Non-algebraicity of hypercomplex nilmanifolds

Anna Abasheva

Department of Mathematics
Columbia University
also
Higher School of Economics and Independent University of Moscow

Junior Global Poisson Workshop II
May 3, 2021

Overview of the talk

1. Plenary session Complex manifolds Nilmanifolds
Main results
2. Parallel session

Examples
Algebraic dimension
Subvarieties of hypercomplex nilmanifolds

Complex structures on manifolds

Let V be a vector space, $I \in \operatorname{End}(V), I^{2}=-1$ an almost complex structure. Consider the eigenvalue decomposition

$$
\begin{gathered}
V \otimes \mathbb{C}=V^{1,0} \oplus V^{0,1} \\
I x=\sqrt{-1} x \text { for } x \in V^{1,0}, I x=-\sqrt{-1} x \text { for } x \in V^{0,1}
\end{gathered}
$$

Consider a smooth manifold X equipped with an almost complex structure $I \in \operatorname{End}(T X)$. Then one has the decomposition

$$
T X \otimes \mathbb{C}=T^{1,0} X \oplus T^{0,1} X
$$

Definition

An almost complex structure I on X is called integrable or just a complex structure if

$$
\left[T^{1,0} X, T^{1,0} X\right] \subset T^{1,0} X
$$

Newlander-Nirenberg theorem

Definition

A smooth map $f: X \rightarrow Y$ of almost complex manifolds is called holomorphic if $\forall x \in X, v \in T_{x} X$

$$
D_{x} f(I v)=I \cdot D_{x} f(v)
$$

Newlander-Nirenberg theorem

Let X be a smooth manifold with an almost complex structure I. Then I is integrable if and only if X is locally biholomorphic to an open ball in \mathbb{C}^{n}.

Remark

The integrability condition [$\left.T^{1,0} X, T^{1,0} X\right] \subset T^{1,0} X$ is equivalent to the vanishing of the Nijenhuis tensor N

$$
N(v, u)=[v, u]+I([v, I u]+[I v, u])-[I v, I u]=0 \quad \forall \text { vector fields } v, u
$$

Kähler manifolds

Let V be a vector space with a complex structure I. Let g be an Hermitian metric on V i.e. a Euclidean metric on V s.t.

$$
g(I v, l u)=g(v, u)
$$

Then $\omega(v, u):=g(l v, u)$ is a skew-symmetric 2 -form. Let X be a complex manifold, g a Hermitian metric on $X, \omega(v, u):=g(I v, u)$.

Definition

A complex manifold X is called Kähler if $d \omega=0$.

Examples

Examples of Kähler manifolds

1. $\mathbb{C} P^{n}$, all smooth projective varieties $X \subset \mathbb{C} P^{n}$ (but not all Kähler ones are projective!);
2. Complex tori \mathbb{C}^{n} / Λ;
3. A complex submanifold of a Kähler manifold is Kähler.

Nilpotent Lie algebras and nilmanifolds

Let \mathfrak{g} be a Lie algebra. Define $\mathfrak{g}_{1}:=[\mathfrak{g}, \mathfrak{g}], \mathfrak{g}_{i}:=\left[\mathfrak{g}, \mathfrak{g}_{i-1}\right]$. Then $\mathfrak{g}=\mathfrak{g}_{0} \supset \mathfrak{g}_{1} \supset \mathfrak{g}_{2} \ldots$ is called the lower central series of \mathfrak{g}.

Definition

A Lie algebra \mathfrak{g} is called nilpotent if $\mathfrak{g}_{k}=0$ for some k.
If k is the minimal number such that $\mathfrak{g}_{k}=0$ then the Lie algebra \mathfrak{g} is called k-step nilpotent.

Definition

Let G be a nilpotent Lie group and $\Gamma \subset G$ a cocompact lattice i.e. a discrete subgroup s.t. $\Gamma \backslash G$ is compact. Then $X:=\Gamma \backslash G$ is called a nilmanifold.

Nota bene: in the definition of a nilmanifold we take the quotient by the left action of Γ. The group G acts on $X=\Gamma \backslash G$ on the right.

Complex structures on Lie groups

Let G be a Lie group, \mathfrak{g} its Lie algebra. Every $v \in \mathfrak{g}$ defines a left-invariant vector field \tilde{v} on G. The map $v \mapsto \tilde{v}$ is an isomorphism of Lie algebras.

Let $L \in \operatorname{End}(\mathfrak{g})$ be an almost complex structure, $\mathfrak{g} \otimes \mathbb{C}=\mathfrak{g}^{1,0} \oplus \mathfrak{g}^{0,1}$. It induces a left-invariant almost complex structure \tilde{L} on G.

Fact

The almost complex structure \tilde{L} on G is integrable iff $\mathfrak{g}^{1,0}$ is a Lie subalgebra of $\mathfrak{g} \otimes \mathbb{C}$.
Proof: First, left-invariant vector fields on G generate the space of smooth vector fields on G over the smooth functions. Hence we can check the integrability condition just for them.

Complex nilmanifolds

Nota Bene

A left-invariant complex structure \tilde{L} on G makes G into a complex manifold but in general not into a complex Lie group. (An example is postponed until the parallel session)

A Lie group G is a complex Lie group iff $\mathfrak{g}^{1,0}$ is an ideal of $\mathfrak{g} \otimes \mathbb{C}$.

Definition

Let G be a nilpotent Lie group with a left-invariant complex structure L and $\Gamma \subset G$ a cocompact lattice. Then $X:=\Gamma \backslash G$ is called a complex nilmanifold.

The right action of G on $X=\Gamma \backslash G$ need not preserve the complex structure.

Iwasawa manifold

The complex Heisenberg group of dimension 3 is

$$
H=\left\{\left(\begin{array}{ccc}
1 & z_{1} & z_{2} \\
0 & 1 & z_{3} \\
0 & 0 & 1
\end{array}\right)\right\} \quad z_{1}, z_{2}, z_{3} \in \mathbb{C}
$$

An Iwasawa manifold is $\Gamma \backslash H$ where

$$
\Gamma=\left\{\left(\begin{array}{ccc}
1 & z_{1} & z_{2} \\
0 & 1 & z_{3} \\
0 & 0 & 1
\end{array}\right)\right\} \quad z_{1}, z_{2}, z_{3} \in \mathbb{Z}[\sqrt{-1}]
$$

Remark

Iwasawa manifold is non-Kähler. Actually, all complex nilmanifolds except of complex tori are non-Kähler.

Hypercomplex manifolds

Notation: \mathbb{H} is the quaternion algebra, it is generated by I, J, K, $I^{2}=J^{2}=K^{2}=-1, I J=-J I=K$.

Fact

An element $L \in \mathbb{H}$ satisfies $L^{2}=-1$ iff $L=x I+y J+z K, x^{2}+y^{2}+z^{2}=1$.

Definition

A manifold X is called almost hypercomplex if \mathbb{H} acts on $T X$. It is called hypercomplex if every complex structure on X induced from \mathbb{H} is integrable.

Definition

Let G be a nilpotent Lie group with a left-invariant hypercomplex structure (I, J, K) and $\Gamma \subset G$ a cocompact lattice. Then $X:=\Gamma \backslash G$ is called a hypercomplex nilmanifold.

Main theorems: preliminary version

Notation: " $\forall \forall L \in \mathbb{H} "=$ "for all but a countable number of complex structures $L \in \mathbb{H}$."
Let X be a hypercomplex manifold. We denote by X_{L} the manifold X considered as a complex manifold with a complex structure $L \in \mathbb{H}$.

Theorem 1 (A.-Verbitsky)

Let X be a hypercomplex nilmanifold. Then $\forall \forall L \in \mathbb{H}$ the complex manifold X_{L} is does not admit a non-trivial meromorphic map onto a Kähler manifold.

Theorem 2 (A.-Verbitsky)

Let X be a hypercomplex nilmanifold admitting an HKT-structure. Then $\forall \forall L \in \mathbb{H}$ every complex subvariety of X_{L} is hypercomplex. In particular, every complex subvariety of X_{L} is even-dimensional.

Kodaira surface. Part 1

Define

$$
G=\left\{g\left(z_{1}, z_{2}\right):=\left(\begin{array}{ccc}
1 & \overline{z_{1}} & z_{2} \\
0 & 1 & z_{1} \\
0 & 0 & 1
\end{array}\right)\right\} \subset G L(3, \mathbb{C})
$$

$\left(z_{1}, z_{2}\right)$ are complex coordinates on G.
The left multiplication by $g\left(a_{1}, a_{2}\right)$ is given by

$$
\left(z_{1}, z_{2}\right) \mapsto\left(z_{1}+a_{1}, z_{2}+\bar{a}_{1} z_{1}+a_{2}\right) \quad \text { It's holomorphic }
$$

The right multiplication by $g\left(a_{1}, a_{2}\right)$ is given by

$$
\left(z_{1}, z_{2}\right) \mapsto\left(z_{1}+a_{1}, z_{2}+a_{1} \overline{z_{1}}+a_{2}\right) \quad \text { It's not holomorphic! }
$$

The group G is not a complex Lie group but admits a left-invariant complex structure.

Kodaira surface. Part 2

Define $\Gamma:=G L(3, \mathbb{Z}[\sqrt{-1}]) \cap G$. Then the complex surface $X=\Gamma \backslash G$ is an example of a Kodaira surface. It is not Kähler. The map

$$
\Gamma \backslash G=X \longrightarrow E=\mathbb{C} / \mathbb{Z}[\sqrt{-1}] \quad\left(z_{1}, z_{2}\right) \mapsto z_{1}
$$

is a principal elliptic fibration over the elliptic curve $E=\mathbb{C} / \mathbb{Z}[\sqrt{-1}]$.
Kodaira surface does not admit a hypercomplex structure.

"Doubling" construction. Part 1

Let X be a manifold equipped with a flat torsion-free affine connection $\nabla: T X \rightarrow T X \otimes \Omega^{1} X$.

$$
\begin{gathered}
{\left[\nabla_{v}, \nabla_{u}\right]=\nabla_{[v, u]} \quad \text { (flat) }} \\
\nabla_{v} u-\nabla_{u} v=[v, u] \quad \text { (torsion-free) }
\end{gathered}
$$

Let $\pi: T X \rightarrow X$ denote the natural projection. ∇ induces the decomposition $T_{x}(T X)=H_{x} \oplus V_{x}, V_{x}:=$ ker $d \pi$ for any point $x \in T X$.

$$
V_{x} \cong H_{x} \cong T_{\pi(x)} X \Longrightarrow T_{x}(T X) \cong T_{\pi(x)} X^{\oplus 2}
$$

Define a complex structure J on a manifold $T X$ as

$$
J(v, u):=(-u, v) \quad\left(J V_{x}=H_{x}, J H_{x}=V_{x}\right)
$$

Fact

In the assumptions above J is an integrable complex structure on a manifold $T X$

"Doubling" construction. Part 2

Assume that the monodromy of ∇ preserves a lattice $\Lambda_{x} \subset T_{x} X$. Then \exists a lattice $\Lambda \subset T X$ parallel wrt ∇.

Fact

The manifold $T X / \Lambda$ is a complex manifold. It is called a "doubling" of X.
Assume now that (X, I) is a complex manifold and $\nabla I=0$. Then

$$
T_{x}(\bar{T} X)=T_{\pi(x)} X \oplus \overline{T_{\pi(x)} X}
$$

and

$$
I(v, u):=(I v,-l u) \quad J(v, u):=(-u, v) \quad K(v, u):=(-I u,-I v)
$$

is an almost hypercomplex structure on the manifold $\bar{T} X$ (and $\bar{T} X / \Lambda$ as well)

Fact

The constructed almost hypercomplex structure on $\bar{T} X$ is in fact hypercomplex.

"Doubling" construction. Part 3

Let's start with a Lie group G with a Lie algebra \mathfrak{g}. Left-invariant affine flat connections on G are in one-to-one correspondence with Lie-algebra representations

$$
\nabla: \mathfrak{g} \rightarrow \operatorname{End}(\mathfrak{g}) \quad v \mapsto \nabla_{v}
$$

Assume also that ∇ is torsion-free.

We define a bracket on $T \mathfrak{g}=\mathfrak{g} \oplus \mathfrak{g}$ as follows (the first \mathfrak{g} is "horizontal", the second is "vertical")

$$
\left[\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right]=\left(\left[x_{1}, x_{2}\right], \nabla_{x_{1}} y_{2}-\nabla_{x_{2}} y_{1}\right)
$$

and a complex structure J on $T \mathfrak{g}$ as $J(x, y)=(-y, x)$

Fact

The bracket $[-,-]$ makes $T \mathfrak{g}$ into a Lie algebra. The complex structure J is integrable. The hypercomplex analogue of this fact also holds.

How to measure non-algebraicity?

Let X be a compact complex manifold, $K(X)$ the field of meromorphic functions on X

Definition

The algebraic dimension of X is the transcedence degree of $K(X)$.

Definition-Proposition

Consider a projective variety $X^{\text {alg }}$ with a dominant rational map $r: X \rightarrow X^{\text {alg }}$. If $r^{*}: K\left(X^{\text {alg }}\right) \rightarrow K(X)$ is an isomorphism then $X^{\text {alg }}$ is called an algebraic reduction of X. An algebraic reduction exists and is unique up to a birational isomorphism.

If X does not contain a divisor then it is of algebraic dimension zero. The opposite does not hold in general (though the opposite is true if X is assumed to be a complex torus).

Hyperkähler manifolds

Let X be a hypercomplex manifold. Let g be a hyper-Hermitian metric on X i.e. Hermitian wrt every complex structure $L \in \mathbb{H}$. Define $\omega_{L}(x, y):=g(L x, y)$.

Definition

A hyper-Hermitian manifold X is called hyperkähler if $\forall L \in \mathbb{H}: d \omega_{L}=0$. A hyper-Hermitian manifold X is called HKT if $\partial \Omega_{l}=0$.

Examples

Examples of compact hyperkähler manifolds:

1. Hypercomplex tori \mathbb{H}^{n} / Λ;
2. K3-surfaces, their Hilbert schemes of points, etc

Non-example: A doubling of a non-Kähler complex manifold (f.e. Kodaira surface)

Hyperkähler manifolds are very non-algebraic

Theorem (Fujiki'87)

Let X be a compact hyperkähler manifold. Then $\forall \forall L \in \mathbb{H}$ the complex manifold X_{L} is of algebraic dimension zero.

Definition

Let M be a hypercomplex manifold. A subvariety $M \subset X$ is called trianalytic if M is complex analytic wrt every complex structure $L \in \mathbb{H}$.

Theorem (Verbitsky'95)

Let X be a compact hyperkähler manifold. Then $\forall \forall L \in \mathbb{H}$ every complex subvariety of X_{L} is trianalytic.

The second theorem implies the first one.

What about hypercomplex manifolds?

Theorems of Fujiki and Verbitsky do not hold for hypercomplex manifolds in general.

Examples

Let $X=\mathbb{H}^{n} / \lambda^{\mathbb{Z}}, \lambda \in \mathbb{R}_{>1}$. It is an example of a Hopf manifold. Then $\forall L \in \mathbb{H}$ there is an isotrivial elliptic fibration $X \longrightarrow \mathbb{C} P^{2 n-1}$, hence $\forall L \in \mathbb{H}, X_{L}$ is of algebraic dimension $2 n-1$ and contains an elliptic curve.

Definition-Proposition

Let X be a hypercomplex manifold. Then \exists ! torsion-free connection ∇ preserving the hypercomplex structure. It is called the Obata connection. If $\mathrm{Hol}(\nabla)$ is contained in $S L(n, \mathbb{H})$ then X is called an $S L(n, \mathbb{H})$-manifold.

Theorem (Soldatenkov-Verbitsky'12)

Let X be an $S L(n, \mathbb{H})$-manifold admitting an HKT-metric. Then $\forall \forall X \in \mathbb{H}$ the manifold X_{L} does not contain divisors and every complex subvariety of X_{L} of codimension 2 is trianalytic.

Main theorems

We prove that the theorems of Fujiki, Verbitsky do hold (in some sense) for hypercomplex nilmanifolds

Theorem 1 (A.-Verbitsky)

Let X be a hypercomplex nilmanifold. Then $\forall \forall L \in \mathbb{H}$ the algebraic dimension of X_{L} is zero.

Theorem 2 (A.-Verbitsky), preliminary version

Let X be a hypercomplex nilmanifold admitting an HKT-structure. Then $\forall \forall L \in \mathbb{H}$ every complex subvariety of X_{L} is trianalytic.

Hypercomplex nilmanifolds are always $S L(n, \mathbb{H})$-manifolds (Barberis-Dotti-Verbitsky'09).

Albanese variety

Let $X=\Gamma \backslash G$ be a complex nilmanifold. Then $\Lambda:=\log (\Gamma)$ is a lattice in \mathfrak{g} (Mal'cev'51). Consider the minimal rational L-invariant subspace of \mathfrak{g} containing $[\mathfrak{g}, \mathfrak{g}]$. Denote it by $[\mathfrak{g}, \mathfrak{g}]_{\mathbb{Q}, L}$. The quotient map $\mathfrak{g} \rightarrow \mathfrak{g} /[\mathfrak{g}, \mathfrak{g}]_{\mathbb{Q}, L}$ induces a holomorphic map

$$
r: \Gamma \backslash G=X \longrightarrow T:=\left(\mathfrak{g} /[\mathfrak{g}, \mathfrak{g}]_{\mathbb{Q}, L}\right) / \Lambda
$$

Definition

The torus T defined above is called the Albanese variety of a nilmanifold $X=\Gamma \backslash G$ and the map $r: X \rightarrow T$ is called the Albanese map of X.

Theorem (Fino-Grantcharov-Verbitsky' 18)

Let $X=\Gamma \backslash G$ be a complex nilmanifold and T its Albanese variety. Then every meromorphic map from X to a Kähler manifold is uniquely factorized through the Albanese map $r: X \rightarrow T$.

The theorem implies that algebraic dimensions of X and T coincide.

Hypercomplex Albanese variety

Let now $X=\Gamma \backslash G$ be a hypercomplex nilmanifold. Consider the minimal rational \mathbb{H}-invariant subspace of \mathfrak{g} containing $\mathfrak{g}_{1}=[\mathfrak{g}, \mathfrak{g}]$. Denote it by $[\mathfrak{g}, \mathfrak{g}]_{\mathbb{Q}, \mathbb{H}}$. Similarly, we obtain a map

$$
R: \Gamma \backslash G=X \longrightarrow T_{\mathbb{H}}:=\left(\mathfrak{g} /[\mathfrak{g}, \mathfrak{g}]_{\mathbb{Q}, \mathbb{H}}\right) / \Lambda
$$

which preserves the hypercomplex structure.

Definition

The torus $T_{\mathbb{H}}$ defined above is called the hypercomplex Albanese variety of a nilmanifold $X=\Gamma \backslash G$ and the map $R: X \rightarrow T_{\mathbb{H}}$ is called the hypercomplex Albanese map of X.

Lemma

Let $X=\Gamma \backslash G$ be a hypercomplex nilmanifold. Then $\forall \forall L \in \mathbb{H}$ the hypercomplex Albanese map is the (complex) Albanese map of X_{L}.

Hypercomplex Albanese vs Complex Albanese

Lemma

Let $X=\Gamma \backslash G$ be a hypercomplex nilmanifold. Then $\forall \forall L \in \mathbb{H}$ the hypercomplex Albanese map is the (complex) Albanese map of X_{L}.

Proof:

Observation

Let V be an \mathbb{H}-vector space with a rational structure. Then $\forall \forall L \in \mathbb{H}$ every rational L-invariant space is \mathbb{H}-invariant.

Indeed, if an L-invariant space is invariant wrt $L^{\prime} \neq \pm L$ then it is \mathbb{H}-invariant. Hence the set of complex structures $L \in \mathbb{H}$ s.t. there exist an L - but not \mathbb{H}-invariant rational subspace of V is countable.

By applying the observation to $V=\mathfrak{g}$ we obtain that $\forall \forall L \in \mathbb{H}:[\mathfrak{g}, \mathfrak{g}]_{\mathbb{Q}, L}=[\mathfrak{g}, \mathfrak{g}]_{\mathbb{Q}, \mathcal{H}}$.

Proof of the First theorem

Theorem 1 (A.-Verbitsky)

Let X be a hypercomplex nilmanifold. Then $\forall \forall L \in \mathbb{H}$ the algebraic dimension of X_{L} is zero.
Proof. Let T be the hypercomplex Albanese variety. We saw in the previous slides that $\forall \forall L \in \mathbb{H}$ we have

$$
\operatorname{alg} \operatorname{dim} X_{L}=\operatorname{alg} \operatorname{dim} T_{L}
$$

The torus T is hyperkähler, hence $\forall \forall L \in \mathbb{H}$ the algebraic dimension of T_{L} is zero.

Abelian complex structures

Let \mathfrak{g} be a Lie algebra with a complex structure L.

Definition

The complex structure L is called abelian if $\mathfrak{g}^{1,0}$ is an abelian subalgebra of $\mathfrak{g} \otimes \mathbb{C}$. Equivalently,

$$
\forall x, y \in \mathfrak{g}:[L x, y]=-[x, L y]
$$

Suppose that \mathfrak{g} admits a hypercomplex structure (I, J, K). Then J, K are abelian whenever the complex structure I is abelian (Dotti-Fino'03). If one (hence any) complex structure $L \in \mathbb{H}$ is abelian then the hypercomplex structure on \mathfrak{g} is called abelian.

Theorem (Dotti-Fino'01, Barberis-Dotti-Verbitsky'09, also Fino-Grantcharov'03)

Let X be a hypercomplex nilmanifold. Then X admits an HKT-metric iff the hypercomplex structure is abelian

Locally homogeneous submanifolds

Let G be a Lie group. We trivialize $T G$ by left multiplications. If G is a Lie group with a left-invariant complex structure which is not right-invariant then this trivialization is complex but not holomorphic because

Nota bene

The flow of a left-invariant vector field ξ is the multiplication on the right by $\exp (\xi)$.
This trivialization of $T G$ descends to a, generally speaking, non-holomorphic complex trivialization of $T X$ where $X=\Gamma \backslash G$.

Definition

A submanifold $M \subset X$ is called locally homogeneous if $\forall x \in M$ the tangent space $T_{x} M$ is identified with a fixed subspace $\mathfrak{h} \subset \mathfrak{g}$ via the trivialization of $T X$ above.

The subspace $\mathfrak{h} \subset \mathfrak{g}$ is automatically a rational subalgebra.

Second theorem. Step 1: case of tori

Theorem 2 (A.-Verbitsky): Final version

Let $X=\Gamma \backslash G$ be an abelian hypercomplex nilmanifold. Then $\forall \forall L \in \mathbb{H}$ every complex subvariety of X_{L} is a trianalytic locally homogeneous submanifold of X.

Sketch of the proof. Step 1. The claim is known to hold for a hypercomplex torus T. Indeed, $\forall \forall L \in \mathbb{H}$ every complex subvariety of T_{L} is trianalytic. A trianalytic subvariety of a hyperkähler manifold is totally geodesic (Verbitsky'96). Hence every trianalytic subvariety of T is a subtorus.

Step 2: Principal toric fibration

Lemma

Let \mathfrak{g} be a Lie algebra with an abelian Lie structure L. Then its center \mathfrak{z} is L-invariant.

Proposition

Let $X=\Gamma \backslash G$ be an abelian complex nilmanifold. Let Z denote the center of G. Then the map

$$
\pi: \Gamma \backslash G=X \longrightarrow Y:=\Gamma \backslash G / Z
$$

is a holomorphic principal toric fibration with a fiber $T=Z /(\Gamma \cap Z)$.
Proof: The right action of Z on G is holomorphic because it coincides with the right action. Hence the right action of $Z /(\Gamma \cap Z)$ on $X=\Gamma \backslash G$ is also holomorphic.

Step 3: Induction step. The reduction to the case of a multisection

Let $M \subset X_{L}$ be a complex subvariety. Consider the principal fibration

$$
\pi: \Gamma \backslash G=X \longrightarrow Y:=\Gamma \backslash G / Z
$$

By induction hypothesis both $\pi(M)$ and the fibers of $\left.\pi\right|_{M}$ are trianalytic locally homogeneous submanifolds. One can use this observation to show that

Fact

It is actually enough to assume that M is a multisection of $\pi: X \rightarrow Y$ i.e. the map $\left.\pi\right|_{M}: M \rightarrow Y$ is surjective and generically finite.

Step 4: Multisections are étale

Consider the principal fibration $\pi: \Gamma \backslash G=X \longrightarrow Y:=\Gamma \backslash G / Z$. Let $M \subset X_{L}$ be a multisection of π. Consider the Stein factorization of the map $\left.\pi\right|_{M}: Y$

$$
M \xrightarrow{\pi_{1}} Y^{\prime} \xrightarrow{\pi_{2}} Y
$$

The map π_{1} is a birational transformation and the map π_{2} is finite.

Observation 1

The branch locus of π_{2} is a divisor in $Y \Longrightarrow$ the map π_{2} is étale (Y has no divisors by the induction hypothesis).

Observation 2

The exceptional locus $E \subset M$ of π_{1} is a divisor in $M \Longrightarrow$ if non-empty, E has odd dimension \Longrightarrow the map $\pi: M \rightarrow Y$ has an odd-dimensional fiber. But $\forall y \in Y$ all the subvarieties of $\pi^{-1}(y)$ are trianalytic.

Hence $\left.\pi\right|_{M}: M \rightarrow Y$ is finite étale.

The end of the proof

Consider the principal T-fiber bundle $\pi: \Gamma \backslash G=X \longrightarrow Y:=\Gamma \backslash G / Z$. Define $T_{k}:=T /\{k$-torsion $\}$. Consider the associated principal T_{k}-bundle $X_{k}:=X \times T_{k} / T \rightarrow Y$. The manifold X_{k} is a nilmanifold as well.

Observation 3

A multisection $M \subset X_{L}$ of degree k gives rise to a section of $X_{k} \rightarrow Y$. Hence $X_{k}=Y \times T_{k}$

Observation 4

By [Maltsev'51] any decomposition $X_{k}=Y \times T_{k}$ comes from a Lie algebra decomposition $\mathfrak{g}=\mathfrak{z} \oplus \mathfrak{h}$. Here \mathfrak{z} is the center of \mathfrak{g}. The existence of such a decomposition contradicts the nilpotency assumption on \mathfrak{g}.

Thanks for your attention! (A nice picture)

Sir Hamilton, the discoverer of quaternions, shows the quaternionic relations to his wife.

