Non-algebraicity of hypercomplex nilmanifolds

Anna Abasheva

Department of Mathematics Columbia University *also* Higher School of Economics *and* Independent University of Moscow

> Junior Global Poisson Workshop II May 3, 2021

1. Plenary session Complex manifolds Nilmanifolds Main results

2. Parallel session

Examples Algebraic dimension Subvarieties of hypercomplex nilmanifolds

Complex structures on manifolds

Let V be a vector space, $I \in End(V)$, $I^2 = -1$ an **almost complex structure**. Consider the eigenvalue decomposition

$$V\otimes \mathbb{C}=V^{1,0}\oplus V^{0,1}$$

 $f_X=\sqrt{-1}x ext{ for } x\in V^{1,0},$ $I_X=-\sqrt{-1}x ext{ for } x\in V^{0,1}$

Consider a smooth manifold X equipped with an **almost complex structure** $I \in End(TX)$. Then one has the decomposition

$$TX\otimes \mathbb{C}=T^{1,0}X\oplus T^{0,1}X$$

Definition

An almost complex structure I on X is called **integrable** or just a **complex structure** if

 $[T^{1,0}X, T^{1,0}X] \subset T^{1,0}X$

Newlander-Nirenberg theorem

Definition

A smooth map $f: X \to Y$ of almost complex manifolds is called holomorphic if $\forall x \in X, v \in T_x X$

$$D_{x}f(Iv)=I\cdot D_{x}f(v)$$

Newlander-Nirenberg theorem

Let X be a smooth manifold with an almost complex structure I. Then I is integrable if and only if X is locally biholomorphic to an open ball in \mathbb{C}^n .

Remark

The integrability condition $[T^{1,0}X, T^{1,0}X] \subset T^{1,0}X$ is equivalent to the vanishing of the Nijenhuis tensor N

 $N(v, u) = [v, u] + I([v, lu] + [lv, u]) - [lv, lu] = 0 \quad \forall \text{ vector fields } v, u$

Kähler manifolds

Let V be a vector space with a complex structure I. Let g be an **Hermitian metric** on V i.e. a Euclidean metric on V s.t.

$$g(lv, lu) = g(v, u)$$

Then $\omega(v, u) := g(lv, u)$ is a skew-symmetric 2-form. Let X be a complex manifold, g a Hermitian metric on X, $\omega(v, u) := g(lv, u)$.

Definition

A complex manifold X is called **Kähler** if $d\omega = 0$.

Examples

Examples of Kähler manifolds

- 1. $\mathbb{C}P^n$, all smooth projective varieties $X \subset \mathbb{C}P^n$ (but not all Kähler ones are projective!);
- 2. Complex tori \mathbb{C}^n/Λ ;
- 3. A complex submanifold of a Kähler manifold is Kähler.

Nilpotent Lie algebras and nilmanifolds

Let \mathfrak{g} be a Lie algebra. Define $\mathfrak{g}_1 := [\mathfrak{g}, \mathfrak{g}]$, $\mathfrak{g}_i := [\mathfrak{g}, \mathfrak{g}_{i-1}]$. Then $\mathfrak{g} = \mathfrak{g}_0 \supset \mathfrak{g}_1 \supset \mathfrak{g}_2...$ is called the **lower central series** of \mathfrak{g} .

Definition

A Lie algebra \mathfrak{g} is called **nilpotent** if $\mathfrak{g}_k = 0$ for some k.

If k is the minimal number such that $g_k = 0$ then the Lie algebra g is called k-step nilpotent.

Definition

Let G be a nilpotent Lie group and $\Gamma \subset G$ a cocompact lattice i.e. a discrete subgroup s.t. $\Gamma \setminus G$ is compact. Then $X := \Gamma \setminus G$ is called a **nilmanifold**.

Nota bene: in the definition of a nilmanifold we take the quotient by the **left** action of Γ . The group G acts on $X = \Gamma \setminus G$ on the right. Let G be a Lie group, \mathfrak{g} its Lie algebra. Every $v \in \mathfrak{g}$ defines a **left-invariant vector field** \tilde{v} on G. The map $v \mapsto \tilde{v}$ is an isomorphism of Lie algebras.

Let $L \in \text{End}(\mathfrak{g})$ be an almost complex structure, $\mathfrak{g} \otimes \mathbb{C} = \mathfrak{g}^{1,0} \oplus \mathfrak{g}^{0,1}$. It induces a **left-invariant almost complex structure** \tilde{L} on G.

Fact

The almost complex structure \tilde{L} on G is integrable iff $\mathfrak{g}^{1,0}$ is a Lie subalgebra of $\mathfrak{g} \otimes \mathbb{C}$.

Proof: First, left-invariant vector fields on G generate the space of smooth vector fields on G over the smooth functions. Hence we can check the integrability condition just for them.

Nota Bene

A left-invariant complex structure \tilde{L} on G makes G into a complex manifold **but in general not into a complex Lie group.** (An example is postponed until the parallel session)

A Lie group *G* is a complex Lie group iff $\mathfrak{g}^{1,0}$ is an ideal of $\mathfrak{g} \otimes \mathbb{C}$.

Definition

Let G be a nilpotent Lie group with a **left-invariant** complex structure L and $\Gamma \subset G$ a cocompact lattice. Then $X := \Gamma \setminus G$ is called a **complex nilmanifold**.

The **right** action of *G* on $X = \Gamma \setminus G$ need **not** preserve the complex structure.

lwasawa manifold

The complex Heisenberg group of dimension 3 is

$$H = \left\{ egin{pmatrix} 1 & z_1 & z_2 \ 0 & 1 & z_3 \ 0 & 0 & 1 \end{pmatrix}
ight\} \quad z_1, z_2, z_3 \in \mathbb{C}$$

An **Iwasawa manifold** is $\Gamma \setminus H$ where

$$\Gamma = \left\{ \begin{pmatrix} 1 & z_1 & z_2 \\ 0 & 1 & z_3 \\ 0 & 0 & 1 \end{pmatrix} \right\} \quad z_1, z_2, z_3 \in \mathbb{Z}[\sqrt{-1}]$$

Remark

lwasawa manifold is non-Kähler. Actually, **all complex nilmanifolds except of complex tori are non-Kähler.**

Hypercomplex manifolds

Notation: \mathbb{H} is the quaternion algebra, it is generated by I, J, K, $I^2 = J^2 = K^2 = -1, IJ = -JI = K$.

Fact

An element
$$L \in \mathbb{H}$$
 satisfies $L^2 = -1$ iff $L = xI + yJ + zK$, $x^2 + y^2 + z^2 = 1$.

Definition

A manifold X is called **almost hypercomplex** if \mathbb{H} acts on TX. It is called **hypercomplex** if every complex structure on X induced from \mathbb{H} is integrable.

Definition

Let G be a nilpotent Lie group with a **left-invariant** hypercomplex structure (I, J, K) and $\Gamma \subset G$ a cocompact lattice. Then $X := \Gamma \setminus G$ is called a **hypercomplex nilmanifold**.

Notation: " $\forall \forall L \in \mathbb{H}$ " = "for all but a countable number of complex structures $L \in \mathbb{H}$."

Let X be a hypercomplex manifold. We denote by X_L the manifold X considered as a complex manifold with a complex structure $L \in \mathbb{H}$.

Theorem 1 (A.–Verbitsky)

Let X be a hypercomplex nilmanifold. Then $\forall \forall L \in \mathbb{H}$ the complex manifold X_L is does not admit a non-trivial meromorphic map onto a Kähler manifold.

Theorem 2 (A.–Verbitsky)

Let X be a hypercomplex nilmanifold **admitting an HKT-structure**. Then $\forall \forall L \in \mathbb{H}$ every complex subvariety of X_L is hypercomplex. In particular, every complex subvariety of X_L is even-dimensional.

Kodaira surface. Part 1

Define

$$G = \left\{ g(z_1, z_2) := \begin{pmatrix} 1 & \bar{z_1} & z_2 \\ 0 & 1 & z_1 \\ 0 & 0 & 1 \end{pmatrix} \right\} \subset GL(3, \mathbb{C})$$

 (z_1, z_2) are complex coordinates on G. The left multiplication by $g(a_1, a_2)$ is given by

$$(z_1, z_2) \mapsto (z_1 + a_1, z_2 + \overline{a_1}z_1 + a_2)$$
 It's holomorphic

The right multiplication by $g(a_1, a_2)$ is given by

$$(z_1, z_2) \mapsto (z_1 + a_1, z_2 + a_1 \overline{z_1} + a_2)$$
 It's not holomorphic!

The group G is not a complex Lie group but admits a left-invariant complex structure.

Define $\Gamma := GL(3, \mathbb{Z}[\sqrt{-1}]) \cap G$. Then the complex surface $X = \Gamma \setminus G$ is an example of a **Kodaira surface**. It is **not Kähler**. The map

$$\Gamma \setminus G = X \longrightarrow E = \mathbb{C} / \mathbb{Z}[\sqrt{-1}] \quad (z_1, z_2) \mapsto z_1$$

is a principal elliptic fibration over the elliptic curve $E = \mathbb{C}/\mathbb{Z}[\sqrt{-1}]$.

Kodaira surface **does not** admit a hypercomplex structure.

"Doubling" construction. Part 1

Let X be a manifold equipped with a flat torsion-free affine connection $\nabla: TX \to TX \otimes \Omega^1 X$.

$$[\nabla_{\mathbf{v}}, \nabla_{u}] = \nabla_{[\mathbf{v}, u]} \quad (\mathsf{flat})$$

$$abla_{\mathbf{v}} u -
abla_{u} v = [\mathbf{v}, u]$$
 (torsion-free)

Let $\pi: TX \to X$ denote the natural projection. ∇ induces the decomposition $T_x(TX) = H_x \oplus V_x$, $V_x := \ker d\pi$ for any point $x \in TX$.

$$V_x \cong H_x \cong T_{\pi(x)}X \Longrightarrow T_x(TX) \cong T_{\pi(x)}X^{\oplus 2}$$

Define a complex structure J on a manifold TX as

$$J(v, u) := (-u, v) \quad (JV_x = H_x, JH_x = V_x)$$

Fact

In the assumptions above J is an integrable complex structure on a manifold TX

"Doubling" construction. Part 2

Assume that the monodromy of ∇ preserves a lattice $\Lambda_x \subset T_x X$. Then \exists a lattice $\Lambda \subset TX$ parallel wrt ∇ .

Fact

The manifold TX/Λ is a complex manifold. It is called a "doubling" of X.

Assume now that (X, I) is a complex manifold and $\nabla I = 0$. Then

$$T_x(\overline{T}X) = T_{\pi(x)}X \oplus \overline{T_{\pi(x)}X}$$

and

$$I(v, u) := (Iv, -Iu) \quad J(v, u) := (-u, v) \quad K(v, u) := (-Iu, -Iv)$$

is an almost hypercomplex structure on the manifold $\overline{T}X$ (and $\overline{T}X/\Lambda$ as well)

Fact

The constructed almost hypercomplex structure on $\overline{T}X$ is in fact hypercomplex.

"Doubling" construction. Part 3

Let's start with a Lie group G with a Lie algebra \mathfrak{g} . Left-invariant affine flat connections on G are in one-to-one correspondence with Lie-algebra representations

$$abla : \mathfrak{g}
ightarrow \mathsf{End}(\mathfrak{g}) \quad v \mapsto
abla_v$$

Assume also that ∇ is torsion-free.

We define a bracket on $T\mathfrak{g} = \mathfrak{g} \oplus \mathfrak{g}$ as follows (the first \mathfrak{g} is "horizontal", the second is "vertical")

$$[(x_1, y_1), (x_2, y_2)] = ([x_1, x_2], \nabla_{x_1} y_2 - \nabla_{x_2} y_1)$$

and a complex structure J on $T\mathfrak{g}$ as J(x,y) = (-y,x)

Fact

The bracket [-, -] makes $T\mathfrak{g}$ into a Lie algebra. The complex structure J is integrable. The hypercomplex analogue of this fact also holds.

Let X be a compact complex manifold, K(X) the field of meromorphic functions on X

Definition

The algebraic dimension of X is the transcedence degree of K(X).

Definition-Proposition

Consider a projective variety X^{alg} with a dominant rational map $r: X \to X^{alg}$. If $r^*: K(X^{alg}) \to K(X)$ is an isomorphism then X^{alg} is called an **algebraic reduction of** X. An algebraic reduction exists and is unique up to a birational isomorphism.

If X does not contain a divisor then it is of algebraic dimension zero. The opposite does not hold in general (though the opposite is true if X is assumed to be a complex torus).

Hyperkähler manifolds

Let X be a hypercomplex manifold. Let g be a hyper-Hermitian metric on X i.e. Hermitian wrt every complex structure $L \in \mathbb{H}$. Define $\omega_L(x, y) := g(Lx, y)$.

Definition

A hyper-Hermitian manifold X is called **hyperkähler** if $\forall L \in \mathbb{H}$: $d\omega_L = 0$. A hyper-Hermitian manifold X is called **HKT** if $\partial \Omega_I = 0$.

Examples

Examples of compact hyperkähler manifolds:

- 1. Hypercomplex tori \mathbb{H}^n/Λ ;
- 2. K3-surfaces, their Hilbert schemes of points, etc

Non-example: A doubling of a non-Kähler complex manifold (f.e. Kodaira surface)

Hyperkähler manifolds are very non-algebraic

Theorem (Fujiki'87)

Let X be a compact hyperkähler manifold. Then $\forall \forall L \in \mathbb{H}$ the complex manifold X_L is of algebraic dimension zero.

Definition

Let *M* be a hypercomplex manifold. A subvariety $M \subset X$ is called **trianalytic** if *M* is complex analytic wrt every complex structure $L \in \mathbb{H}$.

Theorem (Verbitsky'95)

Let X be a compact hyperkähler manifold. Then $\forall \forall L \in \mathbb{H}$ every complex subvariety of X_L is trianalytic.

The second theorem implies the first one.

What about hypercomplex manifolds?

Theorems of Fujiki and Verbitsky do not hold for hypercomplex manifolds in general.

Examples

Let $X = \mathbb{H}^n / \lambda^{\mathbb{Z}}$, $\lambda \in \mathbb{R}_{>1}$. It is an example of a **Hopf manifold**. Then $\forall L \in \mathbb{H}$ there is an isotrivial elliptic fibration $X \longrightarrow \mathbb{C}P^{2n-1}$, hence $\forall L \in \mathbb{H}$, X_L is of algebraic dimension 2n - 1 and contains an elliptic curve.

Definition-Proposition

Let X be a hypercomplex manifold. Then $\exists !$ torsion-free connection ∇ preserving the hypercomplex structure. It is called the **Obata connection**. If $Hol(\nabla)$ is contained in $SL(n, \mathbb{H})$ then X is called an $SL(n, \mathbb{H})$ -manifold.

Theorem (Soldatenkov–Verbitsky'12)

Let X be an $SL(n, \mathbb{H})$ -manifold admitting an HKT-metric. Then $\forall \forall X \in \mathbb{H}$ the manifold X_L does not contain divisors and every complex subvariety of X_L of codimension 2 is trianalytic.

We prove that the theorems of Fujiki, Verbitsky ${\rm do}$ hold (in some sense) for ${\rm hypercomplex}$ nilmanifolds

Theorem 1 (A.–Verbitsky)

Let X be a hypercomplex nilmanifold. Then $\forall \forall L \in \mathbb{H}$ the algebraic dimension of X_L is zero.

Theorem 2 (A.–Verbitsky), preliminary version

Let X be a hypercomplex nilmanifold admitting an HKT-structure. Then $\forall \forall L \in \mathbb{H}$ every complex subvariety of X_L is trianalytic.

Hypercomplex nilmanifolds are always $SL(n, \mathbb{H})$ -manifolds (Barberis–Dotti–Verbitsky'09).

Albanese variety

Let $X = \Gamma \setminus G$ be a complex nilmanifold. Then $\Lambda := \log(\Gamma)$ is a lattice in \mathfrak{g} (Mal'cev'51). Consider the minimal rational L-invariant subspace of \mathfrak{g} containing $[\mathfrak{g},\mathfrak{g}]$. Denote it by $[\mathfrak{g},\mathfrak{g}]_{\mathbb{Q},L}$. The quotient map $\mathfrak{g} \to \mathfrak{g}/[\mathfrak{g},\mathfrak{g}]_{\mathbb{Q},L}$ induces a holomorphic map

$$r \colon \Gamma ackslash G = X \longrightarrow T := (\mathfrak{g}/[\mathfrak{g},\mathfrak{g}]_{\mathbb{Q},L})/\Lambda$$

Definition

The torus T defined above is called the **Albanese variety** of a nilmanifold $X = \Gamma \setminus G$ and the map $r: X \to T$ is called the **Albanese map** of X.

Theorem (Fino–Grantcharov–Verbitsky'18)

Let $X = \Gamma \setminus G$ be a complex nilmanifold and T its Albanese variety. Then every meromorphic map from X to a Kähler manifold is uniquely factorized through the Albanese map $r: X \to T$.

The theorem implies that algebraic dimensions of X and T coincide.

Hypercomplex Albanese variety

Let now $X = \Gamma \setminus G$ be a hypercomplex nilmanifold. Consider the *minimal rational* \mathbb{H} -invariant subspace of \mathfrak{g} containing $\mathfrak{g}_1 = [\mathfrak{g}, \mathfrak{g}]$. Denote it by $[\mathfrak{g}, \mathfrak{g}]_{\mathbb{Q}, \mathbb{H}}$. Similarly, we obtain a map

$$R\colon \Gammaackslash G=X\longrightarrow T_{\mathbb{H}}:=(\mathfrak{g}/[\mathfrak{g},\mathfrak{g}]_{\mathbb{Q},\mathbb{H}})/\Lambda$$

which preserves the hypercomplex structure.

Definition

The torus $T_{\mathbb{H}}$ defined above is called the **hypercomplex Albanese variety** of a nilmanifold $X = \Gamma \setminus G$ and the map $R: X \to T_{\mathbb{H}}$ is called the **hypercomplex Albanese map** of X.

Lemma

Let $X = \Gamma \setminus G$ be a hypercomplex nilmanifold. Then $\forall \forall L \in \mathbb{H}$ the hypercomplex Albanese map is the (complex) Albanese map of X_L .

Hypercomplex Albanese vs Complex Albanese

Lemma

Let $X = \Gamma \setminus G$ be a hypercomplex nilmanifold. Then $\forall \forall L \in \mathbb{H}$ the hypercomplex Albanese map is the (complex) Albanese map of X_L .

Proof:

Observation

Let V be an \mathbb{H} -vector space with a rational structure. Then $\forall \forall L \in \mathbb{H}$ every rational L-invariant space is \mathbb{H} -invariant.

Indeed, if an *L*-invariant space is invariant wrt $L' \neq \pm L$ then it is \mathbb{H} -invariant. Hence the set of complex structures $L \in \mathbb{H}$ s.t. there exist an *L*- but not \mathbb{H} -invariant rational subspace of *V* is countable.

By applying the observation to $V = \mathfrak{g}$ we obtain that $\forall \forall L \in \mathbb{H} \colon [\mathfrak{g}, \mathfrak{g}]_{\mathbb{Q}, L} = [\mathfrak{g}, \mathfrak{g}]_{\mathbb{Q}, \mathbb{H}}$.

Theorem 1 (A.–Verbitsky)

Let X be a hypercomplex nilmanifold. Then $\forall \forall L \in \mathbb{H}$ the algebraic dimension of X_L is zero.

Proof. Let T be the hypercomplex Albanese variety. We saw in the previous slides that $\forall \forall L \in \mathbb{H}$ we have

```
alg dim X_L = alg dim T_L
```

The torus T is hyperkähler, hence $\forall \forall L \in \mathbb{H}$ the algebraic dimension of T_L is zero.

Abelian complex structures

Let \mathfrak{g} be a Lie algebra with a complex structure L.

Definition

The complex structure *L* is called **abelian** if $\mathfrak{g}^{1,0}$ is an abelian subalgebra of $\mathfrak{g} \otimes \mathbb{C}$. Equivalently,

$$\forall x, y \in \mathfrak{g} \colon [Lx, y] = -[x, Ly]$$

Suppose that \mathfrak{g} admits a hypercomplex structure (I, J, K). Then J, K are abelian whenever the complex structure I is abelian (Dotti–Fino'03). If one (hence any) complex structure $L \in \mathbb{H}$ is abelian then the hypercomplex structure on \mathfrak{g} is called **abelian**.

Theorem (Dotti–Fino'01, Barberis–Dotti–Verbitsky'09, also Fino–Grantcharov'03) Let X be a hypercomplex nilmanifold. Then X admits an HKT-metric iff the hypercomplex structure is abelian Let G be a Lie group. We trivialize TG by **left** multiplications. If G is a Lie group with a **left-invariant** complex structure which is not right-invariant then this trivialization is complex but **not holomorphic** because

Nota bene

The flow of a **left-invariant** vector field ξ is the multiplication **on the right** by $\exp(\xi)$.

This trivialization of *TG* descends to a, generally speaking, **non-holomorphic** complex trivialization of *TX* where $X = \Gamma \setminus G$.

Definition

A submanifold $M \subset X$ is called **locally homogeneous** if $\forall x \in M$ the tangent space $T_x M$ is identified with a fixed subspace $\mathfrak{h} \subset \mathfrak{g}$ via the trivialization of TX above.

The subspace $\mathfrak{h}\subset\mathfrak{g}$ is automatically a rational subalgebra.

Theorem 2 (A.-Verbitsky): Final version

Let $X = \Gamma \setminus G$ be an abelian hypercomplex nilmanifold. Then $\forall \forall L \in \mathbb{H}$ every complex subvariety of X_L is a trianalytic locally homogeneous submanifold of X.

Sketch of the proof. Step 1. The claim is known to hold for a hypercomplex torus T. Indeed, $\forall \forall L \in \mathbb{H}$ every complex subvariety of T_L is trianalytic. A trianalytic subvariety of a hyperkähler manifold is totally geodesic (Verbitsky'96). Hence every trianalytic subvariety of T is a subtorus.

Lemma

Let \mathfrak{g} be a Lie algebra with an abelian Lie structure L. Then its center \mathfrak{z} is L-invariant.

Proposition

Let $X = \Gamma \setminus G$ be an abelian complex nilmanifold. Let Z denote the center of G. Then the map

$$\pi\colon \Gamma\backslash G=X\longrightarrow Y:=\Gamma\backslash G/Z$$

is a holomorphic principal toric fibration with a fiber $T = Z/(\Gamma \cap Z)$.

Proof: The right action of Z on G is holomorphic because it coincides with the right action. Hence the right action of $Z/(\Gamma \cap Z)$ on $X = \Gamma \setminus G$ is also holomorphic.

Step 3: Induction step. The reduction to the case of a multisection

Let $M \subset X_L$ be a complex subvariety. Consider the principal fibration

$$\pi\colon \Gamma\backslash G=X\longrightarrow Y:=\Gamma\backslash G/Z$$

By induction hypothesis both $\pi(M)$ and the fibers of $\pi|_M$ are trianalytic locally homogeneous submanifolds. One can use this observation to show that

Fact

It is actually enough to assume that M is a multisection of $\pi: X \to Y$ i.e. the map $\pi|_M: M \to Y$ is surjective and generically finite.

Step 4: Multisections are étale

Consider the principal fibration $\pi: \Gamma \setminus G = X \longrightarrow Y := \Gamma \setminus G/Z$. Let $M \subset X_L$ be a multisection of π . Consider the Stein factorization of the map $\pi|_M: Y$

$$M \xrightarrow{\pi_1} Y' \xrightarrow{\pi_2} Y$$

The map π_1 is a **birational transformation** and the map π_2 is **finite**.

Observation 1

The **branch locus** of π_2 is a divisor in $Y \implies$ the map π_2 is **étale** (Y has no divisors by the induction hypothesis).

Observation 2

The exceptional locus $E \subset M$ of π_1 is a divisor in $M \Longrightarrow$ if non-empty, E has odd dimension \Longrightarrow the map $\pi: M \to Y$ has an odd-dimensional fiber. But $\forall y \in Y$ all the subvarieties of $\pi^{-1}(y)$ are trianalytic.

Hence $\pi|_M \colon M \to Y$ is finite étale.

Consider the principal *T*-fiber bundle $\pi: \Gamma \setminus G = X \longrightarrow Y := \Gamma \setminus G/Z$. Define $T_k := T/\{k\text{-torsion}\}$. Consider the associated principal T_k -bundle $X_k := X \times T_k/T \to Y$. The manifold X_k is a nilmanifold as well.

Observation 3

A multisection $M \subset X_L$ of degree k gives rise to a section of $X_k \to Y$. Hence $X_k = Y \times T_k$

Observation 4

By [Maltsev'51] any decomposition $X_k = Y \times T_k$ comes from a Lie algebra decomposition $\mathfrak{g} = \mathfrak{z} \oplus \mathfrak{h}$. Here \mathfrak{z} is the center of \mathfrak{g} . The existence of such a decomposition contradicts the nilpotency assumption on \mathfrak{g} .

Thanks for your attention! (A nice picture)

Sir Hamilton, the discoverer of quaternions, shows the quaternionic relations to his wife.