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Complex structures on manifolds

Let V be a vector space, I ∈ End(V ), I 2 = −1 an almost complex structure. Consider the
eigenvalue decomposition

V ⊗ C = V 1,0 ⊕ V 0,1

Ix =
√
−1x for x ∈ V 1,0, Ix = −

√
−1x for x ∈ V 0,1

Consider a smooth manifold X equipped with an almost complex structure I ∈ End(TX ).
Then one has the decomposition

TX ⊗ C = T 1,0X ⊕ T 0,1X

Definition

An almost complex structure I on X is called integrable or just a complex structure if

[T 1,0X ,T 1,0X ] ⊂ T 1,0X
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Newlander-Nirenberg theorem

Definition

A smooth map f : X → Y of almost complex manifolds is called holomorphic if
∀x ∈ X , v ∈ TxX

Dx f (Iv) = I · Dx f (v)

Newlander-Nirenberg theorem

Let X be a smooth manifold with an almost complex structure I . Then I is integrable if and
only if X is locally biholomorphic to an open ball in Cn.

Remark

The integrability condition [T 1,0X ,T 1,0X ] ⊂ T 1,0X is equivalent to the vanishing of the
Nijenhuis tensor N

N(v , u) = [v , u] + I ([v , Iu] + [Iv , u])− [Iv , Iu] = 0 ∀ vector fields v , u
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Kähler manifolds

Let V be a vector space with a complex structure I . Let g be an Hermitian metric on V i.e.
a Euclidean metric on V s.t.

g(Iv , Iu) = g(v , u)

Then ω(v , u) := g(Iv , u) is a skew-symmetric 2-form. Let X be a complex manifold, g a
Hermitian metric on X , ω(v , u) := g(Iv , u).

Definition

A complex manifold X is called Kähler if dω = 0.

Examples

Examples of Kähler manifolds

1. CPn, all smooth projective varieties X ⊂ CPn (but not all Kähler ones are projective!);

2. Complex tori Cn/Λ;

3. A complex submanifold of a Kähler manifold is Kähler.
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Nilpotent Lie algebras and nilmanifolds

Let g be a Lie algebra. Define g1 := [g, g], gi := [g, gi−1]. Then g = g0 ⊃ g1 ⊃ g2... is called
the lower central series of g.

Definition

A Lie algebra g is called nilpotent if gk = 0 for some k.

If k is the minimal number such that gk = 0 then the Lie algebra g is called k-step nilpotent.

Definition

Let G be a nilpotent Lie group and Γ ⊂ G a cocompact lattice i.e. a discrete subgroup s.t.
Γ\G is compact. Then X := Γ\G is called a nilmanifold.

Nota bene: in the definition of a nilmanifold we take the quotient by the left action of Γ.
The group G acts on X = Γ\G on the right.

6 / 33



Complex structures on Lie groups

Let G be a Lie group, g its Lie algebra. Every v ∈ g defines a left-invariant vector field ṽ on
G . The map v 7→ ṽ is an isomorphism of Lie algebras.

Let L ∈ End(g) be an almost complex structure, g⊗ C = g1,0 ⊕ g0,1. It induces a
left-invariant almost complex structure L̃ on G .

Fact

The almost complex structure L̃ on G is integrable iff g1,0 is a Lie subalgebra of g⊗ C.

Proof: First, left-invariant vector fields on G generate the space of smooth vector fields on G
over the smooth functions. Hence we can check the integrability condition just for them.
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Complex nilmanifolds

Nota Bene

A left-invariant complex structure L̃ on G makes G into a complex manifold but in general
not into a complex Lie group. (An example is postponed until the parallel session)

A Lie group G is a complex Lie group iff g1,0 is an ideal of g⊗ C.

Definition

Let G be a nilpotent Lie group with a left-invariant complex structure L and Γ ⊂ G a
cocompact lattice. Then X := Γ\G is called a complex nilmanifold.

The right action of G on X = Γ\G need not preserve the complex structure.
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Iwasawa manifold

The complex Heisenberg group of dimension 3 is

H =


1 z1 z2

0 1 z3
0 0 1

 z1, z2, z3 ∈ C

An Iwasawa manifold is Γ\H where

Γ =


1 z1 z2

0 1 z3
0 0 1

 z1, z2, z3 ∈ Z[
√
−1]

Remark

Iwasawa manifold is non-Kähler. Actually, all complex nilmanifolds except of complex tori
are non-Kähler.
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Hypercomplex manifolds

Notation: H is the quaternion algebra, it is generated by I , J,K ,
I 2 = J2 = K 2 = −1, IJ = −JI = K .

Fact

An element L ∈ H satisfies L2 = −1 iff L = xI + yJ + zK , x2 + y2 + z2 = 1.

Definition

A manifold X is called almost hypercomplex if H acts on TX . It is called hypercomplex if
every complex structure on X induced from H is integrable.

Definition

Let G be a nilpotent Lie group with a left-invariant hypercomplex structure (I , J,K ) and
Γ ⊂ G a cocompact lattice. Then X := Γ\G is called a hypercomplex nilmanifold.
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Main theorems: preliminary version

Notation: ”∀∀L ∈ H” = ”for all but a countable number of complex structures L ∈ H.”

Let X be a hypercomplex manifold. We denote by XL the manifold X considered as a complex
manifold with a complex structure L ∈ H.

Theorem 1 (A.–Verbitsky)

Let X be a hypercomplex nilmanifold. Then ∀∀L ∈ H the complex manifold XL is does not
admit a non-trivial meromorphic map onto a Kähler manifold.

Theorem 2 (A.–Verbitsky)

Let X be a hypercomplex nilmanifold admitting an HKT-structure. Then ∀∀L ∈ H every
complex subvariety of XL is hypercomplex. In particular, every complex subvariety of XL is
even-dimensional.
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Kodaira surface. Part 1

Define

G =

g(z1, z2) :=

1 z̄1 z2
0 1 z1
0 0 1

 ⊂ GL(3,C)

(z1, z2) are complex coordinates on G .
The left multiplication by g(a1, a2) is given by

(z1, z2) 7→ (z1 + a1, z2 + ā1z1 + a2) It’s holomorphic

The right multiplication by g(a1, a2) is given by

(z1, z2) 7→ (z1 + a1, z2 + a1z̄1 + a2) It’s not holomorphic!

The group G is not a complex Lie group but admits a left-invariant complex structure.
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Kodaira surface. Part 2

Define Γ := GL(3,Z[
√
−1]) ∩ G . Then the complex surface X = Γ\G is an example of a

Kodaira surface. It is not Kähler. The map

Γ\G = X −→ E = C/Z[
√
−1] (z1, z2) 7→ z1

is a principal elliptic fibration over the elliptic curve E = C/Z[
√
−1].

Kodaira surface does not admit a hypercomplex structure.
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”Doubling” construction. Part 1

Let X be a manifold equipped with a flat torsion-free affine connection ∇ : TX → TX ⊗ Ω1X .

[∇v ,∇u] = ∇[v ,u] (flat)

∇vu −∇uv = [v , u] (torsion-free)

Let π : TX → X denote the natural projection. ∇ induces the decomposition
Tx(TX ) = Hx ⊕ Vx , Vx := ker dπ for any point x ∈ TX .

Vx
∼= Hx

∼= Tπ(x)X =⇒ Tx(TX ) ∼= Tπ(x)X
⊕2

Define a complex structure J on a manifold TX as

J(v , u) := (−u, v) (JVx = Hx , JHx = Vx)

Fact

In the assumptions above J is an integrable complex structure on a manifold TX
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”Doubling” construction. Part 2

Assume that the monodromy of ∇ preserves a lattice Λx ⊂ TxX . Then ∃ a lattice Λ ⊂ TX
parallel wrt ∇.

Fact

The manifold TX/Λ is a complex manifold. It is called a ”doubling” of X .

Assume now that (X , I ) is a complex manifold and ∇I = 0. Then

Tx(TX ) = Tπ(x)X ⊕ Tπ(x)X

and
I (v , u) := (Iv ,−Iu) J(v , u) := (−u, v) K (v , u) := (−Iu,−Iv)

is an almost hypercomplex structure on the manifold TX (and TX/Λ as well)

Fact

The constructed almost hypercomplex structure on TX is in fact hypercomplex.
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”Doubling” construction. Part 3

Let’s start with a Lie group G with a Lie algebra g. Left-invariant affine flat connections on G
are in one-to-one correspondence with Lie-algebra representations

∇ : g→ End(g) v 7→ ∇v

Assume also that ∇ is torsion-free.

We define a bracket on Tg = g⊕ g as follows (the first g is ”horizontal”, the second is
”vertical”)

[(x1, y1), (x2, y2)] = ([x1, x2],∇x1y2 −∇x2y1)

and a complex structure J on Tg as J(x , y) = (−y , x)

Fact

The bracket [−,−] makes Tg into a Lie algebra. The complex structure J is integrable. The
hypercomplex analogue of this fact also holds.
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How to measure non-algebraicity?

Let X be a compact complex manifold, K (X ) the field of meromorphic functions on X

Definition

The algebraic dimension of X is the transcedence degree of K (X ).

Definition-Proposition

Consider a projective variety X alg with a dominant rational map r : X → X alg . If
r∗ : K (X alg )→ K (X ) is an isomorphism then X alg is called an algebraic reduction of X . An
algebraic reduction exists and is unique up to a birational isomorphism.

If X does not contain a divisor then it is of algebraic dimension zero. The opposite does not
hold in general (though the opposite is true if X is assumed to be a complex torus).
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Hyperkähler manifolds

Let X be a hypercomplex manifold. Let g be a hyper-Hermitian metric on X i.e. Hermitian
wrt every complex structure L ∈ H. Define ωL(x , y) := g(Lx , y).

Definition

A hyper-Hermitian manifold X is called hyperkähler if ∀L ∈ H : dωL = 0. A hyper-Hermitian
manifold X is called HKT if ∂ΩI = 0.

Examples

Examples of compact hyperkähler manifolds:

1. Hypercomplex tori Hn/Λ;

2. K3-surfaces, their Hilbert schemes of points, etc

Non-example: A doubling of a non-Kähler complex manifold (f.e. Kodaira surface)
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Hyperkähler manifolds are very non-algebraic

Theorem (Fujiki’87)

Let X be a compact hyperkähler manifold. Then ∀∀L ∈ H the complex manifold XL is of
algebraic dimension zero.

Definition

Let M be a hypercomplex manifold. A subvariety M ⊂ X is called trianalytic if M is complex
analytic wrt every complex structure L ∈ H.

Theorem (Verbitsky’95)

Let X be a compact hyperkähler manifold. Then ∀∀L ∈ H every complex subvariety of XL is
trianalytic.

The second theorem implies the first one.
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What about hypercomplex manifolds?

Theorems of Fujiki and Verbitsky do not hold for hypercomplex manifolds in general.

Examples

Let X = Hn/λZ, λ ∈ R>1. It is an example of a Hopf manifold. Then ∀L ∈ H there is an
isotrivial elliptic fibration X −→ CP2n−1, hence ∀L ∈ H, XL is of algebraic dimension 2n − 1
and contains an elliptic curve.

Definition-Proposition

Let X be a hypercomplex manifold. Then ∃! torsion-free connection ∇ preserving the
hypercomplex structure. It is called the Obata connection. If Hol(∇) is contained in
SL(n,H) then X is called an SL(n,H)-manifold.

Theorem (Soldatenkov–Verbitsky’12)

Let X be an SL(n,H)-manifold admitting an HKT-metric. Then ∀∀X ∈ H the manifold XL

does not contain divisors and every complex subvariety of XL of codimension 2 is trianalytic.
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Main theorems

We prove that the theorems of Fujiki, Verbitsky do hold (in some sense) for hypercomplex
nilmanifolds

Theorem 1 (A.–Verbitsky)

Let X be a hypercomplex nilmanifold. Then ∀∀L ∈ H the algebraic dimension of XL is zero.

Theorem 2 (A.–Verbitsky), preliminary version

Let X be a hypercomplex nilmanifold admitting an HKT-structure. Then ∀∀L ∈ H every
complex subvariety of XL is trianalytic.

Hypercomplex nilmanifolds are always SL(n,H)-manifolds (Barberis–Dotti–Verbitsky’09).
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Albanese variety

Let X = Γ\G be a complex nilmanifold. Then Λ := log(Γ) is a lattice in g (Mal’cev’51).
Consider the minimal rational L-invariant subspace of g containing [g, g]. Denote it by
[g, g]Q,L. The quotient map g→ g/[g, g]Q,L induces a holomorphic map

r : Γ\G = X −→ T := (g/[g, g]Q,L)/Λ

Definition

The torus T defined above is called the Albanese variety of a nilmanifold X = Γ\G and the
map r : X → T is called the Albanese map of X .

Theorem (Fino–Grantcharov–Verbitsky’18)

Let X = Γ\G be a complex nilmanifold and T its Albanese variety. Then every meromorphic
map from X to a Kähler manifold is uniquely factorized through the Albanese map r : X → T .

The theorem implies that algebraic dimensions of X and T coincide.
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Hypercomplex Albanese variety

Let now X = Γ\G be a hypercomplex nilmanifold. Consider the minimal rational H-invariant
subspace of g containing g1 = [g, g]. Denote it by [g, g]Q,H. Similarly, we obtain a map

R : Γ\G = X −→ TH := (g/[g, g]Q,H)/Λ

which preserves the hypercomplex structure.

Definition

The torus TH defined above is called the hypercomplex Albanese variety of a nilmanifold
X = Γ\G and the map R : X → TH is called the hypercomplex Albanese map of X .

Lemma

Let X = Γ\G be a hypercomplex nilmanifold. Then ∀∀L ∈ H the hypercomplex Albanese map
is the (complex) Albanese map of XL.
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Hypercomplex Albanese vs Complex Albanese

Lemma

Let X = Γ\G be a hypercomplex nilmanifold. Then ∀∀L ∈ H the hypercomplex Albanese map
is the (complex) Albanese map of XL.

Proof:

Observation

Let V be an H-vector space with a rational structure. Then ∀∀L ∈ H every rational
L-invariant space is H-invariant.

Indeed, if an L-invariant space is invariant wrt L′ 6= ±L then it is H-invariant. Hence the set of
complex structures L ∈ H s.t. there exist an L- but not H-invariant rational subspace of V is
countable.

By applying the observation to V = g we obtain that ∀∀L ∈ H : [g, g]Q,L = [g, g]Q,H.
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Proof of the First theorem

Theorem 1 (A.–Verbitsky)

Let X be a hypercomplex nilmanifold. Then ∀∀L ∈ H the algebraic dimension of XL is zero.

Proof. Let T be the hypercomplex Albanese variety. We saw in the previous slides that
∀∀L ∈ H we have

alg dimXL = alg dimTL

The torus T is hyperkähler, hence ∀∀L ∈ H the algebraic dimension of TL is zero.
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Abelian complex structures

Let g be a Lie algebra with a complex structure L.

Definition

The complex structure L is called abelian if g1,0 is an abelian subalgebra of g⊗ C.
Equivalently,

∀x , y ∈ g : [Lx , y ] = −[x , Ly ]

Suppose that g admits a hypercomplex structure (I , J,K ). Then J,K are abelian whenever
the complex structure I is abelian (Dotti–Fino’03). If one (hence any) complex structure
L ∈ H is abelian then the hypercomplex structure on g is called abelian.

Theorem (Dotti–Fino’01, Barberis–Dotti–Verbitsky’09, also Fino–Grantcharov’03)

Let X be a hypercomplex nilmanifold. Then X admits an HKT-metric iff the hypercomplex
structure is abelian
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Locally homogeneous submanifolds

Let G be a Lie group. We trivialize TG by left multiplications. If G is a Lie group with a
left-invariant complex structure which is not right-invariant then this trivialization is complex
but not holomorphic because

Nota bene

The flow of a left-invariant vector field ξ is the multiplication on the right by exp(ξ).

This trivialization of TG descends to a, generally speaking, non-holomorphic complex
trivialization of TX where X = Γ\G .

Definition

A submanifold M ⊂ X is called locally homogeneous if ∀x ∈ M the tangent space TxM is
identified with a fixed subspace h ⊂ g via the trivialization of TX above.

The subspace h ⊂ g is automatically a rational subalgebra.
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Second theorem. Step 1: case of tori

Theorem 2 (A.–Verbitsky): Final version

Let X = Γ\G be an abelian hypercomplex nilmanifold. Then ∀∀L ∈ H every complex
subvariety of XL is a trianalytic locally homogeneous submanifold of X .

Sketch of the proof. Step 1. The claim is known to hold for a hypercomplex torus T .
Indeed, ∀∀L ∈ H every complex subvariety of TL is trianalytic. A trianalytic subvariety of a
hyperkähler manifold is totally geodesic (Verbitsky’96). Hence every trianalytic subvariety of
T is a subtorus.
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Step 2: Principal toric fibration

Lemma

Let g be a Lie algebra with an abelian Lie structure L. Then its center z is L-invariant.

Proposition

Let X = Γ\G be an abelian complex nilmanifold. Let Z denote the center of G . Then the map

π : Γ\G = X −→ Y := Γ\G/Z

is a holomorphic principal toric fibration with a fiber T = Z/(Γ ∩ Z ).

Proof: The right action of Z on G is holomorphic because it coincides with the right action.
Hence the right action of Z/(Γ ∩ Z ) on X = Γ\G is also holomorphic.
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Step 3: Induction step. The reduction to the case of a

multisection

Let M ⊂ XL be a complex subvariety. Consider the principal fibration

π : Γ\G = X −→ Y := Γ\G/Z

By induction hypothesis both π(M) and the fibers of π|M are trianalytic locally
homogeneous submanifolds. One can use this observation to show that

Fact

It is actually enough to assume that M is a multisection of π : X → Y i.e. the map
π|M : M → Y is surjective and generically finite.
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Step 4: Multisections are étale

Consider the principal fibration π : Γ\G = X −→ Y := Γ\G/Z . Let M ⊂ XL be a multisection
of π. Consider the Stein factorization of the map π|M : Y

M
π1−−−−→ Y ′

π2−−−−→ Y

The map π1 is a birational transformation and the map π2 is finite.

Observation 1

The branch locus of π2 is a divisor in Y =⇒ the map π2 is étale (Y has no divisors by the
induction hypothesis).

Observation 2

The exceptional locus E ⊂ M of π1 is a divisor in M =⇒ if non-empty, E has odd dimension
=⇒ the map π : M → Y has an odd-dimensional fiber. But ∀y ∈ Y all the subvarieties of
π−1(y) are trianalytic.

Hence π|M : M → Y is finite étale.
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The end of the proof

Consider the principal T -fiber bundle π : Γ\G = X −→ Y := Γ\G/Z . Define
Tk := T/{k-torsion}. Consider the associated principal Tk -bundle Xk := X × Tk/T → Y .
The manifold Xk is a nilmanifold as well.

Observation 3

A multisection M ⊂ XL of degree k gives rise to a section of Xk → Y . Hence Xk = Y × Tk

Observation 4

By [Maltsev’51] any decomposition Xk = Y × Tk comes from a Lie algebra decomposition
g = z⊕ h. Here z is the center of g. The existence of such a decomposition contradicts the
nilpotency assumption on g.
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Thanks for your attention! (A nice picture)

Sir Hamilton, the discoverer of quaternions, shows the quaternionic relations to his wife.
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