SHAFAREVICH-TATE GROUPS OF HOLOMORPHIC LAGRANGIAN FIBRATIONS

Anna Abasheva

Columbia University, New York, NY, USA

COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

ABSTRACT

Consider a Lagrangian fibration $\pi \colon X \to \mathbb{P}^n$ on a compact hyperkähler manifold X. There are two ways to construct a holomorphic family of deformations of π over \mathbb{C} . The first one is known under the name Shafarevich-Tate family while the second one is the degenerate twistor family constructed by Verbitsky. We show that both families coincide. We prove that for a very general X all members of the Shafarevich– Tate family are Kähler. There is a related notion of the **Shafarevich–Tate group** III associated to a Lagrangian fibration. The connected component of unity of III can be shown to be isomorphic to \mathbb{C}/Λ where Λ is a finitely generated subgroup of \mathbb{C} and \mathbb{C} is thought of as the base of the Shafarevich–Tate family. We show that for a very general X, projective deformations in the Shafarevich–Tate family correspond to the torsion points in III^0 . This poster is based on the paper [AR].

THE TWO CONSTRUCTIONS GIVE THE SAME RESULT!

The holomorphic symplectic form σ on X induces an isomorphism $\sigma \colon \Omega^1_X \xrightarrow{\sim} T_X$. The map σ sends $\pi^*\Omega^1_{\mathbb{P}^n} \subset \Omega^1_X \text{ into } T_{X/\mathbb{P}^n} := \ker(d\pi \colon T_X \to \pi^*T_{\mathbb{P}^n}).$ Assume that the fibration $\pi \colon X \to \mathbb{P}^n$ does not have multiple fibers. One can show that the sheaves $\Omega^1_{\mathbb{P}^n}$ and π_*T_{X/\mathbb{P}^n} are isomorphic.

The group III^0

Leray spectral sequence of the fibration $\pi \colon X \to \mathbb{P}^n$ enable us to compute cohomology groups of the sheaves $R^1\pi_*\mathbb{Z}_X$ and $R^1\pi_*\mathcal{O}_X$ in terms of $H^2(X)$:

> $H^1(\mathbb{P}^n, R^1\pi_*\mathcal{O}_X) \cong H^{0,2}(X)$ $H^1(\mathbb{P}^n, R^1\pi_*\mathbb{Z}_X) \cong W/\pi^*[H]$

MAIN DEFINITIONS

DEFINITION 1: A compact connected Kähler manifold X is called a **hyperkähler manifold** if it is simply connected and $H^0(X, \Omega^2_X)$ is generated by a holomorphic symplectic form σ .

DEFINITION 2: Let X be a hyperkähler manifold of complex dimension 2n. A map $\pi \colon X \to \mathbb{P}^n$ is called a Lagrangian fibration if it is surjective with connected fibers and the restriction of σ to every smooth fiber vanishes.

The exponential map $\pi_*T_{X/\mathbb{P}^n} \to Aut^0_{X/\mathbb{P}^n}$ induces a map $H^1(\mathbb{P}^n, \pi_*T_{X/\mathbb{P}^n}) \to \operatorname{III}$. Since the sheaf π_*T_{X/\mathbb{P}^n} is isomorphic to $\Omega^1_{\mathbb{P}^n}$ we obtain a natural map

$$H^{1,1}(\mathbb{P}^n) \cong \mathbb{C} \to \mathrm{III}$$

(1)

The kernel and cokernel of this map are finitely generated abelian groups. Define III^0 to be the image of \mathbb{C} in III. We will refer to III⁰ as the **connected component of unity of** III. Let Γ denote the kernel of the exponential map $\pi_*T_{X/\mathbb{P}^n} \to Aut^0_{X/\mathbb{P}^n}$. The kernel of the map $\mathbb{C} \to III$ can be identified with the image of the group $H^1(\mathbb{P}^n, \Gamma)$ in $H^1(\mathbb{P}^n, \pi_*T_{X/\mathbb{P}^n}) \cong \mathbb{C}$.

THEOREM A [AR]. Pick a class $s \in H^1(\pi_*T_{X/\mathbb{P}^n})$. Consider the twist X^s of $\pi \colon X \to \mathbb{P}^n$ by the image of s in III. Let α be a closed (1,1)-form on \mathbb{P}^n representing the same class in $H^{1,1}(\mathbb{P}^n) \cong$ $H^1(\mathbb{P}^n, \pi_*T_{X/\mathbb{P}^n})$ as s. Then the complex manifolds X^s and (X, I_{α}) are isomorphic as fibrations over \mathbb{P}^n .

SOME IMPORTANT ISOMORPHISMS

where $[H] \in H^2(\mathbb{P}^n, \mathbb{Z})$ is the class of a hyperplane section, $\pi^*[H] \in H^2(X, \mathbb{Z})$ its pullback to X and

$$W:=\bigcap_{b\in\mathbb{P}^n}\ker(H^2(X,\mathbb{Z})\to H^2(\pi^{-1}(b),\mathbb{Z}))$$
 Therefore

$$H^{1}(\mathbb{P}^{n}, \pi_{*}T_{X/\mathbb{P}^{n}}) \cong H^{0,2}(X)$$
(3)
$$H^{1}(\mathbb{P}^{n}, \Gamma) \otimes \mathbb{Q} \cong W \otimes \mathbb{Q}/\pi^{*}[H]$$
(4)

We can derive the following description of III^0 .

THEOREM B [AR]. The connected component of unity III^0 of the Shafarevich–Tate group III is a quotient of the group

```
H^{0,2}(X)/W
```

by a finite subgroup.

KÄHLERNESS AND PROJECTIVITY

DEFINITION 4 Let X be a projective hyperkähler manifold. It is called **M-special [Mar]** if the subspace $H^{2,0}(X) + H^{0,2}(X)$ of $H^2(X, \mathbb{C})$ contains a rational

DEFINITION 3: The **Shafarevich–Tate group** III of a Lagrangian fibration is the abelian group $H^1(\mathbb{P}^n, Aut^0_{X/\mathbb{P}^n})$ where Aut^0_{X/\mathbb{P}^n} is the connected component of unity of the sheaf of vertical automorphisms of X over \mathbb{P}^n .

SHAFAREVICH-TATE TWISTS

Choose an affine open cover $\mathbb{P}^n = \bigcup U_i$. Denote $U_i \cap U_i$ by U_{ij} . A class $s \in III$ can be represented by a Cech cocycle with coefficients in Aut^0_{X/\mathbb{P}^n} . That is to say, for every pair of indices i, j we are given an automorphism s_{ij} of $\pi^{-1}(U_{ij})$ that commutes with π . Let us reglue the manifolds $\pi^{-1}(U_i)$ by the automorphisms s_{ij} . We obtain a complex manifold X^s equipped with a holomorphic projection $\pi^s \colon X^s \to \mathbb{P}^n$. The fibers of π^s are isomorphic to the fibers of $\pi \colon X \to \mathbb{P}^n$. This new manifold is called the **Shafarevich–Tate twist** of X by $s \in III$.

DEGENERATE TWISTOR DEFORMATIONS

OF SHEAVES

Let ω be a Kähler form on X. The contraction of ω with holomorphic vector fields defines a map

 $\tilde{\omega} \colon \pi_* T_{X/\mathbb{P}^n} \to R^1 \pi_* \mathcal{O}_X$

For every small open $U \subset \mathbb{P}^n$ the map $\tilde{\omega}$ sends a holomorphic vector field $v \in \pi_*T_{X/\mathbb{P}^n}(U)$ to the class of the (0,1)-form $\iota_v \omega$ in $R^1 \pi_* \mathcal{O}_X(U) = H^{0,1}(\pi^{-1}(U))$. The map $\tilde{\omega}$ is an isomorphism by [Mats]. Therefore,

$$\Omega^1_{\mathbb{P}^n} \cong \pi_* T_{X/\mathbb{P}^n} \cong R^1 \pi_* \mathcal{O}_X.$$

(2)

The embedding of sheaves $\mathbb{Z}_X \subset \mathcal{O}_X$ induces an embedding $R^1\pi_*\mathbb{Z}_X \to R^1\pi_*\mathcal{O}_X$.

isomorphism PROPOSITION [AR]. The 1 $\tilde{\omega}^{-1}$: $R^1\pi_*\mathcal{O}_X \rightarrow \pi_*T_{X/\mathbb{P}^n}$ sends the subsheaf $R^1\pi_*\mathbb{Q}_X$ isomorphically to $\Gamma\otimes\mathbb{Q}$.

class.

A very general hyperkähler manifold is not Mspecial.

THEOREM C [AR]. Let $\pi \colon X \to \mathbb{P}^n$ be a Lagrangian fibration on a not M-special projective hyperkähler manifold X. Then every Shafarevich–Tate twist X^s of X by an element $s \in \mathrm{III}^0$ is a hyperkähler manifold, in particular it is Kähler.

SKETCH OF THE PROOF: One can show that a projective hyperkähler manifold X is not Mspecial if and only if the image of the group W in $H^{2,0}(X)$ is dense. By Theorem B this is equivalent to saying that the image of $H^1(\mathbb{P}^n, \Gamma)$ in $H^1(\mathbb{P}^n, \pi_*T_{X/\mathbb{P}^n}) \cong \mathbb{C}$ is dense. Consider the set of $s \in H^1(\mathbb{P}^n, \pi_*T_{X/\mathbb{P}^n}) \cong \mathbb{C}$ such that the twist X^s of X by the image of s in III is a Kähler manifold. This set is open, non-empty and invariant with respect to a dense subgroup. Hence it is the whole set \mathbb{C} .

We finish by stating which Shafarevich–Tate twists of X are projective manifolds.

Let α be a closed (1,1)-form on \mathbb{P}^n . There exists a unique complex structure I_{α} on X such that the form $\sigma + \pi^* \alpha$ is a holomorphic 2-form on (X, I_{α}) . The manifold (X, I_{α}) is called the **degenerate twistor deforma**tion of X with respect to the form α .

THEOREM D [AR]. Let $\pi \colon X \to \mathbb{P}^n$ be a Lagrangian fibration on a not M-special projective hyperkähler manifold X. Then the set of $s \in \mathrm{III}^0$ such that the twist X^s is a projective manifold forms a torsor over the group of torsion points of III^0 .

References

Anna Abasheva, Vasily Rogov. Shafarevich–Tate groups of holomorphic Lagrangian fibrations. Preprint, arXiv:2112.10921 [AR]

Eyal Markman, Lagrangian fibrations of holomorphic-symplectic varieties of $K3^{[n]}$ -type, Algebraic and complex geometry, Springer Proc. Math. Stat., vol. 71, Springer, Cham, [Mar] 2014, pp. 241–283. MR 3278577. arXiv:1301.6584

[Mats] Daisuke Matsushita. Higher Direct Images of Dualizing Sheaves of Lagrangian Fibrations. American Journal of Mathematics Vol. 127, No. 2 (Apr., 2005): 243-259