Step 4: Let $D \subset Y$ be an effective divisor whose multiple is generated by global sections. Assume that $X \setminus D$ does not contain compact curves. Then $X \setminus D$ is affine.



Thanks for your attention! (A nice picture)

Sir Hamilton, the discoverer of quaternions, shows the quaternionic relations to his wife.