Problems

1) Let V be a vector space over \mathbb{C} with a positive definite Hermitian inner product. Prove that if v_1, v_2, \ldots, v_r are mutually orthogonal vectors in V then they are linearly independent.

2) Let V be a representation of G with character χ.
 (a) Prove that if $(\chi, \chi) = 1$ then V is irreducible.
 (b) Prove that if $(\chi, \chi) = 2$ then V decomposes into two distinct irreducible representations.

3) Let V be vector space of homogeneous polynomials of degree 4 in variables x, y, z. Let S_3 act on V by permuting the variables.
 (a) Find character χ_V of the representation.
 (b) How does V decompose into irreducible representations?

4) Let group G act on a set X.
 (a) Prove that the character of the associated permutation representation is given by $\chi(g) = |X^g|$. (X^g denotes the set of elements of fixed by g).
 (b) Suppose the action of G is transitive on X. Prove that
 $$\frac{1}{|G|} \sum_{g \in G} \chi(g) = 1$$
 More generally,
 $$\frac{1}{|G|} \sum_{g \in G} \chi(g) = |X/G|$$
 where X/G denotes the set of orbits.
 (c) We say that the action of G on X is doubly transitive if for all $a, b, \alpha, \beta \in X$ such that $a \neq b$ and $\alpha \neq \beta$ there exists $g \in G$ such that $g(a) = \alpha$ and $g(b) = \beta$. Prove that if the action of G is doubly transitive we have
 $$\frac{1}{|G|} \sum_{g \in G} \chi(g)^2 = 2$$
 (Hint: Consider the diagonal action of G on $X \times X$).
 (d) Use this to prove that the standard representation of S_n is irreducible.
5) Let \(\rho_V : G \to GL(V) \) be a representation of a group \(G \). Prove that \(\det \circ \rho_V \) is a one dimensional representation of \(G \).

6) Let \(\rho \) be a one dimensional representation of \(G \) with character \(\chi \). Suppose \(\rho_V : G \to GL(V) \) is any other representation with character \(\chi_V \). Show that

\[
\rho \otimes \rho_V = \rho \cdot \rho_V
\]
is another representation of \(G \) with character \(\chi \cdot \chi_V \). Show that \(\rho_V \) is irreducible iff \(\rho_V \otimes \rho \) is irreducible.

7) Prove that every group \(G \) has a faithful representation. i.e. There exists \(\rho_V : G \to GL(V) \) which is injective.

8) Let \(G \) be a finite group. Prove that all irreducible representations of \(G \) are one dimensional if and only if \(G \) is abelian.

9) Let \(\mathbb{C}\{S_3\} \) denote the group ring. Let \(p = \frac{1}{6} \sum_{g \in S_3} \text{sign}(g)g \). Compute \(p^2 \).

10) Let \(V_i \) for \(1 \leq i \leq n \) be the set of irreducible characters of \(G \). Let \(d_i \) be the dimension of \(V_i \). Prove that the regular representation \(V_{\text{reg}} \) decomposes as \(V_{\text{reg}} = \sum_{i=1}^{n} d_i \cdot V_i \).

Conclude that \(d_1^2 + d_2^2 + \ldots + d_n^2 = |G| \).