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Complex structures on manifolds

Let V be a vector space, | € End(V), /> = —1 an almost complex structure. Consider the

eigenvalue decomposition
Ve C=Vvoevo!

Ix = V—1x for x € V0, Ix = —/~1x for x € V!

Consider a smooth manifold X equipped with an almost complex structure / € End( TX).
Then one has the decomposition

TX®@C=TYWXxgT0lx

Definition

An almost complex structure / on X is called integrable or just a complex structure if

[THOX, THOX] ¢ THOX
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Newlander-Nirenberg theorem

Definition
A smooth map f: X — Y of almost complex manifolds is called holomorphic if
Vx e X,ve T, X

Dy f(Iv) =1- Dyf(v)

| A

Newlander-Nirenberg theorem

Let X be a smooth manifold with an almost complex structure /. Then / is integrable if and
only if X is locally biholomorphic to an open ball in C".

Remark

| A

The integrability condition [T19X, T10X] c T10X is equivalent to the vanishing of the
Nijenhuis tensor N

N(v,u) = [v,u] + I([v, lu] + [Iv,u]) — [Iv, lu] =0 V vector fields v, u
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Kahler manifolds

Let V be a vector space with a complex structure /. Let g be an Hermitian metric on V i.e.
a Euclidean metric on V s.t.

g(lv,lu) = g(v,u)
Then w(v,u) := g(lv,u) is a skew-symmetric 2-form. Let X be a complex manifold, g a
Hermitian metric on X, w(v, u) := g(lv, u).

Definition

A complex manifold X is called Kahler if dw = 0.

Examples of Kahler manifolds
1. CP", all smooth projective varieties X C CP" (but not all Kahler ones are projective!);
2. Complex tori C"/A;

3. A complex submanifold of a Kihler manifold is Kahler.
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Nilpotent Lie algebras and nilmanifolds

Let g be a Lie algebra. Define g1 :=[g, 9], 9/ :== [9,8i—1]. Then g = g0 D g1 D g2... is called
the lower central series of g.

Definition

A Lie algebra g is called nilpotent if g, = 0 for some k.

If k is the minimal number such that g, = 0 then the Lie algebra g is called k-step nilpotent.

Definition

Let G be a nilpotent Lie group and ' C G a cocompact lattice i.e. a discrete subgroup s.t.
M\ G is compact. Then X :=T\G is called a nilmanifold.

Nota bene: in the definition of a nilmanifold we take the quotient by the left action of I
The group G acts on X =T\G on the right.
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Complex structures on Lie groups

Let G be a Lie group, g its Lie algebra. Every v € g defines a left-invariant vector field V on
G. The map v — v is an isomorphism of Lie algebras.

Let L € End(g) be an almost complex structure, g ® C = g% @ g®!. It induces a
left-invariant almost complex structure L on G.

The almost complex structure L on G is integrable iff g* is a Lie subalgebra of g ® C. \

Proof: First, left-invariant vector fields on G generate the space of smooth vector fields on G
over the smooth functions. Hence we can check the integrability condition just for them.
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Complex nilmanifolds

Nota Bene

A left-invariant complex structure L on G makes G into a complex manifold but in general
not into a complex Lie group. (An example is postponed until the parallel session)

A Lie group G is a complex Lie group iff g9 is an ideal of g ® C.

Definition

Let G be a nilpotent Lie group with a left-invariant complex structure L and ' C G a
cocompact lattice. Then X :=T'\G is called a complex nilmanifold.

The right action of G on X = I'\ G need not preserve the complex structure.
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lwasawa manifold

The complex Heisenberg group of dimension 3 is

1 o1 »
H= 0 1 =z z1,20,23 € C
0 0 1
An lwasawa manifold is '\ H where
1 1 »
M= 0 1 =z 71,222,273 EZ[\/—I]
0 0 1

Iwasawa manifold is non-Kahler. Actually, all complex nilmanifolds except of complex tori
are non-Kabhler.
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Hypercomplex manifolds

Notation: H is the quaternion algebra, it is generated by /, J, K,
I?=P=K>=—-1,1J=—-Jl =K.

An element L € H satisfies L2 = —1iff L = x| + yJ + zK, x> + y> + z2°> = 1.

Definition
A manifold X is called almost hypercomplex if H acts on TX. It is called hypercomplex if
every complex structure on X induced from H is integrable.

| A

Definition

Let G be a nilpotent Lie group with a left-invariant hypercomplex structure (/, J, K) and
I C G a cocompact lattice. Then X :=T\G is called a hypercomplex nilmanifold.
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Main theorems: preliminary version

Notation: "VVL € H" = "for all but a countable number of complex structures L € H."

Let X be a hypercomplex manifold. We denote by X; the manifold X considered as a complex
manifold with a complex structure L € H.

Theorem 1 (A.—Verbitsky)

Let X be a hypercomplex nilmanifold. Then YVL € H the complex manifold X; is does not
admit a non-trivial meromorphic map onto a Kahler manifold.

Theorem 2 (A.—Verbitsky)

Let X be a hypercomplex nilmanifold admitting an HKT-structure. Then VVL € H every
complex subvariety of X is hypercomplex. In particular, every complex subvariety of X; is
even-dimensional.
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Kodaira surface. Part 1

Define
1 Z_1 22
G=<g(z1,22)=|0 1 2z C GL(3,C)
0 0 1

(z1,z2) are complex coordinates on G.
The left multiplication by g(as, az) is given by

(z1,22) = (z1 + a1,z2 + d1z1 + a2)  It’s holomorphic

The right multiplication by g(ai, a2) is given by

(z1,22) = (z1 + a1,z + a1z1 + a2)  It’s not holomorphic!

The group G is not a complex Lie group but admits a left-invariant complex structure.
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Kodaira surface. Part 2

Define I' := GL(3,Z[/—1]) N G. Then the complex surface X =\ G is an example of a
Kodaira surface. It is not Kahler. The map

F\G =X—E= (C/Z[\/—l] (21,22) — Z1
is a principal elliptic fibration over the elliptic curve E = C/Z[v/—1].

Kodaira surface does not admit a hypercomplex structure.

13/33



"Doubling” construction. Part 1

Let X be a manifold equipped with a flat torsion-free affine connection V: TX — TX ® Q' X.
[vw vu] = v[v,u] (ﬂat)
Vou—V,v=][v,u] (torsion-free)

Let w: TX — X denote the natural projection. V induces the decomposition
T«(TX) = Hy @ V4, Vi := ker dr for any point x € TX.

Vi 2 H = 7I'(X)X = TX(TX) = T7r(x))<692
Define a complex structure J on a manifold TX as

J(Vv U) = (_Uv V) (JVX = Hy, JH, = Vx)

In the assumptions above J is an integrable complex structure on a manifold TX
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"Doubling” construction. Part 2

Assume that the monodromy of V preserves a lattice Ay C T, X. Then 3 a lattice A C TX
parallel wrt V.

The manifold TX/A is a complex manifold. It is called a " doubling” of X.

_

Assume now that (X, /) is a complex manifold and V/ = 0. Then
TX(?X) = TW(X)X D TW(X)X

and
I(v,u) = (Iv,=lu) J(v,u) :=(-u,v) K(v,u):=(—lu,—1Iv)

is an almost hypercomplex structure on the manifold TX (and TX/A as well)

The constructed almost hypercomplex structure on T X is in fact hypercomplex. I
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"Doubling” construction. Part 3

Let's start with a Lie group G with a Lie algebra g. Left-invariant affine flat connections on G
are in one-to-one correspondence with Lie-algebra representations

V:g—End(g) v—V,

Assume also that V is torsion-free.

We define a bracket on Tg = g @ g as follows (the first g is " horizontal”, the second is
"vertical")

[(x1,y1); (%2, y2)] = ([x1,%2], Viayz = Viey1)
and a complex structure J on Tg as J(x,y) = (—y, x)

The bracket [—, —] makes Tg into a Lie algebra. The complex structure J is integrable. The
hypercomplex analogue of this fact also holds.
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How to measure non-algebraicity?

Let X be a compact complex manifold, K(X) the field of meromorphic functions on X

Definition

The algebraic dimension of X is the transcedence degree of K(X).

Definition-Proposition

Consider a projective variety X2/ with a dominant rational map r: X — X8 If
r*: K(X?%8) — K(X) is an isomorphism then X?% is called an algebraic reduction of X. An
algebraic reduction exists and is unique up to a birational isomorphism.

If X does not contain a divisor then it is of algebraic dimension zero. The opposite does not
hold in general (though the opposite is true if X is assumed to be a complex torus).
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Hyperkahler manifolds

Let X be a hypercomplex manifold. Let g be a hyper-Hermitian metric on X i.e. Hermitian
wrt every complex structure L € H. Define wi(x,y) := g(Lx,y).

Definition

A hyper-Hermitian manifold X is called hyperkahler if VL € H: dw; = 0. A hyper-Hermitian
manifold X is called HKT if 9Q; = 0.

Examples of compact hyperkahler manifolds:
1. Hypercomplex tori H" /A,

2. K3-surfaces, their Hilbert schemes of points, etc

Non-example: A doubling of a non-K&hler complex manifold (f.e. Kodaira surface)

18/33



Hyperkahler manifolds are very non-algebraic

Theorem (Fujiki'87)
Let X be a compact hyperkahler manifold. Then VVL € H the complex manifold X; is of
algebraic dimension zero.

Definition
Let M be a hypercomplex manifold. A subvariety M C X is called trianalytic if M is complex
analytic wrt every complex structure L € H.

| \

Theorem (Verbitsky'95)
Let X be a compact hyperkahler manifold. Then VWL € H every complex subvariety of X; is
trianalytic.

The second theorem implies the first one.
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What about hypercomplex manifolds?

Theorems of Fujiki and Verbitsky do not hold for hypercomplex manifolds in general.

ETN S

Let X = H"/)\%, X\ € R.y. It is an example of a Hopf manifold. Then VL € H there is an
isotrivial elliptic fibration X — CP?"~1 hence VL € H, X, is of algebraic dimension 2n — 1
and contains an elliptic curve.

| A

Definition-Proposition
Let X be a hypercomplex manifold. Then 3! torsion-free connection V preserving the

hypercomplex structure. It is called the Obata connection. If Hol/(V) is contained in
SL(n,H) then X is called an SL(n, H)-manifold.

Theorem (Soldatenkov—Verbitsky'12)

Let X be an SL(n, H)-manifold admitting an HKT-metric. Then ¥WX € H the manifold X
does not contain divisors and every complex subvariety of X; of codimension 2 is trianalytic.
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We prove that the theorems of Fujiki, Verbitsky do hold (in some sense) for hypercomplex
nilmanifolds

Theorem 1 (A.—Verbitsky)

Let X be a hypercomplex nilmanifold. Then YVL € H the algebraic dimension of X is zero.

Theorem 2 (A.—Verbitsky), preliminary version

Let X be a hypercomplex nilmanifold admitting an HKT-structure. Then VVL € H every
complex subvariety of X is trianalytic.

Hypercomplex nilmanifolds are always SL(n, H)-manifolds (Barberis—Dotti—Verbitsky'09).
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Albanese variety

Let X =\ G be a complex nilmanifold. Then A :=log(l') is a lattice in g (Mal'cev'51).
Consider the minimal rational L-invariant subspace of g containing [g, g]. Denote it by
[9,9lo,.. The quotient map g — g/[g, glo,. induces a holomorphic map

riM\G=X— T :=(g/lg,glo.L)/N

Definition

The torus T defined above is called the Albanese variety of a nilmanifold X = '\G and the
map r: X — T is called the Albanese map of X.

Theorem (Fino—Grantcharov—Verbitsky'18)

Let X =T\ G be a complex nilmanifold and T its Albanese variety. Then every meromorphic
map from X to a Kahler manifold is uniquely factorized through the Albanese map r: X — T.

The theorem implies that algebraic dimensions of X and T coincide.
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Hypercomplex Albanese variety

Let now X =T\ G be a hypercomplex nilmanifold. Consider the minimal rational H-invariant
subspace of g containing g1 = [g, g]. Denote it by [g, glou. Similarly, we obtain a map

R:T\G =X — Tu = (9/[g olg,m)/A

which preserves the hypercomplex structure.

Definition
The torus Ty defined above is called the hypercomplex Albanese variety of a nilmanifold
X =T\G and the map R: X — Ty is called the hypercomplex Albanese map of X.

| A

Lemma

Let X =T\ G be a hypercomplex nilmanifold. Then VWL € H the hypercomplex Albanese map
is the (complex) Albanese map of X;.
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Hypercomplex Albanese vs Complex Albanese

Let X =T\ G be a hypercomplex nilmanifold. Then VWL € H the hypercomplex Albanese map
is the (complex) Albanese map of X;.

Proof:

Observation

Let V be an H-vector space with a rational structure. Then VVL € H every rational
L-invariant space is H-invariant.

Indeed, if an L-invariant space is invariant wrt L’ # 4L then it is H-invariant. Hence the set of
complex structures L € H s.t. there exist an L- but not H-invariant rational subspace of V is
countable.

By applying the observation to V = g we obtain that VWL € H: [g, glo.. = [g, glou-
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Proof of the First theorem

Theorem 1 (A.-Verbitsky)

Let X be a hypercomplex nilmanifold. Then YVL € H the algebraic dimension of X is zero.

Proof. Let T be the hypercomplex Albanese variety. We saw in the previous slides that
VWL € H we have
algdim X, = algdim T,

The torus T is hyperkahler, hence ¥VL € H the algebraic dimension of T is zero.
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Abelian complex structures

Let g be a Lie algebra with a complex structure L.

Definition

The complex structure L is called abelian if g*? is an abelian subalgebra of g ® C.
Equivalently,
VX,}/ €g: [LX,}/] = _[Xa Ly]

Suppose that g admits a hypercomplex structure (/, J, K). Then J, K are abelian whenever
the complex structure [ is abelian (Dotti—Fino’03). If one (hence any) complex structure
L € H is abelian then the hypercomplex structure on g is called abelian.

Theorem (Dotti-Fino'01, Barberis—Dotti—Verbitsky'09, also Fino—Grantcharov'03)

Let X be a hypercomplex nilmanifold. Then X admits an HKT-metric iff the hypercomplex
structure is abelian
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Locally homogeneous submanifolds

Let G be a Lie group. We trivialize TG by left multiplications. If G is a Lie group with a
left-invariant complex structure which is not right-invariant then this trivialization is complex
but not holomorphic because

Nota bene

The flow of a left-invariant vector field ¢ is the multiplication on the right by exp(¢).

This trivialization of TG descends to a, generally speaking, non-holomorphic complex
trivialization of TX where X =T\G.

Definition

A submanifold M C X is called locally homogeneous if Vx € M the tangent space T, M is
identified with a fixed subspace ) C g via the trivialization of TX above.

The subspace h C g is automatically a rational subalgebra.
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Second theorem. Step 1: case of tori

Theorem 2 (A.—Verbitsky): Final version

Let X =T\ G be an abelian hypercomplex nilmanifold. Then VVL € H every complex
subvariety of X, is a trianalytic locally homogeneous submanifold of X.

Sketch of the proof. Step 1. The claim is known to hold for a hypercomplex torus T.
Indeed, VWL € H every complex subvariety of T, is trianalytic. A trianalytic subvariety of a
hyperkahler manifold is totally geodesic (Verbitsky'96). Hence every trianalytic subvariety of
T is a subtorus.
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Step 2: Principal toric fibration

Let g be a Lie algebra with an abelian Lie structure L. Then its center 3 is L-invariant.

Proposition

Let X =T\ G be an abelian complex nilmanifold. Let Z denote the center of G. Then the map
m:MN\G=X—Y :=MN\G/Z

is a holomorphic principal toric fibration with a fiber T = Z/(I' N Z).

Proof: The right action of Z on G is holomorphic because it coincides with the right action.
Hence the right action of Z/(I' N Z) on X =T\G is also holomorphic.
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Step 3: Induction step. The reduction to the case of a

multisection

Let M C X; be a complex subvariety. Consider the principal fibration
m:M\G=X—Y =M\G/Z

By induction hypothesis both 7(M) and the fibers of 7|y, are trianalytic locally
homogeneous submanifolds. One can use this observation to show that

It is actually enough to assume that M is a multisection of w: X — Y i.e. the map
mlm: M — Y is surjective and generically finite.
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Step 4: Multisections are étale

Consider the principal fibration 7: T\G = X — Y :=T\G/Z. Let M C X; be a multisection
of m. Consider the Stein factorization of the map 7|y : Y

MLy yr 2y

The map 71 is a birational transformation and the map 7 is finite.

Observation 1

The branch locus of 75 is a divisor in Y = the map m is étale (Y has no divisors by the
induction hypothesis).

Observation 2

The exceptional locus E C M of 73 is a divisor in M = if non-empty, E has odd dimension
=—> the map m: M — Y has an odd-dimensional fiber. But Vy € Y all the subvarieties of
77 1(y) are trianalytic.

A\

Hence 7|y : M — Y is finite étale.
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The end of the proof

Consider the principal T-fiber bundle 7: T\G = X — Y :=T\G/Z. Define
Tk := T /{k-torsion}. Consider the associated principal Tx-bundle Xj := X x Tx/T — Y.
The manifold X is a nilmanifold as well.

Observation 3
A multisection M C X; of degree k gives rise to a section of X, — Y. Hence X, = Y x Ty

Observation 4

By [Maltsev'51] any decomposition Xy = Y x Ty comes from a Lie algebra decomposition
g=3®bh. Here 3 is the center of g. The existence of such a decomposition contradicts the
nilpotency assumption on g.
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Thanks for your attention! (A nice picture)

Al

\

Sir Hamilton, the discoverer of quaternions, shows the quaternionic relations to his wife.
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