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PFAFFIAN SCHUR PROCESSES AND LAST PASSAGE
PERCOLATION IN A HALF-QUADRANT1

BY JINHO BAIK∗,2, GUILLAUME BARRAQUAND†,3, IVAN CORWIN†,4 AND

TOUFIC SUIDAN

University of Michigan∗ and Columbia University†

We study last passage percolation in a half-quadrant, which we analyze
within the framework of Pfaffian Schur processes. For the model with expo-
nential weights, we prove that the fluctuations of the last passage time to a
point on the diagonal are either GSE Tracy–Widom distributed, GOE Tracy–
Widom distributed or Gaussian, depending on the size of weights along the
diagonal. Away from the diagonal, the fluctuations of passage times fol-
low the GUE Tracy–Widom distribution. We also obtain a two-dimensional
crossover between the GUE, GOE and GSE distribution by studying the mul-
tipoint distribution of last passage times close to the diagonal when the size
of the diagonal weights is simultaneously scaled close to the critical point.
We expect that this crossover arises universally in KPZ growth models in
half-space. Along the way, we introduce a method to deal with diverging cor-
relation kernels of point processes where points collide in the scaling limit.
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1. Introduction. In this paper, we study last passage percolation in a half-
quadrant of Z2. We extend all known results for the case of geometric weights (see
discussion of previous results below) to the case of exponential weights. We study
in a unified framework the distribution of passage times on and off diagonal, and
for arbitrary boundary condition. We do so by realizing the joint distribution of last
passage percolation times as a marginal of Pfaffian Schur processes. This allows
us to use powerful methods of Pfaffian point processes to prove limit theorems.
Along the way, we discuss an issue arising when a simple point process converges
to a point process where every point has multiplicity two, which we expect to
have independent interest. These results also have consequences about interacting
particle systems—in particular the TASEP on positive integers and the facilitated
TASEP—that we discuss in [2].

DEFINITION 1.1 (Half-space exponential weight LPP). Let (wn,m)n≥m≥0 be a
sequence of independent exponential random variables5 with rate 1 when n ≥ m+

5The exponential distribution with rate α ∈ (0,+∞), denoted E(α), is the probability distribution
on R>0 such that if X ∼ E(α), P(X > x) = e−αx .
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FIG. 1. LPP on the half-quadrant. One admissible path from (1,1) to (n,m) is shown in dark gray.
H(n,m) is the maximum over such paths of the sum of the weights wij along the path.

1 and with rate α when n = m. We define the exponential last passage percolation
(LPP) time on the half-quadrant, denoted H(n,m), by the recurrence for n ≥ m,

H(n,m) = wn,m +
{

max
{
H(n − 1,m),H(n,m − 1)

}
if n ≥ m + 1,

H(n,m − 1) if n = m

with the boundary condition H(n,0) = 0.

It is useful to notice that the model is equivalent to a model of last passage
percolation on the full quadrant where the weights are symmetric with respect to
the diagonal (wij = wji ).

REMARK 1.2. If one imagines that the light gray area in Figure 1 corresponds
to the percolation cluster at some time, its border (shown in black in Figure 1)
evolves as the height function in the Totally Asymmetric Simple Exclusion process
on the positive integers with open boundary condition, so that all our results could
be equivalently phrased in terms of the latter model.

1.1. Previous results in (half-space) LPP. The history of fluctuation results in
last passage percolation goes back to the solution to Ulam’s problem about the
asymptotic distribution of the size of the longest increasing subsequence in a uni-
formly random permutation [4]. A proof of the nature of fluctuations in exponential
distribution LPP is provided in [29]. On a half-space, [5–7] studies the longest in-
creasing subsequence in random involutions. This is equivalent to a half-space LPP
problem since for an involution σ ∈ Sn, the graph of i �→ σ(i) is symmetric with
respect to the first diagonal. Actually, [5–7] treat both the longest increasing sub-
sequences of a random involution and symmetrized LPP with geometric weights.
That work contains the geometric weight half-space LPP analogue of Theorem 1.3.
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The methods used therein only worked when restricted to the one point distribu-
tion of passage times exactly along the diagonal. Further work on half-space LPP
was undertaken in [38], where the results are stated there in terms of the discrete
polynuclear growth (PNG) model rather than the equivalent half-space LPP with
geometric weights. The framework of [38] allows to study the correlation kernel
corresponding to multiple points in the space direction, with or without nucleations
at the origin. In the large scale limit, the authors performed a nonrigorous critical
point derivation of the limiting correlation kernel in certain regimes and found
Airy-type process and various limiting crossover kernels near the origin, much in
the same spirit as our results (see the discussion about these results in Section 1.3).

1.2. Previous methods. A key property in the solution of Ulam’s problem in
[4] was the relation to the RSK algorithm which reveals a beautiful algebraic struc-
ture that can be generalized using the formalism of Schur measures [34] and Schur
processes [35]. RSK is just one of a variety of Markov dynamics on sequences of
partitions which preserves the Schur process [13, 17]. Studying these dynamics
gives rise to a number of interesting probabilistic models related to Schur pro-
cesses. In the early works of [4, 6], the convergence to the Tracy–Widom distribu-
tions was proved by Riemann–Hilbert problem asymptotic analysis. Subsequently,
Fredholm determinants became the preferred vehicle for asymptotic analysis.

In a half-space, [5] applied RSK to symmetric matrices. Subsequently, [37] (see
also [26]) showed that geometric weight half-space LPP is a Pfaffian point process
(see Section 4.1) and computed the correlation kernel. Later, [21] defined Pfaffian
Schur processes generalizing the probability measures defined in [37] and [38].
The Pfaffian Schur process is an analogue of the Schur process for symmetrized
problems.

1.3. Our methods and new results. We consider Markov dynamics similar to
those of [17] and show that they preserve Pfaffian Schur processes. This enables us
to show how half-space LPP with geometric weights is a marginal of the Pfaffian
Schur process. We then apply a general formula giving the correlation kernel of
Pfaffian Schur processes [21] to study the model’s multipoint distributions. We
degenerate our model and formulas to the case of exponential weight half-space
LPP (previous works [5–7, 38] only considered geometric weights). We perform
an asymptotic analysis of the Fredholm Pfaffians characterizing the distribution
of passage times in this model, which leads to Theorems 1.3 and 1.4. We also
study the k-point distribution of passage times at a distance O(n2/3) away from
the diagonal, and introduce a new two-parameter family of crossover distributions
when the rate of the weights on the diagonal are simultaneously scaled close to
their critical value. This generalizes the crossover distributions found in [25, 38].
The asymptotics of fluctuations away from the diagonal were already studied in
[38] for the PNG model on a half-space (equivalently the geometric weight half-
space LPP). The asymptotic analysis there was nonrigorous, at the level of studying
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the behavior of integrals around their critical points without controlling the decay
of tails of integrals.

The proof of the first part of Theorem 1.3 (in Section 5) required a new idea
which we believe is the most novel technical contribution of this paper: When
α > 1/2, H(n,n) is the maximum of a simple Pfaffian point process which con-
verges as n → ∞ to a point process where all points have multiplicity 2. The limit
of the correlation kernel does not exist6 as a function (it does have a formal limit
involving the derivative of the Dirac delta function). Nevertheless, a careful re-
ordering and nontrivial cancellation of terms in the Fredholm Pfaffian expansions
allows us to study the law of the maximum of this limiting point process, and ulti-
mately find that it corresponds to the GSE Tracy–Widom distribution. We actually
provide a general scheme for how this works for random matrix type kernels in
which simple Pfaffian point processes limit to doubled ones (see Section 5.1).

Theorem 5.3 of [38] derives a formula for certain crossover distributions in half-
space geometric LPP. This crossover distribution, introduced in [25], depends on a
parameter τ (which is denoted η in our Theorem 1.8) and it corresponds to a natu-
ral transition ensemble between GSE when τ → 0 and GUE when τ → +∞. Al-
though the collision of eigenvalues should occur in the GSE limit of this crossover,
this point was left unaddressed in previous literature and the convergence of the
crossover kernel to the GSE kernel was not proved in [25] (see our Proposi-
tion 6.12). The formulas for limiting kernels, given by [25], (4.41), (4.44), (4.47) or
[38], (5.37)–(5.40), make sense so long as τ > 0. Notice a difference of integration
domain between [25], (4.44), and [38], (5.39). Our Theorem 1.8 is the analogue of
[38], Theorem 5.3, for half-space exponential LPP and we recover the exact same
kernel. When τ = 0, the formula for I4 in [38], (5.39), involves divergent inte-
grals,7 though if one uses the formal identity

∫
R Ai(x + r)Ai(y + r)dr = δ(x − y)

then it is possible to rewrite the kernel in terms of an expression involving the
derivative of the Dirac delta function, and the expression formally matches with
the kernel K∞ introduced in Section 5.1. From that (formal) kernel, it is nontrivial
to match the Fredholm Pfaffian with a known formula for the GSE distribution,
this matching does not seem to have been made previously in the literature and we
explain it in Section 5.1.

In random matrix theory, a similar phenomenon of collisions of eigenvalues oc-
curs in the limit from the discrete symplectic ensemble to the GSE [22]. However,
[22] used averages of characteristic polynomials to characterize the point process,
and computed the correlation kernels from the characteristic polynomials only af-
ter the limit, so that collisions of eigenvalues were not an issue. A random matrix
ensemble which crosses over between GSE and GUE was studied in [25].

6For a nonsimple point process, the correlation functions—Radon–Nikodym derivatives of the
factorial moment measures—generically do not exist (see Definitions in Section 4.1).

7The saddle-point analysis in the proof of Theorem 5.3 in [38] is valid only when τ > 0. Indeed,
[38], (5.44), requires τ1 + τ2 > η1 + η2 and one needs that η1, η2 > 0 as in the proof of [38],
Theorem 4.2.
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1.4. Other models related to KPZ growth in a half-space. A positive temper-
ature analogue of LPP—directed random polymers—has also been studied. The
log-gamma polymer in a half-space (which converges to half-space LPP with ex-
ponential weights in the zero temperature limit) is considered in [33] where an
exact formula is derived for the distribution of the partition function in terms of
Whittaker functions. Some of these formulas are not yet proved and presently there
has not been a successful asymptotic analysis preformed of them. Within physics,
[28] and [14] studies the continuum directed random polymer (equivalently the
KPZ equation) in a half-space with a repulsive and refecting (respectively) barrier
and derives GSE Tracy–Widom limiting statistics. Both works are mathematically
nonrigorous due to the ill-posed moment problem and certain unproved forms of
the conjectured Bethe ansatz completeness of the half-space delta Bose gas. On
the side of particle systems, half-space ASEP has first been studied in [41], but the
resulting formulas were not amenable to asymptotic analysis. More recently, [9]
derives exact Pfaffian formulas for the half-space stochastic six-vertex model, and
proves GOE asymptotics for the current at the origin in half-space ASEP, for a cer-
tain boundary condition. The exact formulas involve the correlation kernel of the
Pfaffian Schur process and the asymptotic analysis in [9] uses some of the ideas
developed here.

1.5. Main results. We now state the limit theorems that constitute the main
results of this paper. They involve the GOE, GSE and GUE Tracy–Widom distri-
butions, respectively, characterized by the distribution functions FGOE, FGSE and
FGUE given in Section 2 and the standard Gaussian distribution function denoted
by G(x).

THEOREM 1.3. The last passage time on the diagonal H(n,n) satisfies the
following limit theorems, depending on the rate α of the weights on the diagonal:

1. For α > 1/2,

lim
n→∞P

(
H(n,n) − 4n

24/3n1/3 < x

)
= FGSE(x).

2. For α = 1/2,

lim
n→∞P

(
H(n,n) − 4n

24/3n1/3 < x

)
= FGOE(x).

3. For α < 1/2,

lim
n→∞P

(H(n,n) − n
α(1−α)

σn1/2 < x

)
= G(x),

where σ = (1−2α)1/2

α(1−α)
.
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This extends the results of [5, 6] on the model with geometric weights. The first
part of Theorem 1.3 is proved in Section 5, while the second and third parts are
proved in Section 6. Section 6.1 includes an explanation for why the transition oc-
curs at α = 1/2, using a property of the Pfaffian Schur measure (Proposition 3.4).

Far away from the diagonal, the limit theorem satisfied by H(n,m) coincides
with that of the (unsymmetrized) full-quadrant model.

THEOREM 1.4. For any κ ∈ (0,1) and α >
√

κ

1+√
κ

, we have that

lim
n→∞P

(
H(n, κn) − (1 + √

κ)2n

σn1/3 < x

)
= FGUE(x),

where σ = (1+√
κ)4/3

√
κ

1/3 .

This extends the results of [38] on the geometric model to the exponential case
and to allow any boundary parameter. Theorem 1.4 is proved in Section 6.3.

REMARK 1.5. Our asymptotic analyses could be extended to show that the
fluctuations of H(n, κn) for κ ∈ (0,1) follow the BBP transition [3] when α =√

κ/(1 + √
κ) +O(n−1/3), and in particular are distributed according to (FGOE)2

when α = √
κ/(1 + √

κ). The BBP transition would also occur if one varies the
rate of exponential weights in the first rows of the lattice. Regarding H(n,n), it is
not clear if the higher order phase transitions would coincide with the spiked GSE
[12, 42].

Our results rely on an asymptotic analysis of the following formula for the joint
distribution of passage times. It involves the Fredholm Pfaffian (see Section 2 for
background on Fredholm Pfaffians) of a matrix-valued correlation kernel Kexp

defined in Section 4.4 where the next proposition is proved.

PROPOSITION 1.6. For any h1, . . . , hk > 0 and integers 0 < n1 < n2 < · · · <
nk and m1 > m2 > · · · > mk such that ni > mi for all i, we have that

P

(
k⋂

i=1

{
H(ni,mi) < hi

})= Pf
(
J − Kexp)

L2(Dk(h1,...,hk))
,

where the RHS is a Fredholm Pfaffian (Definition 2.3) on the domain

Dk(h1, . . . , hk) = {
(i, x) ∈ {1, . . . , k} ×R : x ≥ hi

}
.

In the one point case k = 1, and for n1 = m1, one could alternatively charac-
terize the probability distribution of H(n,n) by taking the exponential limit of the
formulas in [5, 6] using for instance the results from [1]. Note that we need only
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the case k = 1 in order to prove Theorems 1.3 and 1.4, but the multipoint case is
necessary for Theorems 1.7 and 1.8 stated below and proved in [2].

We can generalize the results of Theorems 1.3 and 1.4 by allowing the pa-
rameters κ and α to vary in regions of size n−1/3 around the critical values
α = 1/2, κ = 1. In the limit, we obtain a new two-parametric family of probability
distributions.

More generally, we can compute the finite dimensional marginals of Airy-like
processes in various ranges of α and κ . We state the results below and refer to [2]
for detailed proofs. KPZ scaling predictions (together with Theorem 1.4) suggests
to define

Hn(η) = H(n + n2/3ξη,n − n2/3ξη) − 4n + n1/3ξ2η2

σn1/3 ,

where η ≥ 0, σ = 24/3 and ξ = 22/3. Let us scale α as

α = 1 + 2σ−1	n−1/3

2
,

where 	 ∈ R is a free parameter. The limiting joint distribution of multiple points
is characterized by a new crossover kernel Kcross that we introduce in Section 2.5.

THEOREM 1.7. For 0 ≤ η1 < · · · < ηk , 	 ∈ R, setting α = 1+22/3	n−1/3

2 , we
have that

lim
n→∞P

(
k⋂

i=1

{
Hn(ηi) < xi

})= Pf
(
J − Kcross)

L2(Dk(x1,...,xk))
.

The proof of this result is very similar with the proof of Theorem 1.4. We pro-
vide the details of the computations in [2].

In the one-point case (k = 1), this yields a new probability distribution Lcross,
depending on two parameters 	,η (see Definition 2.9), which realizes a two-
dimensional crossover between GSE, GUE and GOE distributions (see Fig-
ure 2 and details in Section 2.5). When η = 0, we recover the probability dis-
tribution F(x;w) from [6], Definition 4. When 	 = 0, the correlation kernel
Kcross degenerates to the orthogonal-unitary transition kernel obtained in [25]
and Fcross(x;0, η) realizes a crossover between FGOE for η = 0 and FGUE for
η → +∞. An analogous result was obtained in [38], Theorem 4.2, for the half-
space PNG model.

In the case when α > 1/2 is fixed, the joint distribution of passage-times is
governed by the so-called symplectic-unitary transition [25].

THEOREM 1.8. For α > 1/2 and 0 < η1 < · · · < ηk , we have that

lim
n→∞P

(
Hn(η1) < x1, . . . ,Hn(ηk) < xk

)= Pf
(
J − KSU)

L2(Dk(x1,...,xk))
,

where the kernel KSU is defined in Section 2.5.
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FIG. 2. Phase diagram of the fluctuations of H(n,m) as n → ∞ when α and the ratio n/m varies.
The gray area corresponds to a region of the parameter space where the fluctuations are on the scale
n1/2 and Gaussian. The bounding curve (where fluctuations are expected to be Tracy–Widom GOE2

cf. Remark 1.5) asymptotes to zero as n/m goes to +∞. The crossover distribution Fcross(·;	,η)

is defined in Definition 2.9 and describes the fluctuations in the vicinity of n/m = 1 and α = 1/2.

Theorem 1.8 can be seen as a 	 → +∞ degeneration of Theorem 1.7 (see
Section 2.5). The proof is very similar with that of Theorem 1.7. We provide the
details of the computations in [2].

An analogous result was found for the half-space PNG model without nucle-
ations at the origin [38] although the statement of [38], Theorem 5.3, makes
rigorous sense only when τ > 0. The correlation kernel corresponding to the
symplectic-unitary transition was studied first in [25].8 This random matrix ensem-
ble is the point process corresponding to the eigenvalues of a Hermitian complex
matrix Xη for η ∈ (0,+∞) with density proportional to

exp
(

−Tr((Xη−e−ηX0)
2)

1−e−2η

)
,

where X0 is a GSE matrix. Various limits of the symplectic-unitary and orthogonal-
unitary transition kernels are considered in [25], Section 5. In particular, [25], Sec-
tion 5.6, considers the limit as η → 0. While the GOE distribution is recovered in
the orthogonal-unitary case, the explanations are missing in the symplectic-unitary
case (the scaling argument at the end of [25], Section 5.6, is not the reason why
one does not recover KGSE). We provide a rigorous proof in Section 6.5.

8The integration domain in [25], (4.44), should be R<0 instead of R>0. The correct formula was
found in [38], (5.39).
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REMARK 1.9. One can also study the limiting n-point distribution of

η �→ H(n + n2/3ξη, κn − n2/3ξη) − (1 + √
κ)2n − n1/3x2

24/3n1/3 ,

for a fixed κ ∈ (0,1) and several values of x. In the n → ∞ limit, one would obtain
the extended Airy kernel for K

exp
12 and 0 for K

exp
11 and K

exp
22 but we do not pursue

that direction.

Outline of the paper. In Section 2, we provide convenient Fredholm Pfaffian
formulas for the Tracy–Widom distributions and their generalizations. In Sec-
tion 3, we define Pfaffian Schur processes and construct dynamics preserving them,
thus making a connection to half-space LPP (Proposition 3.10). In Section 4, we
apply a general result of Borodin and Rains giving the correlation structure of Pfaf-
fian Schur processes, in order to express the k-point distribution along space-like
paths in half-space LPP with geometric (Proposition 4.2) and exponential (Propo-
sition 1.6) weights. In Section 5, we discussed the issues related to the multiplicity
of the limiting point process, and prove the first part of Theorem 1.3. In Section 6,
we perform all other asymptotic analysis: we prove limit theorems toward the GUE
Tracy–Widom distribution (Theorem 1.4), GOE Tracy–Widom distribution (sec-
ond part of Theorem 1.3), and Gaussian distribution (third part of 1.3).

2. Fredholm Pfaffian formulas. Let us introduce a convenient notation that
we use throughout the paper to specify integration contours in the complex plane.

DEFINITION 2.1. Let Cϕ
a be the union of two semi-infinite rays departing a ∈

C with angles ϕ and −ϕ. We assume that the contour is oriented from a + ∞e−iϕ

to a + ∞e+iϕ .

2.1. GUE Tracy–Widom distribution. For a kernel K :X×X →R, we define
its Fredholm determinant det(I + K)L2(X,μ) as given by the series expansion

det(I + K)L2(X,μ) = 1 +
∞∑

k=1

1

k!
∫
X

· · ·
∫
X

det
(
K(xi, xj )

)k
i,j=1 dμ⊗k(x1 · · ·xk),

whenever it converges. We will generally omit the measure μ in the notation and
write simply L2(X) when the uniform or the Lebesgue measure is considered.

DEFINITION 2.2. The GUE Tracy–Widom distribution, denoted LGUE is a
probability distribution on R such that if X ∼ LGUE,

P(X ≤ x) = FGUE(x) = det(I − KAi)L2(x,+∞),

where KAi is the Airy kernel,

(1) KAi(u, v) =
∫
C2π/3

−1

dw

∫
Cπ/3

1

dz
ez3/3−zu

ew3/3−wv

1

z − w
.
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Throughout the paper, all integrals over a contour of the complex plane will take a
factor 1/(2iπ), and thus we use the notation dz := 1

2iπ dz.

2.2. Fredholm Pfaffian. In order to define the GOE and GSE distribution in a
form which is convenient for later purposes, we introduce the concept of Fredholm
Pfaffian. We refer to Section 4.1 explaining how Fredholm Pfaffians naturally arise
in the study of Pfaffian point processes.

DEFINITION 2.3 ([37] Section 8). For a 2 × 2-matrix valued skew-symmetric
kernel,

K(x,y) =
(
K11(x, y) K12(x, y)

K21(x, y) K22(x, y)

)
, x, y ∈ X

[such kernel is called skew-symmetric if the 2k × 2k matrix (K(xi, xj ))
k
i,j=1 is

skew-symmetric] we define its Fredholm Pfaffian by the series expansion

(2) Pf(J + K)L2(X,μ) = 1 +
∞∑

k=1

1

k!
∫
X

· · ·
∫
X

Pf
(
K(xi, xj )

)k
i,j=1 dμ⊗k(x1 · · ·xk),

provided the series converges, and we recall that for an skew-symmetric 2k × 2k

matrix A, its Pfaffian is defined by

(3) Pf(A) = 1

2kk!
∑

σ∈S2k

sign(σ )aσ(1)σ (2)aσ(3)σ (4) · · ·aσ(2k−1)σ (2k).

The kernel J is defined by

J (x, y) = 1x=y

(
0 1

−1 0

)
.

REMARK 2.4. We must consider matrix kernels as made up of k2 blocks, each
of which has size 2 × 2. Considering 22 blocks of size k × k instead would change
the value of its Pfaffian by a factor (−1)k(k−1)/2.

In Sections 4, 5 and 6, we will need to control the convergence of Fredholm
Pfaffian series expansions. This can be done using Hadamard’s bound. We recall
that for a matrix M of size k, if the (i, j) entry of M is bounded by aibj for all
i, j ∈ {1, . . . , k} then

∣∣det[M]∣∣≤ kk/2
k∏

i=1

aibi.

Using this inequality and the fact that Pf[A] = √
det[A] for a skew-symmetric

matrix A, we have the following.
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LEMMA 2.5. Let K(x,y) a 2 × 2 matrix valued skew symmetric kernel. As-
sume that there exist constants C > 0 and constants a > b ≥ 0 such that∣∣K11(x, y)

∣∣< Ce−ax−ay,
∣∣K12(x, y)

∣∣< Ce−ax+by,∣∣K22(x, y)
∣∣< Cebx+by.

Then, for all k ∈ Z>0,

∣∣Pf
[
K(xi, xj )

]k
i,j=1

∣∣< (2k)k/2Ck
k∏

i=1

e−(a−b)xi .

2.3. GOE Tracy–Widom distribution. The GOE Tracy–Widom distribution,
denoted LGOE, is a continuous probability distribution on R. The following is a
convenient formula for its cumulative distribution function.

LEMMA 2.6. For X ∼ LGOE, FGOE(x) := P(X ≤ x) = Pf(J −KGOE)L2(x,∞),
where KGOE is the 2 × 2 matrix valued kernel defined by

KGOE
11 (x, y) =

∫
Cπ/3

1

dz

∫
Cπ/3

1

dw
z − w

z + w
ez3/3+w3/3−xz−yw,

KGOE
12 (x, y) = −KGOE

21 (x, y) =
∫
Cπ/3

1

dz

∫
Cπ/3

−1/2

dw
w − z

2w(z + w)
ez3/3+w3/3−xz−yw,

KGOE
22 (x, y) =

∫
Cπ/3

1

dz

∫
Cπ/3

1

dw
z − w

4zw(z + w)
ez3/3+w3/3−xz−yw

+
∫
Cπ/3

1

ez3/3−zx dz

4z
−
∫
Cπ/3

1

ez3/3−zy dz

4z
− sgn(x − y)

4
.

Throughout the paper, we adopt the convention that

sgn(x − y) = 1x>y − 1x<y.

PROOF. According to [40] (see also equivalent formulas [23], (2.9) and
(6.17)), the GOE distribution function can be defined by FGOE = Pf(J − K1),
where K1 is defined by the matrix kernel

K1
11(x, y) =

∫ ∞
0

dλAi(x + λ)Ai′(y + λ) −
∫ ∞

0
dλAi(y + λ)Ai′(x + λ),

K1
12(x, y) = −K1

21(y, x) =
∫ ∞

0
Ai(x + λ)Ai(y + λ)

+ 1

2
Ai(x)

∫ ∞
0

dλAi(y − λ),

K1
22(x, y) = 1

4

∫ ∞
0

dλ

∫ ∞
λ

dμAi(y + μ)Ai(x + λ)
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− 1

4

∫ ∞
0

dλ

∫ ∞
λ

dμAi(x + μ)Ai(y + λ)

− 1

4

∫ +∞
0

Ai(x + λ)dλ + 1

4

∫ +∞
0

Ai(y + λ)dλ − sgn(x − y)

4
.

Using the contour integral representation of the Airy function

(4) Ai(x) =
∫
Cϕ

a

ez3/3−zx dz for any ϕ ∈ (π/6, π/2] and a ∈ R>0,

with integration on Cπ/3
1 for Ai(x + λ) and Ai′(x + λ), we readily see that

K1
11(x, y) =

∫ ∞
0

dλ

∫
Cπ/3

1

dz

∫
Cπ/3

1

dw(z − w)ez3/3+w3/3−xz−yw−λz−λw

=
∫
Cπ/3

1

dz

∫
Cπ/3

1

dw(z − w)ez3/3+w3/3−xz−yw
∫ ∞

0
dλe−λz−λw(5)

= KGOE
11 (x, y).

The exchange of integrations in (5) is justified because z +w has positive real part
along the contours. Turning to KGOE

12 , we first deform the contour Cπ/3
−1/2 for the

variable w to Cπ/3
1 . When doing this, we encounter a pole at zero. Thus, taking

into account the residue at zero, we find that

KGOE
12 (x, y) = 1

2
Ai(x) +

∫
Cπ/3

1

dz

∫
Cπ/3

1

dw
z − w

2w(z + w)
ez3/3+w3/3−xz−yw.

Using again (4) with the contour Cπ/3
1 , we find that

KGOE
12 (x, y) = 1

2
Ai(x) +

∫ ∞
0

Ai(x + λ)Ai(y + λ)dλ − 1

2
Ai(x)

∫ ∞
0

dλAi(y + λ)

= K1
12(x, y),

where in the last equality we have used that
∫+∞

0 Ai(λ)dλ = 1. For K1
22 we use

similarly (4) with integration on Cπ/3
1 for Ai(x + λ) and Ai(x + μ) and get that

K1
22(x, y) = KGOE

22 (x, y). �

2.4. GSE Tracy–Widom distribution. The GSE Tracy–Widom distribution, de-
noted LGSE, is a continuous probability distribution on R.

LEMMA 2.7. For X ∼ LGSE, FGSE(x) := P(X ≤ x) = Pf(J − KGSE)L2(x,∞),
where KGSE is a 2 × 2-matrix valued kernel defined by

KGSE
11 (x, y) =

∫
Cπ/3

1

dz

∫
Cπ/3

1

dw
z − w

4zw(z + w)
ez3/3+w3/3−xz−yw,
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KGSE
12 (x, y) = −KGSE

21 (x, y) =
∫
Cπ/3

1

dz

∫
Cπ/3

1

dw
z − w

4z(z + w)
ez3/3+w3/3−xz−yw,

KGSE
22 (x, y) =

∫
Cπ/3

1

dz

∫
Cπ/3

1

dw
z − w

4(z + w)
ez3/3+w3/3−xz−yw.

PROOF. FGSE(x) is defined as FGSE(x) =
√

det(I − K4)L2(x,∞) in [40], Sec-

tion III, where K4 is the 2 × 2 matrix valued kernel defined by

K4
11(x, y) = K4

22(y, x) = 1

2
KAi(x, y) − 1

4
Ai(x)

∫ ∞
y

Ai(λ)dλ,

K4
12(x, y) = −1

2
∂yKAi(x, y) − 1

4
Ai(x)Ai(y),

K4
21(x, y) = −1

2

∫ ∞
x

KAi(λ, y)dλ + 1

4

∫ ∞
x

Ai(λ)dλ

∫ ∞
y

Ai(μ)dμ.

In order to have a Pfaffian formula, we need a skew-symmetric kernel. We compute
the kernel KGSE := JK4 using(

0 1
−1 0

)(
a b

c d

)
=
(

c d

−a −b

)
,

and find that the operator KGSE is given by the matrix kernel

KGSE
11 (x, y) = K4

21(x, y),

KGSE
12 (x, y) = K4

22(x, y),

KGSE
21 (x, y) = −K4

11(x, y) = −K4
22(y, x) = −KGSE

12 (y, x),

KGSE
22 (x, y) = −K4

12(x, y).

Using the contour integral representations for the Airy function (4) with integra-
tions on Cπ/3

1 and the definition of the Airy kernel (1), we find that the entries
KGSE

ij (x, y) match those given in the statement of Lemma 2.7. Now KGSE is skew-

symmetric. Using that for a skew-symmetric kernel A, Pf(J + A)2 = det(I − JA)

as soon as Fredholm expansions are convergent ([37], Lemma 8.1) (see also [36],
Proposition B.4, for a proof), we have that (using J 2 = I )

FGSE(x) =
√

det
(
I − K4

)
L2(x,∞) = Pf

(
J − KGSE)

L2(x,∞). �

REMARK 2.8. There exists an alternative scalar kernel which yields the GSE
distribution function [28]:

(6) FGSE(x) = Pf
(
J − KGSE)

L2(x,∞) =
√

det
(
I − KGLD

)
L2(x,∞),
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where

KGLD(x, y) = KAi(x, y) − 1

2
Ai(x)

∫ ∞
0

dzAi(y + z).

The identity (6) can be shown by factoring KGSE and using the det(I + AB) =
det(I + BA) trick.

2.5. Crossover kernels. The crossover kernel in Theorem 1.7 concerns the
limiting fluctuations of multiple points, hence the kernel is indexed by elements
of {1, . . . , k} × R. We introduce a matrix kernel Kcross, depending on parameters
	 ∈ R and 0 ≤ η1 < · · · < ηk , which decomposes as

Kcross(i, x; j, y) = I cross(i, x; j, y) + Rcross(i, x; j, y).

We have

I cross
11 (i, x; j, y) =

∫
Cπ/3

1

dz

∫
Cπ/3

1

dw
z + ηi − w − ηj

z + w + ηi + ηj

× z + 	 + ηi

z + ηi

w + 	 + ηj

w + ηj

ez3/3+w3/3−xz−yw,

I cross
12 (i, x; j, y) =

∫
Cπ/3

az

dz

∫
Cπ/3

aw

dw
z + ηi − w + ηj

2(z + ηi)(z + ηi + w − ηj )

× z + 	 + ηi

−w + 	 + ηj

ez3/3+w3/3−xz−yw,

I cross
21 (i, x; j, y) = −I cross

12 (j, y; i, x),

I cross
22 (i, x; j, y) =

∫
Cπ/3

bz

dz

∫
Cπ/3

bw

dw
z − ηi − w + ηj

4(z − ηi + w − ηj )

× ez3/3+w3/3−xz−yw

(z − 	 − ηi)(w − 	 − ηj )
.

The contours in I cross
12 are chosen so az > −ηi , az +aw > ηj −ηi and aw < 	 +ηj .

The contours in I cross
22 are chosen so bz > ηi , bz > ηi +	 and bw > ηj , bw > ηj +

	 . We have Rcross
11 (i, x; j, y) = 0, and Rcross

12 (i, x; j, y) = 0 when i ≥ j . When
i < j ,

Rcross
12 (i, x; j, y) =

− exp(
−(ηi−ηj )4+6(x+y)(ηi−ηj )2+3(x−y)2

12(ηi−ηj )
)√

4π(ηj − ηi)
,

that we may also write

Rcross
12 (i, x; j, y) = −

∫ +∞
−∞

dλe−λ(ηi−ηj )Ai(xi + λ)Ai(xj + λ).
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The kernel Rcross
22 is antisymmetric, and when xi − ηi > xj − ηj we have

Rcross
22 (i, x; j, y) = −1

4

∫
Cπ/3

az

dz
e(z+ηi)

3/3+(	+ηj )3/3−x(z+ηi)−y(	+ηj )

	 + z

+ 1

4

∫
Cπ/3

az

dz
e(z+ηj )3/3+(	+ηi)

3/3−y(z+ηj )−x(	+ηi)

	 + z

− 1

2

∫
Cπ/3

bz

dz
ze(z+ηi)

3/3+(−z+ηj )3/3−x(z+ηi)−y(−z+ηj )

(	 + z)(	 − z)
,

where the contours are chosen so that az < −	 and −|	 | < bz < |	 |.

DEFINITION 2.9. We define the probability distribution Lcross by the distri-
bution function

Fcross(x;	,η) = Pf
(
J − Kcross(1, ·;1, ·))L2(x,∞).

This family of distribution functions realizes a two-dimensional crossover be-
tween GSE, GUE and GOE distributions, in the sense that Fcross(x;0,0) =
FGOE(x) and

Fcross(x;	,η)

−→

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
FGSE(x) when 	 → +∞ and η = 0,(
FGOE(x)

)2 when 	 → −∞, η → +∞ with 	/η = −1,

FGUE(x) when η → +∞ and 	 + η → +∞,

0 when 	 → −∞ and 	 + η → −∞.

Moreover, when 	 → −∞ and 	 + η → −∞,

Fcross
(
(	 + η)2 +√

2|	 + η|y;	,η
)−→

∫ y

−∞
1√
2π

e− 1
2 s2

ds.

In addition, for a ∈ R, Fcross(x;	,η) −→ F1(x;a) when 	 → −∞, η → +∞
with 	 + η = a, where F1(x;a) is the distribution in [3], Definition 1.3, that
interpolates FGUE(x) and (FGOE(x))2. When η = 0, Fcross(x;	,0) = F(x;	)

where the crossover distribution F(x;w) is defined in [6], Definition 4.
The crossover kernel arising in Theorem 1.8 is a matrix kernel KSU, depending

on parameters 	 ∈ R and 0 < η1 < · · · < ηk , of the form

KSU(i, x; j, y) = ISU(i, x; j, y) + RSU(i, x; j, y).

We have

ISU
11 (i, x; j, y) =

∫
Cπ/3

1

dz

∫
Cπ/3

1

dw
(z + ηi − w − ηj )e

z3/3+w3/3−xz−yw

4(z + ηi)(w + ηj )(z + w + ηi + ηj )
,
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ISU
12 (i, x; j, y) =

∫
Cπ/3

az

dz

∫
Cπ/3

aw

dw
(z + ηi − w + ηj )e

z3/3+w3/3−xz−yw

2(z + ηi)(z + w + ηi − ηj )
,

ISU
21 (i, x; j, y) = −ISU

12 (j, xj ; i, yi),

ISU
22 (i, x; j, y) =

∫
Cπ/3

bz

dz

∫
Cπ/3

bw

dw
z − ηi − w + ηj

z − ηi + w − ηj

ez3/3+w3/3−xz−yw.

The contours in ISU
12 are chosen so az > −ηi , az + aw > ηj − ηi . The contours in

ISU
22 are chosen so that bz > ηi and bw > ηj .

We have RSU
11 (i, x; j, y) = 0, and RSU

12 (i, x; j, y) = 0 when i ≥ j . When i < j ,

RSU
12 (i, x; j, y) = −e

−(ηi−ηj )4+6(x+y)(ηi−ηj )2+3(x−y)2

12(ηi−ηj )√
4π(ηj − ηi)

= Rcross
12 (1, x; j, y).

The kernel RSU
22 is antisymmetric, and when x − ηi > y − ηj we have

RSU
22 (i, x; j, y) = −1

2

∫
Cπ/3

0

dz ze(z+ηi)
3/3+(−z+ηj )3/3−x(z+ηi)−y(−z+ηj ),

where the contours are chosen so that az > −	 and bz is between −	 and 	 .
Modulo a conjugation of the kernel, KSU is the limit of Kcross when 	 goes to

+∞, that is,

KSU = lim
	→∞

⎛⎝ 1

4	 2 Kcross
11 Kcross

12

Kcross
21 4	 2Kcross

22

⎞⎠ .

3. Pfaffian Schur process. The key tool in our analysis of last passage per-
colation on a half-space is the Pfaffian Schur process. In this section, we first in-
troduce the Pfaffian Schur process as in [21]. This is a Pfaffian analogue of the
determinantal Schur process introduced in [35]. We refer to [19], Section 6, and
references therein for background on the Schur process. Then, in order to connect
it to last passage percolation, we introduce an equivalent presentation of the Pfaf-
fian Schur processes indexed by lattice paths in the half-quadrant, and we study
dynamics preserving the Pfaffian Schur process.

3.1. Definition of the Pfaffian Schur process.

3.1.1. Partitions and Schur positive specializations. Pfaffian Schur processes
are measures on sequences of integer partitions. A partition is a nonincreasing
sequence of nonnegative integers λ = (λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 0), with finitely many
nonzero components. Given two partitions λ,μ, we write μ ⊂ λ if λi ≥ μi for all
i ≥ 1. We write μ ≺ λ and say that μ interlaces λ if for all i ≥ 1, λi ≥ μi ≥ λi−1.
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For a given partition λ, its dual, denoted λ′, is the partition corresponding to the
Young diagram which is symmetric to the Young diagram of λ with respect to the
first diagonal. In other words, λ′

i = �{j : λj ≥ i}. We say that a partition λ is even
if all its component are even integers. Thus, for a partition λ, we say that its dual
λ′ is even when we have λ1 = λ2, λ3 = λ4, etc. We denote by |λ| the number of
boxes in the diagram corresponding to λ.

The probabilities in the Pfaffian Schur process—and the usual Schur process as
well—are expressed in terms of skew Schur symmetric functions sλ/μ indexed by
pairs of partitions μ,λ. We use the convention that sλ/μ = 0 if μ �⊂ λ. We refer
to [19], Section 2, for a definition of (skew) Schur functions and background on
symmetric functions. We record later in Section 3.1.2 the few properties of Schur
functions that we will use.

A specialization ρ of the algebra Sym of symmetric functions is an algebra mor-
phism from Sym to C. For example, the evaluation of a symmetric function into
one fixed variable α ∈ C defines such a morphism. We denote f (ρ) the application
of the specialization ρ to f ∈ Sym. A specialization can be defined by its values
on a basis of Sym and we generally choose the power sum symmetric functions
pn(x1, x2, . . .) = ∑

xn
i . For two specializations ρ1 and ρ2, their union, denoted

(ρ1, ρ2), is defined by

pn(ρ1, ρ2) = pn(ρ1) + pn(ρ2) for all n ≥ 1.

More generally, the specialization (ρ1, . . . , ρn) is the union of specializations
ρ1, . . . , ρn. When ρ1 and ρ2 are specializations corresponding to the evaluation
into sets of variables, then (ρ1, ρ2) corresponds to the evaluation into the union of
both sets of variables, hence the term union for this operation on specializations.

Schur nonnegative specializations of Sym are specializations taking values in
R≥0 when applied to skew Schur functions sλ/μ for any partitions λ and μ.
Thoma’s theorem (see [30] and references therein) provides a classification of such
specializations. Let α = (αi)i≥1, β = (βi)i≥1 and γ be nonnegative numbers such
that

∑
(αi + βi) < ∞. Any Schur nonnegative specialization ρ is determined by

parameters (α,β, γ ) through the formal series identity

∑
n≥0

hn(ρ)zn = exp(γ z)
∏
i≥1

1 + βiz

1 − αiz
=: H(z;ρ),

where the hn are complete homogeneous symmetric functions. The specialization
(0,0, γ ) is called (pure-)Plancherel and will be denoted by Plancherel(γ ). It can
be obtained as a limit of specializations (α,0,0) where α is the sequence of length
M , (γ /M, . . . , γ /M), when M is sent to infinity. From now on, we assume that
all specializations are always Schur nonnegative.
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3.1.2. Useful identities. We collect some identities from [31] that were used
in [21] to define the Pfaffian Schur process. The sums below [as in (7)] are always
taken over all partitions, unless otherwise restricted. Starting with one already use-
ful for the determinantal Schur process, we have the skew-Cauchy identity

(7)
∑
ν

sν/λ(ρ)sν/μ

(
ρ′)= H

(
ρ;ρ′)∑

τ

sλ/τ

(
ρ′)sμ/τ (ρ),

where, if ρ and ρ′ are the specializations into sets of variables {xi}, {yi},

H
(
ρ;ρ′)=∏

i,j

1

1 − xiyj

.

We also use the branching rule for Schur functions

(8)
∑
ν

sλ/ν(ρ)sν/μ

(
ρ′)= sλ/μ

(
ρ,ρ′).

The following identity is crucial to go from the determinantal Schur processes
to its Pfaffian analog. It is a variant of the skew-Littlewood identity,

(9)
∑

ν′even

sν/λ(ρ) = H ◦(ρ)
∑

κ ′even

sλ/κ(ρ),

where if ρ is the specialization into a set of variables {xi},

H ◦(ρ) = ∏
i<j

1

1 − xixj

.

In particular, ∑
λ′even

sλ(ρ) = H ◦(ρ).

3.1.3. Definition of the Pfaffian Schur process.

DEFINITION 3.1 ([21]). The Pfaffian Schur process parametrized by two se-
quences of Schur nonnegative specializations ρ+

0 , ρ+
1 , . . . , ρ+

n−1 and ρ−
1 , . . . , ρ−

n ,
denoted PSP[ρ+

0 ;ρ+
1 ; . . . ;ρ+

n−1|ρ−
1 ; . . . ;ρ−

n ], is a probability measure on se-
quences of integer partitions

∅ ⊂ λ(1) ⊃ μ(1) ⊂ λ(2) ⊃ μ(2) · · ·μ(n−1) ⊂ λ(n) ⊃ ∅.

Under this measure, the probability of the sequence λ̄ = (λ(1), . . . , λ(n)), μ̄ =
(μ(1), . . . ,μ(n)) is given by

PSP
[
ρ+

0 ;ρ+
1 ; . . . ;ρ+

n−1|ρ−
1 ; . . . ;ρ−

n

]
(λ̄, μ̄) = V(λ̄, μ̄)

Z◦(ρ)
,
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∅

λ(1)

μ(1)

λ(2)

· · ·
μ(n−1)

λ(n)

∅

ρ+
0

ρ−
1 ρ+

1 ρ+
n−1 ρ−

n

FIG. 3. Diagram corresponding to The Pfaffian Schur process PSP[ρ+
0 ;ρ+

1 ; . . . ;ρ+
n−1|ρ−

1 ; . . . ;
ρ−
n ]. The ascending and descending links represent inclusions of partitions.

where Z◦(ρ) is a renormalization constant depending on the choice of specializa-
tions and the weight V(λ̄, μ̄) is given by

V(λ̄, μ̄) = τλ(1)

(
ρ+

0

)
sλ(1)/μ(1)

(
ρ−

1

)
sλ(2)/μ(1)

(
ρ+

1

)× · · ·
(10)

× sλ(n)/μ(n−1)

(
ρ+

n−1

)
sλ(n)

(
ρ−

n

)
,

where

τλ = ∑
κ ′ even

sλ/κ .

We may encode the choice of specializations by the diagram shown in Figure 3.
The normalization constant Z◦(ρ) for the weights V(λ̄, μ̄) is

Z◦(ρ) := ∑
∅⊂λ(1)⊃μ(1)⊂λ(2)⊃μ(2)···μ(n−1)⊂λ(n)⊃∅

V(λ̄, μ̄),

and can be computed [21] to be

Z◦(ρ) = H ◦(ρ−
1 , . . . , ρ−

n

) ∏
0≤i<j≤n

H
(
ρ+

i ;ρ−
j

)
.

DEFINITION 3.2. The Pfaffian Schur measure PSM[ρ|ρ′] is a probability
measure on a single partition λ such that

PSM
[
ρ|ρ′](λ) = 1

H ◦(ρ′)H(ρ;ρ′)
τλ(ρ)sλ

(
ρ′),

LEMMA 3.3. The law of λ(k) under the Pfaffian Schur process PSP[ρ+
0 ;ρ+

1 ;
. . . ;ρ+

n−1|ρ−
1 ; . . . ;ρ−

n ] is the Pfaffian Schur measure PSM[ρ+
0 , . . . , ρ+

k−1|ρ−
k , . . . ,

ρ−
n ].

PROOF. Summing over all partitions except λ(k) in (10) and using identities
(7), (8) and (9) yields the result. �

The following property of the Pfaffian Schur measure will be useful to interpret
the results in Section 6.1.
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PROPOSITION 3.4 (Corollary 7.6 [5]). Let c be a positive real and ρ a Schur
nonnegative specialization. If μ is distributed according to PSM[c|ρ] and λ is

distributed according to PSM[0|c, ρ], then we have the equality in law λ1
(d)= μ1.

PROOF. By definition, we have that

P(λ1 ≤ x) = ∑
λ:λ1≤x

τλ(0)sλ(c, ρ)

H ◦(c, ρ)
,

(11)

P(μ1 ≤ x) = ∑
μ:μ1≤x

τμ(c)sμ(ρ)

H ◦(ρ)H(c;ρ)
.

The normalization constants H ◦(c, ρ) and H ◦(ρ)H(c;ρ) are equal. Since τλ(0) =
1λ′ even, we have that

LHS (11) = 1

H ◦(ρ)H(c;ρ)

∑
λ:λ1≤x

λ′ even

sλ(c, ρ)

= 1

H ◦(ρ)H(c;ρ)

∑
λ:λ1≤x

λ′ even

∑
μ

sμ(ρ)sλ/μ(c) (Branching rule)

= 1

H ◦(ρ)H(c;ρ)

∑
μ:μ1≤x

sμ(ρ)cμ1−μ2+μ3−μ4+···

= 1

H ◦(ρ)H(c;ρ)

∑
μ:μ1≤x

sμ(ρ)τμ(c)

= RHS (11).

Note that in the third equality, we use that if λ′ is even and μ ≺ λ, then we have for
all i ≥ 1, λ2i−1 = μ2i−1 = λ2i . Thus, the fact that c is a single variable specializa-
tion is necessary. The fourth equality comes from the fact that for a single variable
specialization c,

(12) τμ(c) = ∑
κ ′ even

sλ/κ(c) = cμ1−μ2+μ3−μ4+···.

Indeed, there is only one partition κ which gives a nonzero contribution in the sum
in (12). �

REMARK 3.5. The proof of Proposition 3.4 actually shows that (λ1, λ3,

λ5, . . .) has the same law as (μ1,μ3,μ5, . . .), but we will use only the first co-
ordinates in applications.
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FIG. 4. A zig-zag path indexing the Pfaffian Schur process.

3.2. Pfaffian Schur processes indexed by zig-zag paths. In Definition 3.1,
Pfaffian Schur processes were determined by two sequences of specializations
ρ+◦ , . . . , ρ+

n−1 and ρ−
1 , . . . , ρ−

n . We describe here an equivalent way of represent-
ing Pfaffian Schur processes, indexing them by certain zig-zag paths in the first
quadrant of Z2 (as depicted in Figure 4) where each edge of the path is labelled
by some Schur nonnegative specialization. This representation is convenient for
defining dynamics on Pfaffian Schur processes.

More precisely, we consider oriented paths starting on the horizontal axis at
(+∞,0), proceeding by unit steps horizontally to the left or vertically to the top,
hitting the diagonal at some point (n,n) for some n ∈ Z>0 and then taking one
final edge of length n

√
2 to the origin (0,0) (see Figure 4). Let us denote � the

set of all such paths. For γ ∈ �, let us denote E(γ ) its set of edges and V (γ ) its
set of vertices. We denote E↑(γ ) the set of vertical edges and E←(γ ) the set of
horizontal edges. Each edge e is labelled by a Schur nonnegative specialization
ρe. We label by a specialization ρ◦ the edge joining the point (n,n) to (0,0). Each
vertex v ∈ γ indexes a partition λv .

For γ ∈ �, the Pfaffian Schur process indexed by γ and the specializations on
E(γ ) is a probability measure on the sequence of partitions λ := (λv)v∈V (γ ) where
the weight of λ is given by

V(λ) = τλ(n,n)(ρ◦)
∏

e∈E↑(γ )∪E←(γ )

W(e),

where for an edge e1 ∈ E←(π) and for an edge e2 ∈ E↑(π),

W
(
e1 = v ← u

)= sλu/λv (ρe1) and W
(
e2 = v↑

u

)= sλv/λu(ρe2).

We adopt the convention that for all vertices v on the horizontal axis, λv is the
empty partition, which in particular implies that specializations are empty on the
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horizontal axis. We also recall that sλ/μ ≡ 0 if μ �⊂ λ. Using the above formalism,
the normalisation constant associated to the weights V(λ) is given by

Z◦(γ ) = ∏
e∈E↑(γ )

H ◦(ρe)H(ρ◦;ρe)
∏

e∈E↑(γ ),e′∈E←(γ )

e>e′

H(ρe;ρe′),

where e > e′ means that the edge e occurs after the edge e′ in the oriented path γ .

REMARK 3.6. The above description is equivalent to the one given in Defini-
tion 3.1. As we have defined in Section 3.1, the Pfaffian Schur process is a measure
on sequences

∅ ⊂ λ(1) ⊃ μ(1) ⊂ λ(2) ⊃ μ(2) · · ·μ(n−1) ⊂ λ(n) ⊃ ∅.

However, by using empty specializations, one can force that λ(i) = μ(i) or μ(i) =
λ(i+1). Hence, we can consider sequences where the order of inclusions is any
word on the alphabet {⊂,⊃}. By matching the inclusions ⊃ with vertical edges
in the zig-zag path formulation and the inclusions ⊂ with horizontal edges, we
see that both formulations are equivalent (zig-zag paths are in bijection with finite
words over a two-letter alphabet); see, for instance, Figure 6 for a particular exam-
ple. This zig-zag construction also applies to the usual Schur process [35]. In that
case, the processes are indexed by paths from a point on the horizontal axis to a
point on the vertical axis.

3.3. Dynamics on Pfaffian Schur processes. Here, we give a sequential con-
struction of Pfaffian Schur processes using the formalism of Section 3.2 by defin-
ing Markov chains preserving the Pfaffian Schur structure. More precisely, we will
define Markov dynamics such that the pushforward of the Pfaffian Schur process
indexed by a path γ ∈ � and a set of specializations on E(γ ) is the Pfaffian Shur
process indexed by a path γ ′ and the same set of specializations, where γ ′ is ob-
tained from γ by adding one box to the shape it defines, or half a box when it
grows along the diagonal. These dynamics are a special case of those developed in
[8] with Alexei Borodin in the Macdonald case [15]. They are an adaptation to the
Pfaffian setting of Markov dynamics preserving the (determinantal) Schur process
introduced in [17], Section 2, and studied in a more general setting in [13] (see the
review [19], Section 6.4).

Let us explain precisely how to obtain a path γ ∈ � as the outcome of a
sequence of elementary moves (see Figure 5). (i) We start with the path with
only one vertex (0,0). (ii) We may first make the path grow along the diagonal
and get (1,0) → (1,1) → (0,0). (iii) We can always freely move to the right
the starting point of the path. For instance, assume that we get the new path
(2,0) → (1,0) → (1,1) → (0,0). (iv) Then we may make the path grow by one
box and get (2,0) → (2,1) → (1,1) → (0,0). (v) We will continue iteratively
adding boxes to the path or growing along the diagonal, until we arrive at γ .
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FIG. 5. Illustration of the first steps according to which the path grows.

In a parallel way, we construct a sequence of Pfaffian Schur processes for each
path described above. (i) We start with an empty Pfaffian Schur process λ(0,0) = ∅.
(ii) The application of Markov dynamics—that we shall define momentarily—
corresponding to the growth of the path along the diagonal will define a Pfaffian
Schur process on ∅ = λ(1,0) ⊂ λ(1,1) ⊃ λ(0,0) = ∅. (iii) By convention, the parti-
tions indexed by vertices on the horizontal axis are empty under the Pfaffian Schur
process. Hence, sliding the starting point of the path to the right has no effect in
terms of Pfaffian Schur process. (iv) Then the application of Markov dynamics cor-
responding to the growth of the path by one box at the corner (1,0) will define a
Pfaffian Schur process ∅ = λ(2,0) ⊂ λ(2,1) ⊃ λ(1,1) ⊃ λ(0,0) = ∅. (v) We continue
iteratively by applying Markov operators that update one partition in the Pfaffian
Schur process.

We now have to define the above-mentioned Markov dynamics, and explain
how the specializations are chosen. We have seen that there are two distinct cases
corresponding to the growth of the path by one box or the growth by a half-box
along the diagonal.

We define a transition operator U�
ρ1,ρ2

corresponding to the growth of the path
by one box, as a probability distribution U�

ρ1,ρ2
(π |ν,μ, κ) on partitions π , given

partitions ν,μ, κ with μ ⊂ ν, κ . In terms of growing paths, this operator corre-
sponds to adding one box in a corner formed by partitions μ ⊂ ν, κ , and it will
update the partition μ to a partition π containing ν and κ , in such a way that the
corner formed by partition κ,π, ν is the marginal of a new Pfaffian Schur process.
Pictorially, the action of the transition operator U�

ρ1,ρ2
can be represented by the

following diagram:

U�
ρ1,ρ2

updates the Pfaffian Schur process formed by partitions κ ⊃ μ ⊂ ν on the
left to the the Pfaffian Schur process formed by partitions κ ⊂ π ⊃ ν on the right.
After the update, one can forget the information supported by the gray arrows on
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the right. The specializations in the new Pfaffian Schur process are carried from
the previous step by the transition operator as shown above.

LEMMA 3.7. Assume that U�
ρ1,ρ2

satisfies

(13)
∑
μ

sκ/μ(ρ2)sν/μ(ρ1)U�
ρ1,ρ2

(π |ν,μ, κ) = sπ/κ(ρ1)sπ/ν(ρ2)

H(ρ2;ρ1)
.

Then U�
ρ1,ρ2

preserves the Pfaffian Schur process measure in the following sense.
Let γ ′ ∈ � contain the corner defined by the vertices

(i + 1, j)
ρ2−→ (i, j)

ρ1−→ (i, j + 1),

where ρ1 and ρ2 are the specializations indexing edges of the corner. Let γ ′′ ∈ �

contain the same set of vertex as γ ′ except that the vertex (i, j) is replaced by the
vertex (i + 1, j + 1), and assume that the specializations are now chosen as

(i + 1, j)
ρ1−→ (i + 1, j + 1)

ρ2−→ (i, j + 1).

Then U�
ρ1,ρ2

(λ(i+1,j+1)|λ(i,j+1), λ(i,j), λ(i+1,j)) maps the Pfaffian Schur process
indexed by γ ′ and the set of specializations on E(γ ′) to the Pfaffian Schur process
indexed by γ ′′ and the same set of specializations.

PROOF. The relation (13) implies that applying U�
ρ1,ρ2

to the Pfaffian Schur
process indexed by γ ′ and averaging over λ(i,j) gives a weight proportional to

sλ(i+1,j+1)/λ(i+1,j) (ρ1)sλ(i+1,j+1)/λ(i,j+1) (ρ2),

as in the Pfaffian Schur process indexed by γ ′′. The normalization H(ρ2;ρ1) ac-
counts for the fact that Z◦(γ ′′) = H(ρ2;ρ1)Z

◦(γ ′). �

We choose a particular solution to (13) given by

(14) U�
ρ1,ρ2

(π |ν,μ, κ) = U�
ρ1,ρ2

(π |ν, κ) = sπ/ν(ρ2)sπ/κ(ρ1)∑
λ sλ/ν(ρ2)sλ/κ(ρ1)

.

The Cauchy identity (7) ensures that this choice satisfies (13). There exists other
solutions to (13) (see [20, 32]) where U�(π |ν,μ, κ) depends on μ.

We also define a diagonal transition operator U∠
ρ◦,ρ1

corresponding to the
growth of the path by a half box along the diagonal as a probability distribution
U∠

ρ◦,ρ1
(π |κ,μ) on partitions π given partitions μ ⊂ κ . It will update the partition

μ ⊂ κ to a partition π ⊃ κ such that π is a marginal of a new Pfaffian Schur
process. Pictorially,
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Again, the specializations in the new Pfaffian Schur process are carried from the
previous step by the transition operator.

LEMMA 3.8. Assume that U∠
ρ◦,ρ1

satisfies

(15)
∑
μ

sκ/μ(ρ1)τμ(ρ◦)U∠
ρ◦,ρ1

(π |κ,μ) = sπ/κ(ρ1)τπ (ρ◦)
H ◦(ρ1)H(ρ1;ρ◦)

.

Let γ ′ ∈ � contain the vertices (n,n) and (n + 1, n), with the edge (n + 1, n) →
(n,n) labelled by a specialization ρ1 and the diagonal edge labelled by ρ◦ as
usual. Let γ ′′ ∈ � contain the vertices (n + 1, n + 1) and (n + 1, n), with the edge
(n + 1, n) → (n + 1, n + 1) labelled by the specialization ρ1 and the diagonal
edge labelled by ρ◦. Then U∠(λ(n+1,n+1)|λ(n+1,n), λ(n,n)) maps the Pfaffian Schur
process indexed by γ ′ and the set of specializations on E(γ ′) to the Pfaffian Schur
process indexed by γ ′′ and the same set of specializations.

PROOF. (15) implies that applying U∠
ρ◦,ρ1

to the Pfaffian Schur process in-
dexed by γ ′ and averaging over λ(n,n) yields a weight proportional to

sλ(n+1,n+1)/λ(n+1,n)(ρ1)τλ(n+1,n+1) (ρ◦)

as in the Pfaffian Schur process indexed by γ ′′. The normalization H ◦(ρ1)H(ρ1;
ρ◦) accounts for the fact that Z◦(γ ′′) = H ◦(ρ1)H(ρ1;ρ◦)Z◦(γ ′). �

We choose a particular solution to (15) given by

(16) U∠
ρ◦,ρ1

(π |κ,μ) = U∠
ρ◦,ρ1

(π |κ) = 1

H ◦(ρ1)H(ρ1;ρ◦)
τπ (ρ◦)sπ/κ(ρ1)

τκ(ρ◦, ρ1)
.

Let us check that (15) is satisfied. Denoting Z◦ = H ◦(ρ1)H(ρ1;ρ◦),∑
μ

sκ/μ(ρ1)τμ(ρ◦)U∠
ρ◦,ρ1

(π |κ,μ)

= 1

Z◦
∑
μ

sκ/μ(ρ1)τμ(ρ◦)
τπ (ρ◦)sπ/κ(ρ1)

τκ(ρ◦, ρ1)

= τπ(ρ◦)sπ/κ(ρ1)

Z◦

∑
ν′ even

∑
μ sκ/μ(ρ1)sμ/ν(ρ◦)

τκ(ρ◦, ρ1)
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= τπ(ρ◦)sπ/κ(ρ1)

Z◦

∑
ν′ even sκ/ν(ρ1, ρ◦)

τκ(ρ◦, ρ1)

= τπ(ρ◦)sπ/κ(ρ1)

Z◦ .

It is not a priori obvious that U∠
ρ◦,ρ1

(π |κ) does define a probability distribution, but
this can be checked using identities (9) and (7).

There may exist other solutions to (15) where U∠(π |μ,κ) depends on μ. We
do not attempt to classify other possible choices.

3.4. The first coordinate marginal: Last passage percolation. In this section,
we relate the dynamics on Pfaffian Schur process constructed in Section 3.3 to
half-space LPP.

DEFINITION 3.9 (Half-space geometric weight LPP). Let (ai)i≥1 be a se-
quence of positive real numbers and (gn,m)n≥m≥0 be a sequence of independent
geometric random variables9 with parameter anam when n ≥ m + 1 and with pa-
rameter can when n = m. We define the geometric last passage percolation time
on the half-quadrant (see Figure 1), denoted G(n,m), by the recurrence for n ≥ m,

G(n,m) = gn,m +
{

max
{
G(n − 1,m),G(n,m − 1)

}
if n ≥ m + 1,

G(n,m − 1) if n = m,

with the boundary condition G(n,0) ≡ 0.

Consider integers 0 < i1 < i2 < · · · < in and j1 > j2 > · · · > jn such that ik >

jk for all k. The path k �→ (ik, jk) is a down right path on the half-quadrant, it is
called a space-like path in the context of interacting particle systems [16, 18]. We
can express the joint law of the last passage times G(ik, jk) using a Pfaffian Schur
process.

PROPOSITION 3.10. Let c and a1, a2, . . . be positive real numbers. We have
the equality in law(

G(i1, j1), . . . ,G(in, jn)
) (d)= (

λ
(1)
1 , . . . , λ

(n)
1

)
,

where the sequence of partitions λ(1), . . . , λ(n) is distributed according the Pfaffian
Schur process PSP(ρ+◦ ;ρ+

1 ; . . . ;ρ+
n−1|ρ−

1 ; . . . ;ρ−
n ) with

ρ+◦ = (c, aj1+1, . . . , ai1),

ρ+
k = (aik+1, . . . , aik+1) for k = 1, . . . , n − 1,

9The geometric distribution with parameter q ∈ (0,1), denoted Geom(q), is the probability distri-

bution on Z≥0 such that if X ∼ Geom(q), P(X = k) = (1 − q)qk .
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FIG. 6. Equivalence of the two formulations in Proposition 3.10. Left: The components

λ
(i1,j1)
1 , λ

(i2,j2)
1 , λ

(i3,j3)
1 of the Pfaffian Schur process considered in Proposition 3.10, for

(i1, j1) = (3,3), (i2, j2) = (5,3) and (i3, j3) = (6,2). Right: The corresponding diagram in the

setting of Definition 3.1. There is equality in law between λ
(3,3)
1 , λ

(5,3)
1 , λ

(6,2)
1 on the left, and

λ(1), λ(2), λ(3) on the right.

ρ−
k = (ajk+1+1, . . . , ajk

) for k = 1, . . . , n − 1,

ρ−
n = (a1, . . . , ajn).

Equivalently, in terms of zig-zag paths,(
G(i1, j1), . . . ,G(in, jn)

) (d)= (
λ

(i1,j1)
1 , . . . , λ

(in,jn)
1

)
,

where the sequence of partition λ(i1,j1), . . . , λ(in,jn) is distributed according to
the Pfaffian Schur process indexed by a path γ ∈ � going through the points
(i1, j1), . . . , (in, jn); where vertical (resp., horizontal) edges with horizontal (resp.,
vertical) coordinates i−1 and i are labelled by specializations into the single vari-
able ai , and the diagonal edge is labelled by the specialization into the variable c

(See Figure 6).

REMARK 3.11. Note that it is also true that μ
(1)
1 has the same law as G(i1, j2),

μ
(2)
1 has the same law as G(i2, j3), etc. but we do not use this fact.

PROOF. We begin with two lemmas explaining the action of the transition
operators U� and U∠ on the first coordinates of the partitions.

LEMMA 3.12 ([17]). Consider two specializations determined by single vari-
ables a, b > 0 and the transition operator U�

a,b(π |ν, κ) defined in (14) that updates
randomly the partition μ to become π given partitions ν, κ . The first coordinate of
the partition π is such that

π1 = max(ν1, κ1) + Geom(ab).
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PROOF. This lemma is a particular case of two-dimensional push-block dy-
namics defined in [17], Section 2.6, Example (3). For two partitions λ,μ, we have
that sλ/μ(a) = 1μ≺λa

|λ|−|μ|. Hence we have that

U�(π |ν, κ) = 1ν≺π1κ≺πa|π |−|ν|b|π |−|κ|.

Summing out π2, π3, . . . and using the fact that U� is a stochastic transition kernel,
we find that the distribution of π1 is given by

U�(π1|ν1, κ1) = (1 − ab) · 1π1≥max(ν1,κ1)(ab)π1−max(ν1,κ1). �

LEMMA 3.13. Consider two specializations determined by single variables
a, c > 0 and the transition operator U∠

c,a(π |κ) defined in (16) that updates ran-
domly the partition μ to become π , given the partition κ . The first coordinate of
the partition π is such that

π1 = κ1 + Geom(ac).

PROOF. Similar to the proof of Lemma 3.12, we have that τπ(c) =
cπ1−π2cπ3−π4 · · · . Hence, the distribution of π1 under U∠(π |κ) is proportional
to 1π1≥κ1(ac)π1−κ1 . �

Fix some path γ ∈ �. Let us sequentially grow the Pfaffian Schur process ac-
cording to the procedure defined in Section 3.3. We need to specify the diagonal
specialization and the specializations we start from on the horizontal axis. Assume
that the diagonal specialization is the single variable specialization into c > 0, and
the specialization on the edge (i,0) → (i − 1,0) is the single variable specializa-
tion ai . Given how the specializations are transported on the edges of the lattice
when we apply U� and U∠, this choice of initial specializations implies that for all
edges of γ , vertical (resp., horizontal) edges with horizontal (resp., vertical) coor-
dinates i−1 and i are labelled by specializations into the single variable ai , and the
diagonal edge is labelled by the specialization into the variable c (See Figure 6).

It follows from Lemmas 3.12 and 3.13 that the first coordinates of the partitions
λv in the sequence of Pfaffian Schur processes are such that for i > j

λ
(i,j)
1 = max

(
λ

(i−1,j)
1 , λ

(i,j−1)
1

)+ Geom(aiaj )

and

λ
(i,i)
1 = λ

(i,i−1)
1 + Geom(aic).

Hence, for any collection of vertices v1, . . . , vk along γ ∈ �, we have(
λ

v1
1 , . . . , λ

v1
1

) (d)= (
G(v1), . . . ,G(v1)

)
,

where G(v) is the last passage time to v as in Definition 3.9. �
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REMARK 3.14. Consider a symmetric matrix S = (gij )
n
i,j=1 of size n whose

entries gi,j are such that gi,j ∼ Geom(aiaj ) for i �= j and gi,i ∼ Geom(cai). The
image of S under RSK correspondence is a Young tableau10 whose shape λ is dis-
tributed according to the Pfaffian Schur measure PSM(c|a1, . . . , an). This can be
deduced from [5], (7.47); see also equation (10.151) in [24]. As a consequence,
this provides a very short proof that G(n,n) has the law of the λ1 marginal of
PSM(c|a1, . . . , an). Moreover, this provides an interpretation of the other coordi-
nates of the partition: λ1 +· · ·+λi is the maximum over i-tuples of nonintersecting
up-right paths between the points (1,1), . . . , (1, i) and (n,n), . . . , (n, n− i + 1) of
the sum of weights along these i paths. Note that the RSK insertion procedure
also defines dynamics on (ascending) sequences of interlacing partitions, which
are different from the push-block dynamics that we consider.

REMARK 3.15. Taking a Poisson limit of geometric LPP, such that the points
on the diagonal also limits to a one-dimensional Poisson process, yields the Pois-
sonized random involution longest increasing subsequence problem considered in
[5, 6] (equivalently half-space continuous PNG with a source at the origin [38]).
The limit of Proposition 3.10 shows that this corresponds to the Plancherel spe-
cialization of the Pfaffian Schur process.

4. Fredholm Pfaffian formulas for k-point distributions. It is shown
in [21], Theorem 3.3, that if λ̄, μ̄ is distributed according to a Pfaffian Schur pro-
cess (Definition 3.1), then

L(λ̄) := {(
1, λ

(1)
i − i

)}
i≥1 ∪ · · · ∪ {(

k,λ
(k)
i − i

)}
i≥1

is a Pfaffian point process. In particular, for any S ≥ 1 and pairwise distinct points
(is, us), 1 ≤ s ≤ S of {1, . . . , k} ×Z we have the formal11 series identity

(17) P
({

(i1, u1), . . . , (iS, uS)
}⊂ L(λ)

)= Pf
[
K(is, us; it , ut )

]S
s,t=1,

where K(i,u; j, v) is a 2 × 2 matrix-valued kernel

K =
(
K11 K12
K21 K22

)
with K11, K12 = −(K21)

T , and K22 given by explicit formulas (see [21], Theo-
rem 3.3). In Section 4.1, we first review the formalism of Pfaffian point processes.
In Sections 4.2 and 4.4, we will explain how [21], Theorem 3.3, applies to last
passage percolation in a half-quadrant with geometric or exponential weights.

10Insertion tableau and Recording tableau are the same because S is symmetric.
11In [21], this is written as a formal identity in variables of the symmetric functions, but it can be

specialized (as in Section 4.2) to numeric identities in the cases we consider.
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4.1. Pfaffian point processes. We consider presently only simple12 point pro-
cesses and introduce the formalism of Pfaffian point processes. Let us first start
with the case of a finite state space X. A random (simple) point process on X is
a probability measure on subsets X of X. The correlation functions of the point
process are defined by

ρ(Y ) = P(X ⊂ X such that Y ⊂ X) for Y ⊂ X.

This definition implies that for a domain I1 × I2 × · · · × Ik ⊂ Xk ,∑
(x1,...,xk)∈I1×···×Ik

distinct

ρ(x1, . . . , xk)

(18)
= E

[
#{k-tuples of distinct points x1 ∈ X ∩ I1, . . . , xk ∈ X ∩ Ik}].

Such a point process is called Pfaffian if there exists a 2×2 matrix valued |X|×|X|
skew-symmetric matrix K with rows and columns parametrized by points of X,
such that the correlation functions of the random point process are

(19) ρ(Y ) = Pf(KY ) for any Y ⊂X,

where KY := (K(yi, yj ))
k
i,j=1 for Y = {y1, . . . , yk}, and Pf is the Pfaffian [see (3)].

More generally, let (X,μ) be a measure space, and P (and E) be a probability
measure (and expectation) on the set Conf(X) of countable and locally finite sub-
sets (configurations) X ⊂ X. We define the kth factorial moment measure on Xk

by

B1 × · · · × Bk → E
[
#{k-tuples of distinct points x1 ∈ X ∩ B1, . . . , xk ∈ X ∩ Bk}],

where B1, . . . ,Bk ⊂ X are Borel subsets. Assuming it is absolutely continuous
with respect to μ⊗k , the k-point correlation function ρ(x1, . . . , xk) is the Radon–
Nykodym derivative of the k-moment factorial measure with respect to μ⊗k . As in
the discrete setting, P is a Pfaffian point process if there exists a kernel

K :X×X → Skew2(R),

where Skew2(R) is the set of skew-symmetric 2 × 2 matrices, such that for all
Y ⊂ X,

(20) ρ(Y ) = Pf(KY ).

For measurable functions f : X → C, the definition of correlation functions is
equivalent to

(21) E

[ ∑
(x1,...,xk)∈Xk

distinct

f (x1) · · ·f (xk)

]
=
∫
Xk

ρ(x1, . . . , xk)f (x1) · · ·f (xk)dμ⊗k,

12That is, without multiplicities.
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and thus (20) implies that ([37], Theorem 8.2),

(22) E

[∏
x∈X

(
1 + f (x)

)]= Pf(J + K)L2(X,f μ),

whenever both sides are absolutely convergent. The RHS of (22) is a Fredholm
Pfaffian, defined in Definition 2.3. We refer to [37], Section 8, and [36], Ap-
pendix B, for properties of Fredholm Pfaffians. In particular, (22) implies that the
gap probabilities are given by the Pfaffian formula

(23) P(no point lie in Y) = Pf(J − K)L2(Y,μ) for Y ⊂X.

4.2. Half-space geometric weight LPP. Let a1, a2, · · · ∈ (0,1), and c > 0 such
that for all i, cai < 1; and let 0 < n1 < n2 < · · · < nk and m1 > m2 > · · · > mk

be sequences of integers such that ni > mi for all i. Consider the Pfaffian Schur
process indexed by the unique path in � going through the points

(nk,0), (nk,mk), (nk−1,mk), (nk−1,mk−1), . . . , (n1,m1), (m1,m1), (0,0),

where a horizontal edge (i − 1, j) → (i, j) [resp. a vertical edge (i, j − 1) →
(i, j)] is labelled by the specialization into the single variable ai (resp., aj ), and
the diagonal edge is labelled by c. In other words, we are in the same setting as
in Section 3.4. In this case, it follows from [21], Theorem 3.3, that the correla-
tion kernel of L(λ̄), that we will denote by Kgeo, indexed by couples of points in
{1, . . . , k}×Z, is given by the following formulas. It is convenient to introduce the
notation

h
geo
11 (z,w) :=

ni∏
�=1

z − a�

z

nj∏
�=1

w − a�

w

mi∏
�=1

1

1 − a�z

mj∏
�=1

1

1 − a�w
,

h
geo
12 (z,w) :=

ni∏
�=1

z − a�

z

nj∏
�=1

1

1 − a�w

mi∏
�=1

1

1 − a�z

mj∏
�=1

w − a�

w
,

h
geo
22 (z,w) :=

ni∏
�=1

1

1 − a�z

nj∏
�=1

1

1 − a�w

mi∏
�=1

z − a�

z

mj∏
�=1

w − a�

w
.

Then the kernel is given by

(24) K
geo
11 (i, u; j, v) =

∫∫
(z − w)h

geo
11 (z,w)

(z2 − 1)(w2 − 1)(zw − 1)

z − c

z

w − c

w

dz

zu

dw

wv
,

where the contours are positively oriented circles around 0 of such that for all i,
1 < |z|, |w| < 1/ai ;

K
geo
12 (i, u; j, v) =

∫∫
(z − w)h

geo
12 (z,w)

(z2 − 1)w(zw − 1)

z − c

z(1 − cw)

dz

zu

dw

wv

(25)
= −K

geo
21 (j, v; i, u),
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where the contours are positively-oriented circles around 0 of radius such that for
all i, 1 < |z| < 1/ai , |w| < 1/c,1/ai and if i ≥ j then |zw| > 1, while if i < j

then |zw| < 1;

(26) K
geo
22 (i, u; j, v) =

∫∫
(z − w)h

geo
22 (z,w)

zw(zw − 1)

1

1 − cz

1

1 − cw

dz

zu

dw

wv
,

where the contours are positively oriented circles around 0 such that |zw| < 1 and
|z|, |w| < 1/c, and for all i, |z|, |w| < 1/ai .

The conditions on the contours ensure that (17) is not only a formal series iden-
tity but a numeric equality: when c < 1, all sums in the proof of [21], Theorem 3.3,
are actually absolutely convergent, and the formulas can then be extended to any c

such that cai < 1 by analytic continuation. The correlation functions of the model
are clearly analytic in c, and the Pfaffians of integrals on finite contours are analytic
as well. Using Proposition 3.10, (23) implies the following.

REMARK 4.1. In the statement of Theorem 3.3 in [21], the factor (zw − 1)

which appear in the denominator of the integrand in K22 is replaced by (1 − zw).
This seems to be a a typo, as the proof of Theorem 3.3 in [21] suggests that the
correct factor should be (zw − 1), and [27] recently confirmed the correct sign.

PROPOSITION 4.2. For any g1, . . . , gk ∈ Z≥0,

(27) P

(
k⋂

i=k

{
G(ni,mi) ≤ gi

})= Pf
(
J − Kgeo)

L2(D̃k(g1,...,gk))
,

where

D̃k(g1, . . . , gk) = {
(i, x) ∈ {1, . . . , k} ×Z : x ≥ gi

}
,

and J is the matrix kernel

(28) J (i, u; j, v) = 1(i,u)=(j,v)

(
0 1

−1 0

)
.

By Definition 2.3, Pf(J − Kgeo) is defined by the expansion

Pf
(
J − Kgeo)

L2(D̃k(g1,...,gk))
(29)

= 1 +
∞∑

n=1

(−1)n

n!
k∑

i1,...,in=1

∞∑
x1=gi1

· · ·
∞∑

xn=gin

Pf
(
Kgeo(is, xs; it , xt )

)n
s,t=1.

REMARK 4.3. In the special case k = 1 and n1 = m1 = n, the Pfaffian rep-
resentation of the correlation functions for {λ(n,n)

i − i} was given in [37], Corol-
lary 4.3, and subsequently used in [26] to study involutions with a fixed number of
fixed points.
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4.3. Deformation of contours. We will later need (in order to deduce the cor-
relation kernel of the exponential model from the geometric case) to set all ai to√

q and let q go to 1. Before taking this limit, we need to deform some of the
contours used in the formulas for Kgeo and compute the residues involved. It will
be much more convenient13 for the following asymptotic analysis if all integration
contours in the definition of Kgeo are circles such that |zw| > 1. We do not need
to transform the expressions for K

geo
11 and for K

geo
12 when i ≥ j . When c < 1, these

residues correspond to terms that arise in the Pfaffian version of Eynard–Mehta’s
theorem ([21], Theorem 1.9), as in the proof of Theorem 3.3 in [21]. When c ≥ 1,
we get more residues which were not present in the proof of Theorem 3.3 in [21]
(recall that we make an analytic continuation to obtain the correlation kernel when
c ≥ 1). These extra residues are the signature of the occurrence of a phase transi-
tion when c varies, as discovered in [6].

Case c < 1: For K
geo
22 we write

(30) K
geo
22 (i, u; j, v) = I

geo
22 (i, u; j, v) + R

geo
22 (i, u; j, v),

where I
geo
22 (i, u; j, v) is the same as (26) but the contours are now positively ori-

ented circles around 0 such that 1 < |z|, |w| < min(1/c,1/a1,1/a2, . . .); and

(31) R
geo
22 (i, u; j, v) =

∫ 1 − z2

z2

1

1 − cz

1

1 − c/z

h
geo
22 (z,1/z)

zu−v
dz.

To see the equivalence between (26) and (30), deform the w contour so that the
radius exceeds z−1. Of course, we have to subtract the residue for w = 1/z, which
is expressed as an integral in z, which equals −R

geo
22 (i, u; j, v). Finally, we can

freely move the z contour in the two-fold integral (only after having moved the w

contour) and get (30).
In the case where i < j , we need to also decompose K12, because we pick a

residue at w = z−1 when moving the w contour. We rewrite K
geo
12 as

(32) K
geo
12 (i, u; j, v) = I

geo
12 (i, u; j, v) + R

geo
12 (i, u; j, v),

where I
geo
12 (i, u; j, v) is the same as (25) but the contours are now positively-

oriented circles around 0 of radius such that 1 < |z|, |w| < min(1/c,1/a1,

1/a2, . . .) and

(33) R
geo
12 (i, u; j, v) = −

∫
h

geo
12 (z,1/z)

zu−v+1 dz.

Case c > 1: In that case, we need to take into account the residues at the poles
of 1/(1−cz) and 1/(1−cw) in K

geo
12 and K

geo
22 . When deforming the w contour in

(26), we first encounter a pole at 1/c and then a pole at 1/z. Each of these residues

13If it was not the case, we would find issues related to the choice of limiting contours when per-
forming the asymptotic analysis.
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can be written as an integral in the variable z, where we may again deform the
contour picking a residue at z = 1/c when necessary. Then we deform the contour
for z in the two-fold integral and pick a residue at z = 1/c, which is expressed as
an integral in w. We find

(34) K
geo
22 (i, u; j, v) = I

geo
22 (i, u; j, v) + R̂

geo
22 (i, u; j, v),

where I
geo
22 is as in the c < 1 case and

R̂
geo
22 (i, u; j, v)

= −cv
∫

h
geo
22 (z,1/c)

zu+1(z − c)
dz + cu

∫
h

geo
22 (w,1/c)

wv+1(w − c)
dw(35)

+
∫ 1 − z2

z2

h
geo
22 (z,1/z)

(1 − cz)(1 − c/z)

dz

zu−v
+ cu−v−1h

geo
22 (1/c, c).

Because of the particular sequence of contour deformations that we have chosen,
the first integral in (35) is such that c is outside the contour, while c is inside
the contour in the second and third integral in (35). We get a formula where the
antisymmetry is apparent by deforming again the z contour and writing R̂

geo
22 as

R̂
geo
22 (i, u; j, v) = −cv

∫
h

geo
22 (z,1/c)

zu+1(z − c)
dz + cu

∫
h

geo
22 (w,1/c)

wv+1(w − c)
dw

+
∫ 1 − z2

z2

h
geo
22 (z,1/z)

(1 − cz)(1 − c/z)

dz

zu−v
(36)

− cu−v−1h
geo
22 (1/c, c) + cv−u−1h

geo
22 (c,1/c),

where the contours are circles with radius between c and the 1/a�’s in the first and
second integral, and radius between 1/c and c in the third integral.

For K
geo
12 , in the case where i < j , we similarly rewrite

K
geo
12 (i, u; j, v) = I

geo
12 (i, u; j, v) + R̂

geo
12 (i, u; j, v),

where I
geo
12 is as in the c < 1 case and

(37) R̂
geo
12 (i, u; j, v) = −

∫
h

geo
12 (z,1/z)

zu−v+1 dz − cw
∫ 1 − cz

(z2 − 1)z
h

geo
12 (z,1/c)

dz

zu
,

and the contours are circles around 0 such that 1 < |z| < min(1/a1,1/a2, . . .).
Case c = 1: When deforming contours as previously, the sequence of residues

encountered is slightly different than in the case c > 1, and we get

(38) K
geo
22 (i, u; j, v) = I

geo
22 (i, u; j, v) + R̄

geo
22 (i, u; j, v),
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where I
geo
22 is as in the c < 1 case and

R̄
geo
22 (i, u; j, v)

= −1

2iπ

∫
h

geo
22 (z,1)

zu+1(z − 1)
dz + 1

2iπ

∫
h

geo
22 (w,1)

wv+1(w − 1)
dw(39)

− 1

2iπ

∫ 1 + z

z2(1 − z)

h
geo
22 (z,1/z)

zu−v
dz − h

geo
22 (1,1),

where all contours are circles such that 1 < |z|, |w| < min(1/a1,1/a2, . . .). In the
case where i < j ,

K
geo
12 (i, u; j, v) = I

geo
12 (i, u; j, v) + R̄

geo
12 (i, u; j, v),

where I
geo
12 is as in the c < 1 case and

R̄
geo
12 (i, u; j, v) = − 1

2iπ

∫
h

geo
12 (z,1/z)

zu−v+1 dz + 1

2iπ

∫ 1

z(1 + z)

h
geo
12 (z,1)

zu
dz,

and the contours are circles around 0 such that |z| < min(1/a1,1/a2, . . .).

4.4. Half-space exponential weight LPP. The following lemma is a direct con-
sequence of the geometric to exponential weak convergence.

LEMMA 4.4. Set all parameters ai ≡ √
q and c = √

q(1 + (α − 1)(q − 1)).
Then, for any sequences of integers n1, . . . , nk and m1, . . . ,mk such that ni ≥ mi ,
we have the weak convergence as q → 1,{

(1 − q)G(ni,mi)
}k
i=1 =⇒ {

H(ni,mi)
}k
i=1.

[Recall H(n,m) from Definition 1.1 and G(n,m) from Definition 3.9.]

We will use this lemma to deduce the correlation functions for the exponential
model. Define the kernel Kexp : ({1, . . . , k} ×R)2 → Skew2(R) by

Kexp(i, x; j, y) = I exp(i, x; j, y) +

⎧⎪⎪⎨⎪⎪⎩
Rexp(i, x; j, y) when α > 1/2,

R̂exp(i, x; j, y) when α < 1/2,

R̄exp(i, x; j, y) when α = 1/2.

Recalling Definition 2.1 for integration contours, we define I exp by

I
exp
11 (i, x; j, y)

:=
∫
Cπ/3

1/4

dz

∫
Cπ/3

1/4

dw
(z − w)e−xz−yw

4zw(z + w)

(1 + 2z)ni (1 + 2w)nj

(1 − 2z)mi (1 − 2w)mj
(40)

× (2z + 2α − 1)(2w + 2α − 1);
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I
exp
12 (i, x; j, y)

:=
∫
Cπ/3

az

dz

∫
Cπ/3

aw

dw
(z − w)e−xz−yw

2z(z + w)
(41)

× (1 + 2z)ni

(1 − 2w)nj

(1 + 2w)mj

(1 − 2z)mi

2α − 1 + 2z

2α − 1 − 2w
,

where in the definition of the contours Cπ/3
az and Cπ/3

aw , the real constants az, aw are
chosen so that 0 < az < 1/2, az + aw > 0 and aw < (2α − 1)/2;

I
exp
22 (i, x; j, y)

:=
∫
Cπ/3

bz

dz

∫
Cπ/3

bw

dw
(z − w)e−xz−yw

z + w

(1 + 2z)mi (1 + 2w)mj

(1 − 2z)ni (1 − 2w)nj
(42)

× 1

2α − 1 − 2z

1

2α − 1 − 2w
,

where in the definition of the contours Cπ/3
bz

and Cπ/3
bw

, the real constants bz, bw

are chosen so that 0 < bz, bw < (2α − 1)/2 when α > 1/2, while we impose only
bz, bw > 0 when α ≤ 1/2.

We set R
exp
11 (i, x; j, y) = 0, and R

exp
12 (i, x; j, y) = 0 when i ≥ j , and likewise

for R̂exp and R̄exp. The other entries depend on the value of α and the sign of
x − y.

Case α > 1/2: When x > y,

R
exp
22 (i, x; j, y) = −

∫
Cπ/3

az

(1 + 2z)mi (1 − 2z)mj

(1 − 2z)ni (1 + 2z)nj

2ze−|x−y|z dz

(2α − 1 − 2z)2α − 1 + 2z
,

and when x < y

R
exp
22 (i, x; j, y) =

∫
Cπ/3

az

(1 + 2z)mj (1 − 2z)mi

(1 − 2z)nj (1 + 2z)ni

2ze−|x−y|z dz

(2α − 1 − 2z)(2α − 1 + 2z)
,

where (1 − 2α)/2 < az < (2α − 1)/2. One immediately checks that R
exp
22 is anti-

symmetric as we expect. When i < j and x > y,

R
exp
12 (i, x; j, y) = − 1

2iπ

∫
Cπ/3

1/4

(1 + 2z)ni

(1 + 2z)nj

(1 − 2z)mj

(1 − 2z)mi
e−|x−y|z dz,

while if x < y, R
exp
12 (i, x; j, y) = R

exp
12 (i, y; j, x). Note that R12 is not antisymmet-

ric nor symmetric (except when k = 1, that is, for the one point distribution).
Case α < 1/2: When x > y, we have

R̂
exp
22 (i, x; j, y)

= −e
1−2α

2 y

2

∫
(1 + 2z)mi (2α)mj

(1 − 2z)ni (2 − 2α)nj

e−xz

2α − 1 + 2z
dz



3052 BAIK, BARRAQUAND, CORWIN AND SUIDAN

+ e
1−2α

2 x

2

∫
(1 + 2z)mj (2α)mi

(1 − 2z)nj (2 − 2α)ni

e−yz

2α − 1 + 2z
dz(43)

−
∫
Cπ/3

az

(1 + 2z)mi (1 − 2z)mj

(1 − 2z)ni (1 + 2z)nj

1

2α − 1 − 2z

1

2α − 1 + 2z
2ze−|x−y|z dz

− e(x−y) 1−2α
2

4

(2α)mi (2 − 2α)mj

(2 − 2α)ni (2α)nj
+ e(y−x) 1−2α

2

4

(2α)mj (2 − 2α)mi

(2 − 2α)nj (2α)ni
,

where the contours in the two first integrals pass to the right of (1 − 2α)/2.
When x < y, the sign of the third term is flipped so that R̂

exp
22 (i, x; j, y) =

−R̂
exp
22 (j, y; i, x). We can write slightly simpler formulas by reincorporating

residues in the first two integrals: thus, when x > y,

R̂
exp
22 (i, x; j, y) = −e

1−2α
2 y

2

∫
Cπ/3

az

(1 + 2z)mi (2α)mj

(1 − 2z)ni (2 − 2α)nj

e−xz

2α − 1 + 2z
dz

+ e
1−2α

2 x

2

∫
Cπ/3

az

(1 + 2z)mj (2α)mi

(1 − 2z)nj (2 − 2α)ni

e−yz

2α − 1 + 2z
dz

(44)

−
∫
Cπ/3

az

(1 + 2z)mi (1 − 2z)mj

(1 − 2z)ni (1 + 2z)nj

× 1

2α − 1 − 2z

1

2α − 1 + 2z
2ze−|x−y|z dz,

where 2α−1
2 < az < 1−2α

2 . When i < j , if x > y

(45) R̂
exp
12 (i, x; j, y) = −

∫
Cπ/3

1/4

(1 + 2z)ni

(1 + 2z)nj

(1 − 2z)mj

(1 − 2z)mi
e−|x−y|z dz,

while if x < y, R̂
exp
12 (i, x; j, y) = R̂

exp
12 (i, y; j, x).

REMARK 4.5. The formula (45) for R̂
exp
12 is not exactly the limit of the ex-

pression for R̂
geo
12 in (37). Indeed, the second term in (37), which corresponds to

a residue when w = 1/c does not have its counterpart in (45). This is because we
have assumed that aw < (2α − 1)/2 in the contours for I

exp
12 in (41), while we had

w > 1/c in the contours for I
geo
12 in the case c > 1.

Case α = 1/2: When x > y,

R̄
exp
22 (i, x; j, y) = −

∫
Cπ/3

1/4

(1 + 2z)mi

(1 − 2z)ni

e−xz

4z
dz +

∫
Cπ/3

1/4

(1 + 2z)mj

(1 − 2z)nj

e−yz

4z
dz

+
∫
Cπ/3

1/4

(1 + 2z)mi (1 − 2z)mj

(1 − 2z)ni (1 + 2z)nj

e−|x−y|z dz

2z
− 1

4
,
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with a modification of the last two terms when x < y so that R̄
exp
22 (i, x; j, y) =

−R̄
exp
22 (j, y; i, x). When i < j , if x > y

R̄
exp
12 (i, x; j, y)

= −
∫
Cπ/3

1/4

(1 + 2z)ni

(1 + 2z)nj

(1 − 2z)mj

(1 − 2z)mi
e−|x−y|z dz,

while if x < y, R̄
exp
12 (i, x; j, y) = R̄

exp
12 (i, y; j, x).

PROOF OF PROPOSITION 1.6. By Lemma 4.4, the passage times {H(ni,mi)}i
are the limits when q goes to 1 of the passage times {G(ni,mi)}i , and we know
the probability distribution function of {G(ni,mi)}i from (27). Thus, the proof
proceeds with two steps: (1) Take the asymptotics of the correlation kernel Kgeo

involved in the probability distribution of {G(ni,mi)}i (Section 4.2), under the
scalings ai ≡ √

q and c = √
q(1 + (α − 1)(q − 1)), x = (1 − q)u, y = (1 − q)v;

(2) Deduce the asymptotic behavior of Pf(J + Kgeo) from the pointwise asymp-
totics of Kgeo. Using the weak convergence of Lemma 4.4, we get the distribution
of {H(ni,mi)}i .

Step (1): We use Laplace’s method to take asymptotics of Kgeo(i, u; j, v) under
the scalings above. Let us provide a detailed proof for K

geo
11 . The arguments are

quite similar for K
geo
12 and K

geo
22 . We have

K
geo
11 (i, u; j, v)

=
∫∫

C2

(z − w)(z − c)(w − c)

(z2 − 1)(w2 − 1)(zw − 1)

(z − √
q)ni (w − √

q)nj

(1 − z
√

q)mi (1 − w
√

q)mj
(46)

× dz dw

zni+1wnj+1zuwv
,

where the contour C can be chosen as a circle around 0 with radius 1+q−1/2

2 . Under
the scalings considered, the dominant term in the integrand is

1

zuwv
= 1

z(1−q)−1xw(1−q)−1y

= exp
(
(1 − q)−1(−x log(z) − y log(w)

))
.

Using Cauchy’s theorem, we can deform the integration contours as long as we
do not cross any pole. Hence, we can deform the contour C to be the contour C<

depicted in Figure 7. It is constituted of two rays departing 1+q−1/2

2 with angles
±π/3 in a neighborhood of 1 of size ε (for some small ε > 0), and the rest of the

contour is given by an arc of a circle centered at 0. Its radius R >
1+q−1/2

2 is chosen

so that the circle intersects with the endpoints of the two rays departing 1+q−1/2

2
with angles ±π/3. Along the contour C<, Re[− log(z)] attains its maximum at
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FIG. 7. The deformed contour C< (thick black line) and the contour C (dashed line). On the right,
zoom on the portion of the contour which contributes to the limit.

1+q−1/2

2 . Thus, the contribution of integration along the portion of contour which
is outside the ε-box around 1 is negligible in the limit. More precisely, it has a
contribution of order O(e−dε(1−q)−1

) for some dε > 0.
Now we estimate the contribution of the integration in the neighborhood of 1.

Let us rescale the variables around 1 by setting z = 1 + z̃(1 − q) and w = 1 +
w̃(1 − q). Cauchy’s theorem provides us some freedom in the choice of contours,
and we can assume that after the change of variables, the integration contours are
given by two rays of length ε(1 − q)−1 departing 1/4 in the directions π/3 and
−π/3. When q → 1, we have the point-wise limits

zu −→ ez̃x,
z − √

q

1 − √
q

−→ 1 + 2z̃,
z − c

1 − √
q

−→ −1 + 2z̃ + 2α,

wv −→ ew̃y,
1 − z

√
q

1 − √
q

−→ 1 − 2z̃,
1 − zc

1 − √
q

−→ −1 − 2z̃ + 2α.

Using Taylor expansions to a high enough order, the integral in (46) converges
to the integral of the pointwise limit of the integrand in (46), modulo a O(ε)

error, uniformly in q . The kind of estimates needed to control the error are
given with more details in a similar situation in Section 5.2 [see in particu-
lar equations (71) and (73)]. Moreover, since the limiting integrand has ex-
ponential decay in direction ±π/3, one can replace the finite integration con-
tours by infinite contours going to ∞eiπ/3 and ∞e−iπ/3 with an error going
to 0 as q goes to 1. Since the size ε of the box around 1 (on which we have
restricted the integration) can be taken as small as we want, we finally get
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that

K
geo
11 (i, u : j, v)

(1 − √
q)ni+nj−mi−mj+2

−−−→
q→1

∫
Cπ/3

1/4

dz̃

∫
Cπ/3

1/4

dw̃
z̃ − w̃

4z̃w̃(z̃ + w̃)
e−xz̃−yw̃

× (1 + 2z̃)ni (1 + 2̃w)nj

(1 − 2z̃)mi (1 − 2w̃)mj
(2z̃ + 2α − 1)(2w̃ + 2α − 1).

Likewise, we obtain

I
geo
12 (i, u : j, v)

(1 − q)(1 − √
q)ni+mj−nj−mi

−−−→
q→1

∫
Cπ/3

az

dz̃

∫
Cπ/3

aw

dw̃
z̃ − w̃

2z̃(z̃ + w̃)
e−xz̃−yw̃

× (1 + 2z̃)ni

(1 − 2w̃)nj

(1 + 2w̃)mj

(1 − 2z̃)mi

2α − 1 + 2z̃

2α − 1 − 2w̃
,

where the new contours Cπ/3
az and Cπ/3

aw are chosen as in (41). In the case where

α < 1/2 or α = 1/2, the contour Cπ/3
aw is not exactly the limit of the contour in the

definition of I
geo
12 in (32), but we can exclude the pole at w = (2α − 1)/2 [so that

aw < (2α − 1)/2] and remove the corresponding residue in R̂
exp
12 and R̄

exp
12 (see

Remark 4.5). Thus, we have that

(47)
R

geo
12 (i, u; j, v)

(1 − q)(1 − √
q)ni+mj−nj−mi

−−−→
q→1

R
exp
12 (i, x; jy),

and likewise for R̂
geo
12 and R̄

geo
12 (modulo the residue that is reincorporated in

I
exp
12 ). Convergence (47) needs some justification though: for x > y, we use

the exact same arguments as above, since the factor 1/(zu−v) ≈ e−(x−y)z̃ in
(33) has exponential decay along the tails of the contour. For x < y, we make
the change of variables z = 1/ẑ and we adapt the case x > y. This shows
that

K
geo
12 (i, u; j, v)

(1 − q)(1 − √
q)ni+mj−nj−mi

−−−→
q→1

K
exp
12 (i, x; jy).

Using very similar arguments, we find that

I
geo
22 (i, u; j, v)

(1 − q)2(1 − √
q)mi+mj−ni−nj−2

−−−→
q→1

∫
Cπ/3

bz

dz̃

∫
Cπ/3

bz

dw̃
z̃ − w̃

z̃ + w̃
e−xz̃−yw̃
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× (1 + 2z̃)mi (1 + 2w̃)mj

(1 − 2z̃)mi (1 − 2w̃)mj

× 1

2α − 1 − 2z̃

1

2α − 1 − 2w̃
,

where Cπ/3
bz

and Cπ/3
bw

are chosen as in (42), and

R
geo
22 (i, u; j, v)

(1 − q)2(1 − √
q)mi+mj−ni−nj−2 −−−→

q→1
R

exp
22 (i, x; jy),

and similar limits hold for R̂
geo
22 and R̄

geo
22 .

Note that when taking the Pfaffian, the factors (1−√
q)ni+nj−mi−mj+2 and (1−√

q)mi+mj−ni−nj−2 cancel out each other. This is because one can multiply the
columns with odd index by (1 − √

q)mi+mj−ni−nj−2 and then the rows with even
index by (1 −√

q)ni+nj−mi−mj+2, without changing the value of the Pfaffian.14 In
the end, we find that for all integer n ≥ 1, positive real variables x1, . . . , xn, and
integers 1 ≤ i1, . . . , in ≤ k,

Pf[Kgeo(is, (1 − q)−1xs; it , (1 − q)−1xt )]ns,t=1

(1 − q)n
−−−→
q→1

Pf
[
Kexp(is, xs; it , xt )

]n
s,t=1.

Step (2): We need to prove that

k∑
i1,...,in=1

+∞∑
u1=�gi1 (1−q)−1�

· · ·
+∞∑

un=�gin (1−q)−1�
Pf
[
Kgeo(is, us; it , ut )

]n
s,t=1

(48)

−−−→
q→1

k∑
i1,...,in=1

∫ +∞
gi1

· · ·
∫ +∞
gin

Pf
[
Kexp(is, xs; it , xt )

]n
s,t=1 dx1 · · · dxk.

For that purpose, we need to control the asymptotic behavior of the kernel Kgeo.

LEMMA 4.6. There exists positive constants C > 0 and 1
2 > c1 > c2 > 1−2α

2
such that uniformly for q in a neighborhood of 1, for all x, y > 0,∣∣∣∣Kgeo

11 (i, (1 − q)−1x; j, (1 − q)−1y)

(1 − √
q)ni+nj−mi−mj

∣∣∣∣≤ Ce−c1(x+y),(49)

∣∣∣∣Kgeo
12 (i, (1 − q)−1x; j, (1 − q)−1y)

(1 − √
q)ni+nj−mi−mj

∣∣∣∣≤ Ce−xc1+yc2,(50)

∣∣∣∣Kgeo
22 (i, (1 − q)−1x; j, (1 − q)−1y)

(1 − √
q)ni+nj−mi−mj

∣∣∣∣≤ Cexc2+yc2 .(51)

14Otherwise said, we conjugate the kernel by a diagonal kernel with determinant 1.



PFAFFIAN SCHUR PROCESSES AND LPP IN A HALF-QUADRANT 3057

PROOF. The arguments are similar for all integrals involved. It amounts to
justify that we can restrict the integration on a region on the complex plane with
real part greater than c1 or −c2. Let us first see how it works for the bound (49).
We start with (46) as in Step (1). The contribution of integration along the circular
parts of C< can be bounded by a constant for q in a neighborhood of 1. Next,
we perform the change of variables z = 1 + z̃(1 − q) and w = 1 + w̃(1 − q) as
in Step (1) and observe that all factors in the integrand are bounded for q in a
neighborhood of 1, except the factor 1/(zuwv) which behaves as

1

zuwv
= exp

(−x(1 − q)−1 log
(
1 + z̃(1 − q)

)− y(1 − q)−1 log
(
1 + w̃(1 − q)

))
≈ e−xz̃−yw̃.

Since we can deform the contours so that Re[z̃] and Re[w̃] are greater than c1 (for
some c1 < 1/2), we get the desired bound for K11. Strictly speaking, Cauchy’s
theorem allows to deform the contour C< so that the real part stays above c1 along
the two rays, and then on cuts the circular part which has a negligible contribution.
Similarly, we find that∣∣∣∣I geo

12 (i, (1 − q)−1x; j, (1 − q)−1y)

(1 − √
q)ni+nj−mi−mj

∣∣∣∣≤ Ce−xc1+yc2

by restricting the integration on contours such that Re[z̃] > c1 and Re[w̃] > −c2.
When deforming the contour for w, we have to take into account the pole at 2α−1

2 .
Since for any α > 0, 1−2α

2 < 1
2 , we can always find suitable constants c1, c2 > 0

such that 1
2 > c1 > c2 > 1−2α

2 . By the same kind of arguments,∣∣∣∣ R̂geo
12 (i, (1 − q)−1x; j, (1 − q)−1y)

(1 − √
q)ni+nj−mi−mj

∣∣∣∣≤ Ce−c|x−y| < Ce−xc1+yc2,

and it is easier to check that the inequality also holds for R̄
geo
12 and R

geo
12 , so that

(50) holds. For K22, one does not need exponential decay. We have that∣∣∣∣I geo
22 (i, (1 − q)−1x; j, (1 − q)−1y)

(1 − √
q)ni+nj−mi−mj

∣∣∣∣≤ C

and∣∣∣∣ R̂geo
22 (i, (1 − q)−1x; j, (1 − q)−1y)

(1 − √
q)ni+nj−mi−mj

∣∣∣∣≤ C max
{
1; e|x−y| 1−2α

2
}
< Cexc2+yc2,

so that (51) holds. �

Hence using Lemma 2.5,∣∣Pf
[
Kgeo(is, (1 − q)−1xs; it , (1 − q)−1xt

)]n
s,t=1

∣∣≤ (2n)n/2Cne−(c1−c2)(x1+···+xn)
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and (48) follows by dominated convergence. Dominated convergence also proves
the convergence of Fredholm Pfaffian series expansions, so that

(52) Pf
(
J −Kgeo)

�2(D̃k(h1(1−q)−1,...,hk(1−q)−1))
−−−→
q→1

Pf
(
J −Kexp)

L2(Dk(h1,...,hk))
.

Finally, Proposition 4.4 implies that

P

(
k⋂

i=1

{
G(ni,mi) ≤ xi

1 − q

})
−−−→
q→1

P

(
k⋂

i=1

{
H(ni,mi) ≤ xi

})
,

which, together with (52), concludes the proof. �

5. Convergence to the GSE Tracy–Widom distribution. This section is de-
voted to the proof of the first part of Theorem 1.3, and thus we assume that
α > 1/2. By Proposition 1.6, the probability P(H(n,n) < x) can be expressed
as the Fredholm Pfaffian of the kernel Kexp. The most natural would be to prove
that under the scalings considered, Kexp converges pointwise to KGSE, and that the
convergence of the Fredholm Pfaffian holds as well, using estimates to control the
absolute convergence of the series expansion. Unfortunately, this approach cannot
work here because Kexp does not converge to KGSE. The next remark provides a
heuristic explanation.

REMARK 5.1. We expect the kernel Kexp(1, x;1, y) to be the Pfaffian correla-
tion kernel of some simple Pfaffian point process, say X(n) := {X(n)

1 > · · · > X
(n)
n }.

On the other hand, KGSE(x, y) is the correlation kernel of a Pfaffian point process
χ1 > χ2 > · · · having the same law as the first eigenvalues of a matrix from the
GSE in the large size limit.

In light of Remark 3.14, the points X
(n)
i are such that X

(n)
1 + · · · + X

(n)
i has

the same law as the maximal weight of a i-tuple of nonintersecting up-right paths
in a symmetric exponential environment with weights E(α) on the diagonal and
E(1) off-diagonal [in particular X

(n)
1 has the same distribution as H(n,n) since the

half-space LPP and symmetrized LPP are equivalent]. When α is large enough, it
is clear that the optimal paths will seldom visit the diagonal, so that X

(n)
1 and

X
(n)
2 will have (under n1/3 scaling) the same scaling limit. More precisely, we

expect that X
(n)
2i−1 and X

(n)
2i will both converge to χi , so that the point process X(n)

converges as n goes to infinity to a nonsimple point process where each point has
multiplicity 2.

Let us denote by ρGSE the correlation function of the point process χ1, χ2, . . . ,

and let ρ(n) be the correlation function of the rescaled point process X(n)−4n
24/3n1/3 . By

the characterization of correlation functions in (21), we expect that for distinct
points x1, . . . , xk ,

ρ(n)(x1, . . . , xk) −−−→
n→∞ 2kρGSE(x1, . . . , xk),
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and a singularity should appear in the limit of ρ(n)(x1, . . . , xk) for k > 1 in the
neighborhood of xi = xj .

5.1. A formal representation of the GSE distribution. We introduce a kernel
which is a scaling limit of Kexp and whose Fredholm Pfaffian corresponds to the
GSE distribution. However, it is not the Pfaffian correlation kernel of the GSE point
process. This kernel is distribution valued, and we show in Proposition 5.2 that its
Fredholm Pfaffian is the same as that of KGSE, by expanding and reordering terms
in the Fredholm Pfaffian. In fact, to avoid dealing with distribution valued kernels,
we later prove an approximate prelimiting version of this result as Proposition 5.7.

Let us first recall that by Lemma 2.7, the kernel KGSE has the form

KGSE(x, y) =
(

A(x, y) −∂yA(x, y)

−∂xA(x, y) ∂x∂yA(x, y)

)
,

where A(x, y) is the smooth and antisymmetric kernel KGSE
11 .

We introduce the kernel

K∞(x, y) =
(

A(x, y) −2∂yA(x, y)

−2∂xA(x, y) 4∂x∂yA(x, y) + δ′(x, y)

)
,

where δ′ is a distribution on R2 such that

(53)
∫ ∫

f (x, y)δ′(x, y)dx dy =
∫ (

∂yf (x, y) − ∂xf (x, y)
)|y=x dx,

for smooth and compactly supported test functions f .
The quantity

(54)
∫
Rk

Pf
[
K∞(xi, xj )

]k
i,j=1 dx1 · · · dxk

makes perfect sense because all terms of the form δ′(xi, xj ) are integrated against
smooth functions of xi, xj with sufficient decay. Expanding the Pfaffian and using
the definition of δ′, (54) collapses into a sum of j -fold integrals for j = k down
to k − �k/2�, where the integrands are smooth functions. We can then form the
Fredholm Pfaffian of K∞, and we will show that the Fredholm Pfaffian series
expansion is absolutely convergent so that we can reorder terms, and ultimately
recognize the Fredholm Pfaffian of another kernel.

PROPOSITION 5.2. Let A :R2 → Skew2(R) be a kernel of the form

A(x, y) =
(

A(x, y) −∂yA(x, y)

−∂xA(x, y) ∂x∂yA(x, y)

)
,

where A is smooth, antisymmetric, and A satisfies the decay hypotheses of
Lemma 2.5. Let B be the kernel

B(x, y) =
(

A(x, y) −2∂yA(x, y)

−2∂xA(x, y) 4∂x∂yA(x, y) + δ′(x, y)

)
.
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Then for any x ∈ R,

(55) Pf[J − A]L2(x,+∞) = Pf[J − B]L2(x,+∞).

In particular,

Pf
[
J − KGSE]

L2(x,+∞) = Pf
[
J − K∞]

L2(x,+∞).

PROOF OF PROPOSITION 5.2. In order to simplify the notation in this proof,
we assume that all integrals are performed over the domain (x,+∞). Denoting

bm =
∫

dx1 · · ·
∫

dxmPf
[
B(xi, xj )

]m
i,j=1

and

ak =
∫

dx1 · · ·
∫

dxkPf
[
A(xi, xj )

]k
i,j=1,

we have

Pf[J − A] =
∞∑

k=0

(−1)k

k! ak and Pf[J − B] =
∞∑

m=0

(−1)m

m! bm.

In order to analyze the quantity bm, we will use the following definition of the
Pfaffian, valid for any antisymmetric matrix M of size 2m:

(56) Pf[M] = ∑
α={(i1,j1),...,(im,jm)}

ε(α)Mi1,j1 · · ·Mim,jm,

where the sum runs over partitions into pairs of the set {1, . . . ,2m}, in the form

α = {
(i1, j1), . . . , (im, jm)

}
with i1 < · · · < im and i� < j�, and the signature ε(α) of the partition α is given by
the signature of the permutation(

1 2 3 . . . 2m

i1 j1 i2 . . . jm

)
.

Expanding the Pfaffian Pf[B(xi, xj )]mi,j=1 and using the definition of δ′, bm col-
lapses into a sum of j -fold integrals for j ≤ m. In the kernel B, the term δ′ appears
only in the component B22, so that when expanding Pf[B(xi, xj )]mi,j=1 according
to (56) all terms have degree at most �m/2� in δ′. Hence we do not obtain j -fold
integral terms for j < m − �m/2�, and we can we decompose bm as

(−1)m

m! bm =
m∑

k=�m/2�
bk
m,

where b
j
m denotes the j -fold integral term in the expansion.
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The key fact toward the proof of the proposition is that

(57)
k∑

i=0

bk
k+i = (−1)k

k! ak.

This corresponds to the fact that k-fold integral terms match in the expansion of
both sides of (55). Then we can write

(58)
∞∑

m=0

(−1)m

m! bm =
∞∑

m=0

m∑
k=�m/2�

bk
m =

∞∑
k=0

k∑
i=0

bk
k+i =

∞∑
k=0

(−1)k

k! ak,

which is what we wanted to prove. In order to reorder terms in the third equality
in (58) (using Fubini’s theorem), we must check that the double series bk

k+i is
absolutely convergent. Using Lemma 2.5, it is enough to check that

∞∑
k=0

k∑
i=0

1

k!
(
k

i

)
2k−1(2k)k/2Ck,

is absolutely convergent, which is clearly the case [C is some constant depending
on A(x, y)].

The rest of this proof is devoted to the proof of (57). We will actually prove that

bk
k+i = (−1)k

k!
(
k

i

)
2k−i (−1)iak

from which (57) is deduced easily by summing over i:

k∑
i=0

bk
k+i = (−1)k

k!
k∑

i=0

(
k

i

)
2k−i (−1)iak = (−1)k

k! ak.

The matrix B can be seen as the sum of a smooth matrix with good decay
properties and another matrix whose entries are generalized functions of the type
δ′(xi, xj ). The following minor summation formula will be useful.

LEMMA 5.3 ([39] Lemma 4.2). Let M,N be skew symmetric matrices of size
n for some even n. Then

Pf[M + N ] = ∑
I⊂{1,...,n};#I even

(−1)|I |−#I/2Pf[MI ]Pf[NIc ],

where #I denotes the cardinality of I , |I | the sum of its elements, and I c its com-
plement in {1, . . . , n}. For I ⊂ {1, . . . , n}, MI denotes the matrix M restricted to
rows and columns indexed by elements of I .

Let us fix some k ≥ 1 and compute bk
k+i for i = 1 to k. It is instructive to

consider first the case i = 1.
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Computation of bk
k+1: By definition bk

k+1 corresponds to the terms of degree 1
in δ′ in the Pfaffian expansion of

(−1)k+1

(k + 1)! Pf
[(

A11(xi, xj ) 2A12(xi, xj )

2A21(xi, xj ) 4A22(xi, xj )

)
+
(

0 0
0 δ′(xi, xj )

)]k+1

i,j=1

after taking the integral over x1, . . . , xk+1. Using Lemma 5.3, we can write

bk
k+1 = (−1)k+1

(k + 1)!
∫

dx1 · · ·
∫

dxk+1

(59)
× ∑

1≤i<j≤k+1

δ′(xi, xj )(−1)2i+2j−1Pf
[
A2̂i,2̂j

k+1

]
,

where A2̂i,2̂j
n denotes the 2(n − 1) × 2(n − 1) dimensional matrix which is the

result of removing columns and rows 2i and 2j from(
A11(xa, xb) 2A12(xa, xb)

2A21(xa, xb) 4A22(xa, xb)

)n

a,b=1
.

By using operations on rows and columns, we find that all terms in the summation
in the RHS of (59) are equal modulo a permutation of the xi . Since we integrate
the xi over a symmetric domain, these permutations are inconsequential so that

bk
k+1 = −(−1)k+1k(k + 1)

2(k + 1)!
∫

dx1 · · ·
∫

dxk+1δ
′(xk, xk+1)Pf

[
A2̂k,2̂(k+1)

k+1

]
.

LEMMA 5.4. The action of δ′ is such that∫
dx1 · · ·

∫
dxk+1δ

′(xk, xk+1)Pf
[
A2̂k,2̂(k+1)

k+1

]= −2kak.

PROOF. We will use the shorthand notation Mk+1 for the matrix A2̂k,2̂(k+1)
k+1 ,

and Mk for the matrix formed from the matrix A2̂k,2̂(k+1)
k+1 after swapping the col-

umn and row of indices 2k−1 and 2k. The notation Mj for j = k, k+1 means that
the column and row where the variable xj appears is on the rightmost/bottommost

position. We have Pf[Mk] = −Pf[A2̂k,2̂(k+1)
k+1 ] and Pf[Mk+1] = Pf[A2̂k2̂(k+1)

k+1 ]. Then∫
dx1 · · ·

∫
dxk+1δ

′(xk, xk+1)Pf
[
A2̂k,2̂(k+1)

k+1

]
=
∫

dx1 · · ·
∫

dxk

(
∂xk

Pf[Mk]|xk+1=xk
+ ∂xk+1Pf[Mk+1]|xk+1=xk

)
.

Moreover, expanding the Pfaffian as in (29) or (56), we see that(
∂xk

Pf[Mk])|xk+1=xk
= Pf

[
(∂xk

Mk)|xk+1=xk

]
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and (
∂xk+1Pf[Mk+1])|xk+1=xk

= Pf
[
(∂xk+1Mk+1)|xk+1=xk

]
.

Using the differential relations ∂xk
A11(x1, xk) = −A12(x1, xk), ∂xk

A11(xk,

x1) = −A21(xk, x1) and ∂xk
A21(x1, xk) = −A22(x1, xk), ∂xk

A12(xk, x1) =
−A22(xk, x1), we see that

Pf
[
(∂xk

Mk)|xk+1=xk

]= −2k−1Pf
[
A(xi, xj )

]k
i,j=1,

and we obtain similarly that

Pf
[
(∂xk+1Mk+1)|xk+1=xk

]= −2k−1Pf
[
A(xi, xj )

]k
i,j=1.

Thus, ∫
dx1 · · ·

∫
dxk+1δ

′(xk, xk+1)Pf
[
A2̂k,2̂(k+1)

k+1

]
= −2k

∫
dx1 · · ·

∫
dxkPf

[
A(xi, xj )

]k
i,j=1 = −2kak. �

Thus, Lemma 5.4 shows that

bk
k+1 = (−1)k+1

k! k2k−1ak.

Computation of bk
k+i in general: By definition bk

k+i corresponds to the terms of
degree i in δ′ in the Pfaffian expansion of

(−1)k+i

(k + i)! Pf
[(

A11(xi, xj ) 2A12(xi, xj )

2A21(xi, xj ) 4A22(xi, xj )

)
+
(

0 0
0 δ′(xi, xj )

)]k+i

i,j=1

after taking the integral over x1, . . . , xk+i . Using Lemma 5.3,

bk
k+i = (−1)k+i

(k + i)!
∫

dx1 · · ·
∫

dxk+i

∑
1≤j1<···<j2i≤k+i

Pf
[
δ′(xjr , xjs )

]2i
r,s=1

(60)
× (−1)2j1+···+2j2i−iPf

[
A2̂j1,...,2̂j2i

k+i

]
,

where A2̂j1,...,2̂ji
n is the 2(n − i) × 2(n − i) dimensional matrix which is the result

of removing the columns and rows indexed by 2j1,2j2, . . . ,2ji from(
A11(xa, xb) 2A12(xa, xb)

2A21(xa, xb) 4A22(xa, xb)

)n

a,b=1
.

Again, all terms give an equal contribution after integrating over the xi , so that

bk
k+i = (−1)i

(−1)k+i

(k + i)!
(
k + i

2i

)∫
dx1 · · ·

∫
dxk+iPf

[
δ′(xr , xs)

]k+i
r,s=k−i+1

× Pf
[
A

̂2(k−i+1),...,2̂(k+i)
k+i

]
.
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The Pfaffian Pf[δ′(xr , xs)]k+i
r,s=k−i+1 can be expanded into products of δ′ acting on

disjoint pairs of variables. Each term in the expansion will give the same contribu-
tion after we have integrated over the xj s, in the sense of the following.

LEMMA 5.5. For any partition into pairs of the set {k − i + 1, . . . , k + i}, in
the form α = {(r1, s1), . . . , (ri, si)} with r1 < · · · < ri and rj < sj , we have∫

dx1 · · ·
∫

dxk+iδ
′(xr1, xs1) · · · δ′(xri , xsi )Pf

[
A

̂2(k−i+1),...,2̂(k+i)
k+i

]
= ε(α)

∫
dx1 · · ·

∫
dxk+i

i∏
j=1

δ′(xk−i+2j−1, xk−i+2j )(61)

× Pf
[
A

̂2(k−i+1),...,2̂(k+i)
k+i

]
.

PROOF. In order to match both sides of (61), we make a change of variables
so that the δ′ factors exactly match. This does not change the value of the inte-
gral. Then we have to exchange rows/columns in the Pfaffian. Each time that we
exchange two adjacent rows/columns,15 we factor out a (−1), hence the signature
prefactor on the RHS of (61). �

LEMMA 5.6. The action of δ′ is such that∫
dx1 · · ·

∫
dxk+i

i∏
j=1

δ′(xk−i+2j−1, xk−i+2j )Pf
[
A

̂2(k−i+1),...,2̂(k+i)
k+i

]
(62)

= (−1)i2kak.

PROOF. We adapt the proof of Lemma 5.4. For j1 < · · · < ji such that

j1 ∈ {k − i + 1, k − i + 2}, j2 ∈ {k − i + 3, k − i + 4}, . . . , ji ∈ {k + i − 1, k + i}

we denote by Mj1,...,ji
the matrix obtained from A

̂2(k−i+1),...,2̂(k+i)
k+i where for all

r , one has moved the column and row where xjr appears to position 2(k − i + r).
With this definition, if jr is even then the column and row where xjr appears do
not move, and if jr is odd then the column and row where xjr appears is swapped
with the right/bottom neighbor. Hence, we have that

Pf
[
Ak̂−i+1,...,̂k+i

k+i

]= (−1)j1+···+ji Pf[Mj1,...,ji
].

15Recall that in Pfaffian calculus, one always exchanges rows and columns simultaneously, to pre-
serve the antisymmetry of the matrix.
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By the definition of δ′,∫
dx1 · · ·

∫
dxk+i

i∏
j=1

δ′(xk−i+2j−1, xk−i+2j )Pf
[
A

̂2(k−i+1),...,2̂(k+i)
k+i

]

=
∫

dx1 · · ·
∫

dxk

i∏
j=1

(∂xk−i+2j
− ∂xk−i+2j−1)(63)

× Pf
[
A

̂2(k−i+1),...,2̂(k+i)
k+i

]|xk+i=···=xk+1=xk
.

We can develop the product of partial derivatives so that

(63) =
∫

dx1 · · ·
∫

dxk

∑
j1,...,ji

i∏
�=1

(
(−1)j�∂xj�

)
× Pf

[
A

̂2(k−i+1,...,2̂(k+i)
k+i

]|xk+i=···=xk+1=xk

=
∫

dx1 · · ·
∫

dxk

∑
j1,...,ji

∂xj1
· · · ∂xji

Pf[Mj1,...,ji
]|xk+i=···=xk+1=xk

,

where the sums runs over all sequences j1 < · · · < ji such that j1 ∈ {k − i + 1, k −
i+2}, j2 ∈ {k− i+3, k− i+4}, etc. For any such sequence j1, . . . , ji , the relations
between coefficients in the matrix A implies that

∂xj1
· · · ∂xji

Pf[Mj1,...,ji
]|xk+i=···=xk+1=xk

= (−1)i2k−iPf
[
A(xr , xs)

]k
r,s=1.

Thus, we find that

(63) = (−1)i
∫

dx1 · · ·
∫

dxk2kPf
[
A(xr , xs)

]k
r,s=1 = (−1)i2kak. �

There are (2i)!
2i i! terms in the expansion of the Pfaffian of the 2i × 2i matrix

(δ′(xr , xs))
k+i
r,s=k−i+1. Combining Lemmas 5.6 and 5.5, we have

bk
k+i = (−1)k+i

(k + i)!
(
k + i

2i

)
(2i)!
2i i! 2kak = (−1)k

k!
(
k

i

)
2k−i (−1)iak. �

Proposition 5.2 suggests that if the kernel Kexp converges to K∞ under some
scalings, then the Fredholm Pfaffian of Kexp should converge to FGSE. However,
the kernel K∞ is distribution valued, and we do not know an appropriate notion
of convergence to distribution-valued kernels. The following provides an approxi-
mative version of Proposition 5.2 that provides a notion of convergence sufficient
for the Fredholm Pfaffian to converge.
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PROPOSITION 5.7. Let (An(x, y))n∈Z≥0 be a family of smooth and antisym-
metric kernels such that for all r, s ∈ Z≥0, ∂r

x∂s
yAn(x, y) has exponential decay at

infinity (in any direction of R2), uniformly for all n. Let

An(x, y) :=
(

An(x, y) −∂yAn(x, y)

−∂xAn(x, y) ∂x∂yAn(x, y)

)
and

Bn(x, y) :=
(

An(x, y) −2∂yAn(x, y)

−2∂xAn(x, y) 4∂x∂yAn(x, y) + δ′
n(x, y)

)
be two families of kernels (R)2 → Skew2(R) such that:

1. The family of kernels(
An(x, y) −2∂yAn(x, y)

−2∂xAn(x, y) 4∂x∂yAn(x, y)

)
satisfy, uniformly in n, the hypotheses of Lemma 2.5.

2. The kernel An(x, y) converges pointwise to

A :=
(

A(x, y) −∂yA(x, y)

−∂xA(x, y) ∂x∂yA(x, y)

)
,

a smooth kernel R2 → Skew2(R) (necessarily satisfying the hypotheses of
Lemma 2.5).

3. For any smooth function f :R2 →R such that ∂r
x∂s

yf (x, y) have exponential
decay at infinity for all r, s, we have∣∣∣∣∫∫ δ′

n(x, y)f (x, y)dx dy −
∫ (

∂yf (x, y) − ∂xf (x, y)
)|x=y dx

∣∣∣∣
=: cn(f ) −−−→

n→∞ 0.

Then for all x ∈ R,

Pf[J − Bn]L2(x,∞) −−−→
n→∞ Pf[J − A]L2(x,∞).

PROOF. We will follow the proof of Proposition 5.2, and make approxima-
tions when necessary. Let

bm(n) =
∫

dx1 · · ·
∫

dxmPf
[
Bn(xi, xj )

]m
i,j=1,

am(n) =
∫

dx1 · · ·
∫

dxmPf
[
An(xi, xj )

]m
i,j=1,

and denote by bk
m(n) the part of the expansion of (−1)m

m! bm(n) involving only terms
of degree m − k in δ′

n [as in (60)]. We need to justify the approximation

k∑
i=0

bk
k+i(n) ≈ (−1)k

k! ak(n),
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and show that the error is summable and goes to zero. Let us replace A,B by
An,Bn in the proof of Proposition 5.2. The only part of the proof which breaks
down is when we apply the definition of δ′. However, using the hypothesis (3), we
see that replacing δ′ by δ′

n in Lemma 5.6 results in an error bounded by

2i (cn)
i
∣∣ak(n)

∣∣
for i ≥ 1 and the error is zero when i = 0. Let b̃k

k+i(n) be the quantity having the
same expression as bk

k+i (n) where all occurrences of δ′
n are replaced by δ′. In other

terms, b̃k
k+i(n) is given by (60) where the kernel is An instead of A. We have

∣∣bk
k+i(n) − b̃k

k+i(n)
∣∣≤ 1

k!
(
k

i

)
2k−i2i (cn)

i
∣∣ak(n)

∣∣.
On one hand,

Pf[J − Bn] =
∞∑

m=0

(−1)m

m! bm(n) =
∞∑

m=0

m∑
k=�m/2�

bk
m(n),

while on the other hand,

Pf[J − An] =
∞∑

k=0

(−1)k

k! ak =
∞∑

k=0

k∑
i=0

b̃k
k+i =

∞∑
m=0

m∑
k=�m/2�

b̃k
m(n),

where we have used (57) from the proof of Proposition 5.2 in the second equality
and Fubini’s theorem in the third equality [which we can do by hypothesis (1) and
Lemma 2.5]. Thus,∣∣Pf[J − Bn] − Pf[J − An]

∣∣ ≤ ∞∑
m=0

m∑
k=�m/2�

1

k!
(

k

m − k

)
2k(cn)

m−k
∣∣ak(n)

∣∣
=

∞∑
k=0

k∑
i=1

1

k!
(
k

i

)
2k(cn)

i
∣∣ak(n)

∣∣
=

∞∑
k=0

2k

k!
∣∣ak(n)

∣∣((1 + cn)
k − 1

)
.

Using the bound,(
(1 + cn)

k − 1
)≤ k log(1 + cn)(1 + cn)

k ≤ kcn(1 + cn)
k,

we find that∣∣Pf[J − Bn] − Pf[J − An]
∣∣≤ ∞∑

k=0

2k

k!
∣∣ak(n)

∣∣kcn(1 + cn)
k −−−→

n→∞ 0.

Moreover, using the pointwise convergence of hypothesis (2) and the decay
hypothesis (1) along with Lemma 2.5, dominated convergence shows that

Pf[J − An] −−−→
n→∞ Pf[J − A]. �
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5.2. Asymptotic analysis of the kernel Kexp. Recall that we have assumed that
α > 1/2 (as in the first part of Theorem 1.3). Let us first focus on pointwise con-
vergence of Kexp(1, x;1, y) as n = m goes to infinity. In the following, we write
simply Kexp(x;y) instead of Kexp(1, x;1, y). We expect that as n goes to infin-
ity, H(n,n) is asymptotically equivalent to hn for some constant h, and fluctuates
around hn in the n1/3 scale. Thus, it is natural to study the correlation kernel at a
point

(64) r(x, y) := (
nh + n1/3σx,nh + n1/3σy

)
,

where the constants h,σ will be fixed later. We introduce the rescaled kernel

Kexp,n(x, y) :=
⎛⎝ 1

(2α − 1)2 K
exp
11

(
r(x, y)

)
σn1/3K

exp
12

(
r(x, y)

)
σn1/3K

exp
21

(
r(x, y)

)
σ 2n2/3(2α − 1)2K

exp
22

(
r(x, y)

)
⎞⎠ .

By a change of variables in the Fredholm Pfaffian expansion of Kexp and a
conjugation of the kernel preserving the Pfaffian, we get using Proposition 1.6 that

P

(
H(n,n) − hn

σn1/3 ≤ y

)
= Pf

[
J − Kexp,n]

L2(y,∞).

Moreover, we write

Kexp,n(x, y) = I exp,n(x, y) + Rexp,n(x, y),

according to the decomposition made in Section 4.4. The kernel I
exp,n
11 can be

rewritten as

I
exp,n
11 (x, y) =

∫
Cπ/3

1/4

dz

∫
Cπ/3

1/4

dw
z − w

4zw(z + w)

(2z + 2α − 1)(2w + 2α − 1)

(2α − 1)2

(65)
× exp

[
n
(
f (z) + f (w)

)− n1/3σ(xz + yw)
]
,

where

(66) f (z) = −hz + log(1 + 2z) − log(1 − 2z).

Setting h = 4, we find that f ′(0) = f ′′(0) = 0. Setting σ = 24/3, Taylor expansion
of f around zero yields

(67) f (z) = σ 3

3
z3 +O

(
z4).

Similarly, the kernel I
exp,n
12 can be rewritten as

I
exp,n
12 (x, y) = σn1/3

∫
Cπ/3

1/4

dz

∫
Cπ/3

0

dw
z − w

2z(z + w)

2α − 1 + 2z

2α − 1 − 2w
(68)

× exp
[
n
(
f (z) + f (w)

)− n1/3σ(zx + wy)
]
.
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Here, the assumption that α > 1/2 matters in the choice of contours, so that the
poles for w = (2α − 1)/2 lie on the right of the contour. The kernel I

exp,n
22 can be

rewritten as

I
exp,n
22 (x, y) = σ 2n2/3

∫
Cπ/3

1/4

dz

∫
Cπ/3

1/4

dw
z − w

z + w

(2α − 1)

2α − 1 − 2z

(2α − 1)

2α − 1 − 2w

× exp
[
n
(
f (z) + f (w)

)− n1/3σ(zx + wy)
]
.

The kernel Rexp,n is such that R
exp,n
11 = R

exp,n
12 = R

exp,n
21 = 0 and

R
exp,n
22 (x, y) = sgn(y − x)

(
σn1/3 2α − 1

2

)2
e−|x−y|σn1/3 2α−1

2 .

PROPOSITION 5.8. For α > 1/2 and σ = 24/3, we have

I
exp,n
11 (x, y) −−−→

n→∞ KGSE
11 (x, y) =

∫
Cπ/3

1

dz

∫
Cπ/3

1

dw
(z − w)ez3/3+w3/3−xz−yw

4zw(z + w)
,

I
exp,n
12 (x, y) −−−→

n→∞ 2KGSE
12 (x, y) =

∫
Cπ/3

1

dz

∫
Cπ/3

1

dw
(z − w)ez3/3+w3/3−xz−yw

2z(z + w)
,

I
exp,n
22 (x, y) −−−→

n→∞ 4KGSE
22 (x, y) =

∫
Cπ/3

1

dz

∫
Cπ/3

1

dw
(z − w)ez3/3+w3/3−xz−yw

z + w
.

PROOF. Let us provide a detailed proof for the asymptotics of I
exp,n
11 . The ar-

guments are almost identical for I
exp,n
12 and I

exp,n
22 , the only difference being the

presence of poles that are harmless for the contour deformation that we will per-
form (see the end of the proof).

We use Laplace’s method on the contour integrals in (65). It is clear that the
asymptotic behavior of the integrand is dominated by the term exp[n(f (z) +
f (w))]. Let us study the behavior of Re[f (z)] along the contour Cπ/3

0 .

LEMMA 5.9. The contour Cπ/3
0 is steep descent16 for Re[f ] in the sense that

the functions t �→ Re[f (teiπ/3)] and t �→ Re[f (te−iπ/3)] are strictly decreasing
for t > 0. Moreover, for t > 1, Re[f (te±iπ/3)] < −2t + 2.

PROOF. We have

Re
[
f
(
teiπ/3)]= Re

[
f
(
te−iπ/3)]= −2t + tanh−1

(
2t

1 + 4t2

)
,

16In general, we say that a contour C is steep descent for a real valued function g if g attains a
unique maximum on the contour and is monotone along both parts of the contours separated by this
maximum.
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FIG. 8. Contours used in the proof of Proposition 5.8. Left: the contour Clocal
0/∈ . Right: the contour

C0/∈.

so that

d

dt
Re

[
f
(
te±iπ/3)]= − 16(t2 + 2t4)

1 + 4t2 + 16t4 ,

which is always negative, and less than −2 for t > 1. �

We would like to deform the integration contour in (65) to be the steep-descent
contour Cπ/3

0 . This is not possible due to the pole at 0, and hence we modify the

contour Cπ/3
0 in a n−1/3-neighborhood of 0 in order to avoid the pole. We call C0/∈

the resulting contour, which is depicted in Figure 8. For a fixed but large enough
n, the integrand in (65) has exponential decay along the tails of the integration
contour: this is because for large n, the behavior is governed by enf (z)+nf (w) and
we have that

Re[f (z)]
|z| −→ −∞ for z → ∞eiπ/3.

Hence, we are allowed to deform the contour to be C0/∈ and write

I
exp,n
11 (x, y) =

∫
C0/∈

dz

∫
C0/∈

dw
z − w

4zw(z + w)

(2z + 2α − 1)(2w + 2α − 1)

(2α − 1)2

(69)
× exp

[
n
(
f (z) + f (w)

)− n1/3σ(xz + yw)
]
.

We recall that x and y here can be negative. We will estimate (69) by cutting it
into two parts: The contribution of the integrations in a neighborhood of 0 will
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converge to the desired limit, and the integrations along the rest of the contour will
go to 0 as n goes to infinity.

Let us denote Clocal
0/∈ the intersection of the contour C0/∈ with a ball of radius

ε centered at 0, and set Ctail
0/∈ := C0/∈ \ Clocal

0/∈ . We first show that the RHS of (69)
with integrations over Ctail

0/∈ goes to zero as n → ∞ for any fixed ε > 0. Using
Lemma 5.9, we know that for any fixed ε > 0, there exists a constant c > 0 such
that for t > ε, Re[f (te±iπ/3)] < −ct . Moreover, using both Taylor approxima-
tion (67) and Lemma 5.9, we know that for any z ∈ C0/∈, Re[nf (z)] is bounded
uniformly in n on the circular part of C0/∈. This implies that there exists constants
n0,C0 > 0 such that for n > n0 and z,w ∈ Ctail

0/∈ we have∣∣exp
[
n
(
f (z) + f (w)

)− n1/3σ(xz + yw)
]∣∣< C0e

−cn|z|.

Using this estimate inside the integrand in (69) and integrating over Ctail
0/∈ yields a

bound of the form Ce−cnε/2 which goes to 0 as n → ∞.
Now we estimate the contribution of the integration over Clocal

0/∈ . We make the
change of variables z = n−1/3z̃,w = n−1/3w̃ and approximate the integrand in
(69) by

(70)
∫
n1/3Clocal

0/∈

∫
n1/3Clocal

0/∈

z̃ − w̃

4z̃w̃(z̃ + w̃)
e

σ3
3 z̃3+ σ3

3 w̃3−σxz̃−σyw̃ dz̃ dw̃.

We are making two approximations: (1) Replacing nf (z) by σ 3

3 z̃3, and likewise

for w. Note that by Taylor approximation, nf (z)− σ 3

3 z̃3 = nO(z4) = n−1/3O(z̃4).
(2) Replacing (2z̃ + 2α − 1) by (2α − 1) and likewise for w̃.

In order to control the error made, we use the inequality |ex − 1| ≤ |x|e|x|, so
that the error can be bounded by E1 + E2 where

E1 =
∫
n1/3Clocal

0/∈

∫
n1/3Clocal

0/∈

∣∣n−1/3O
(
z̃4)+ n−1/3O

(
w̃4)∣∣e|n−1/3O(z̃4)+n−1/3O(w̃4)|

(71)

× z − w

4zw(z + w)
e

σ3
3 z̃3+ σ3

3 w̃3−σxz̃−σyw̃ (2z̃ + 2α − 1)(2w̃ + 2α − 1)

(2α − 1)2 dz̃ dw̃

and

E2 = n−1/3
∫
n1/3Clocal

0/∈

∫
n1/3Clocal

0/∈

(z̃ − w̃)e
σ3
3 z̃3+ σ3

3 w̃3−σxz̃−σyw̃

4z̃w̃(z̃ + w̃)
(72)

× 4(z̃ + w̃)

2α − 1
dz̃ dw̃.

Notice that in the first integral in (71),

e|n−1/3O(z̃4)n−1/3O(w̃4)| = e|n−1/3z̃O(z̃3)+n−1/3w̃O(w̃3)| < eε|O(z̃3)+O(w̃3)|.
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Hence, choosing ε smaller than σ 3/3, the integrand in (71) has exponential decay
along the tails of the contour n1/3Clocal

0/∈ , so that by dominated convergence, E1
goes to 0 as n goes to infinity. It is also clear that E2 goes to 0 as n goes to infinity.

Finally, let us explain why the contour n1/3Clocal
0/∈ in (70) can be replaced by

Cπ/3
1 . Using the exponential decay of the integrand for z,w in direction ±π/3,

we can extend n1/3Clocal
0/∈ to an infinite contour. Then, using Cauchy’s theorem and

again the exponential decay, this infinite contour can be freely deformed (without
crossing any pole) to Cπ/3

1 . We obtain, after a change of variables σ z̃ = z and
likewise for w,

I
exp,n
11 (x, y) −−−→

n→∞
1

(2iπ)2

∫
Cπ/3

1

dz

∫
Cπ/3

1

dw
z − w

4zw(z + w)
ez3/3+w3/3−xz−yw.

When adapting the same method for I
exp,n
12 and I

exp,n
22 , we could in principle

encounter poles of 1/(2α − 1 − 2z) or 1/(2α − 1 − 2w). However, assuming that
α > 1/2, these poles are in the positive real part region, and given the definitions
of contours used in Section 4.3, we can always perform the above contour defor-
mations. �

Now, we check that the kernel R
exp,n
22 satisfies the hypothesis (3) of Proposi-

tion 5.7.

PROPOSITION 5.10. Assume that f (x, y) is a smooth function such that all
its partial derivatives have exponential decay at infinity. Then∣∣∣∣∫∫ R

exp,n
22 f (x, y)dx dy −

∫∫
δ′(x, y)f (x, y)dx dy

∣∣∣∣−−−→
n→∞ 0.

PROOF. It is enough to prove the proposition replacing R
exp,n
22 by

n2sgn(y − x)e|x−y|n.
We can write ∫∫

n2sgn(y − x)e|x−y|nf (x, y)dx dy

=
∫∫

y>x

(
f (x, y) − f (x, x)

)
n2e|x−y|n

−
∫∫

y>x

(
f (y, x) − f (x, x)

)
n2e|x−y|n.

We make the change of variables y = x + z/n, and use the Taylor approximations

f (y, x) − f (x, x) = z

n
∂xf (x, x) + z2

2n2 ∂2
xf (x, x) + z3

6n3 ∂3
xf (x, x) + o

(
z3n−3),

f (x, y) − f (x, x) = z

n
∂yf (x, x) + z2

2n2 ∂2
yf (x, x) + z3

6n3 ∂3
yf (x, x) + o

(
z3n−3).
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The quadratic terms will cancel, so that∫∫
n2sgn(y − x)e|x−y|nf (x, y)dx dy

=
∫ (

∂yf (x, x) − ∂xf (x, x)
)
dx

∫
ze−z dz

+ 1

n2

∫ (
∂3
yf (x, x) − ∂3

xf (x, x)
)
dx

∫
z3e−z dz + o

(
n−2)

so that ∫∫
n2sgn(y − x)e|x−y|nf (x, y)dx dy

=
∫ (

∂yf (x, x) − ∂xf (x, x)
)

dx + C

n2 + o
(
n−2). �

5.3. Conclusion. We have to prove that when α > 1/2,

(73) lim
n→∞P

(
H(n,n) < 4n + 24/3n1/3z

)= Pf
(
J − KGSE)

L2(z,∞).

Since

P
(
H(n,n) < 4n + 24/3n1/3z

)= Pf
[
J − Kexp,n]

L2(z,∞)

we are left with checking that the kernel Kexp,n satisfies the assumptions in
Proposition 5.7: Hypothesis (3) is proved by Proposition 5.10. Hypothesis (2)
is proved by Proposition 5.8 (with Bn being Kexp). Note that KGSE(x, y) (de-
fined in Lemma 2.7) does not have exponential decay in all directions, but since
we compute the Fredholm Pfaffian on L2(z,∞), we can replace KGSE(x, y) by
1x,y≥zK

GSE(x, y) so that exponential decay holds in all directions. Hypothesis (1)
is proved by the following.

LEMMA 5.11. Assume α > 1/2 and let z ∈ R be fixed. There exist a constant
c0 > 0 and for all r, s ∈ Z≥0, there exist positive constants Cr,s, n0 such that for
n > n0 and x, y > z, ∣∣∂r

x∂s
yI

exp,n
11 (x, y)

∣∣< Cr,se
−c0x−c0y.

In particular, there exist C > 0 such that∣∣I exp,n
11 (x, y)

∣∣< Ce−c0x−c0y,
∣∣I exp,n

12 (x, y)
∣∣< Ce−c0x−c0y,∣∣I exp,n

22 (x, y)
∣∣< Ce−c0x−c0y.

PROOF. We start with the expression for I
exp,n
11 in (69). We have already

seen in the proof of Proposition 5.8 that using both Taylor approximation (67)
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and Lemma 5.9, Re[nf (z)] is bounded by some constant Cf uniformly in n for
z ∈ C0/∈. Hence, there exists a constant Cf such that∣∣(69)

∣∣< ∫
C0/∈

dz

∫
C0/∈

dw
(z − w)(2z + 2α − 1)(2w + 2α − 1)

4zw(z + w)
e2Cf −n1/3σ(xz+yw).

Now make the change of variables z̃ = n1/3z and likewise for w, so that∣∣(69)
∣∣< ∫

n1/3C0/∈
dz̃

∫
n1/3C0/∈

dw̃
z̃ − w̃

4z̃w̃(z̃ + w̃)

× (
2n−1/3z̃ + 2α − 1

)(
2n−1/3w̃ + 2α − 1

)
e2Cf −σ(xz̃+yw̃).

Since the real part of z and w stays above 1/2 along the contour n1/3C0/∈, we get
that for x, y > 0 ∣∣(69)

∣∣< C exp(−c0x − c0y)

for some constants c0,C > 0. Moreover, the estimates used in Proposition 5.8
show that for x and y in a compact subset, the kernel is bounded uniformly in n,
so that there exists C00 > 0 such that for all x, y > z,∣∣I exp,n

11 (x, y)
∣∣< C00 exp(−c0x − c0y).

Applying derivatives in x or y to I
exp,n
11 (x, y) corresponds to multiply the inte-

grand by powers of z and w. Hence, the above proof also shows that for r, s ∈ Z≥0,
there exists Crs > 0 such that∣∣∂r

x∂s
yI

exp,n
11 (x, y)

∣∣< Crs exp(−c0x − c0y). �

6. Asymptotic analysis in other regimes: GUE, GOE, crossovers. In this
section, we prove GUE and GOE and Gaussian asympotics and discuss the phase
transition. In these regimes, the phenomenon of coalescence of points in the limit-
ing point process—which introduces subtleties in the asymptotic analysis of Sec-
tion 5—is not present, and the proofs follow a more standard approach.

6.1. Phase transition. When we make α vary in (0,∞), the fluctuations of
H(n,n) obey a phase transition already observed in [6] in the geometric case.
Let us explain why such a transition occurs. When α goes to infinity, the weights
on the diagonal go to 0. It is then clear that the last passage path to (n,n) will
avoid the diagonal. The total passage time will be the passage time from (1,0)

to (n,n − 1), which has the same law as H(n − 1, n − 1) when α = 1. Thus, the
fluctuations should be the same when α equal 1 or infinity, and by interpolation, for
any α ∈ (1,+∞). The first part of Theorem 1.4 shows that this is in fact the case
for α ∈ (1/2,∞). When α is very small however, we expect that the last passage
path will stay close to the diagonal in order to collect most of the large weights
on the diagonal. Hence, the last passage time will be the sum of O(n) random
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variables, and hence fluctuate on the n1/2 scale with Gaussian fluctuations. The
critical value of α separating these two very different fluctuation regimes occurs at
1/2.

Let us give an argument showing why the critical value is 1/2, using a symmetry
of the Pfaffian Schur processes.

LEMMA 6.1. The half-space last passage time H(n,n) when the weights are
E(α) on the diagonal and E(1) away from the diagonal, has the same distribution
as the half-space last passage time H̃ (n,n) when the weights are E(α) on the first
row and E(1) everywhere else.

PROOF. Apply Proposition 3.4 to the Pfaffian Schur process with single vari-
able specializations considered in Proposition 3.10, and take q → 1. �

Let us study where the transition should occur in the latter H̃ model. We have
the equality in law

(74) H̃ (n,n)
(d)= max

x∈Z>0

{
x∑

i=1

w1i + H̄ (n − 1, n − x)

}
,

where H̄ (n − 1, n − x) is the half-space last passage time from point (n,n) to
point (x,2). It is independent of the w1i , and has the same law as H(n − 1, n − x)

when α = 1. For n going to infinity with x = (1 − κ)n, κ ∈ [0,1], we know from
Theorem 1.4 (which is independent from the present discussion) that H̄ (n−1, n−
x)/n goes to (1 + √

κ)2. Hence,

lim
n→∞

H̃ (n,n)

n
= max

κ∈[0,1]

{
1 − κ

α
+ (1 + √

κ)2
}

(75)

=
⎧⎪⎨⎪⎩

4 if α ∈ (1/2,1),
1

α(1 − α)
if α ≤ 1/2.

This suggests that the transition happens when α = 1/2. The fact that the maxi-
mum in (75) is attained for κ = (α/(1 − α))2 when α < 1/2 even suggests that
the fluctuations are Gaussian with variance 1−2α

α2(1−α)2 on the scale n1/2. The fluctu-

ations of
∑x

i=1 w1i are dominant compared to those of H̄ (n− x,n− 1). We do not
attempt to make this argument complete—it would require proving some concen-
tration bounds for H̄ (n − 1, n − x) when x = (1 − κ)n + o(n)—but we provide a
computational derivation of the Gaussian asymptotics in Section 6.4. See also [3,
10] for more details on similar probabilistic arguments.

In the case α = 1/2, the second part of Theorem 1.3 shows that the fluctuations
of H(n,n) are on the scale n1/3 and Tracy–Widom GOE distributed. It suggests
that the value of x that maximizes (74) is close to 0 on the scale at most n2/3.
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6.2. GOE asymptotics. In this section, we prove the second part of Theo-
rem 1.3. We consider a scaling of the kernel slightly different than what we used
in Section 5.2. We set σ = 24/3 as before, r(x, y) as in (64), and here

Kexp,n(x, y) :=
(
σ 2n2/3K

exp
11

(
r(x, y)

)
σn1/3K

exp
12

(
r(x, y)

)
σn1/3K

exp
21

(
r(x, y)

)
K

exp
22

(
r(x, y)

) )
.

We write Kexp,n(x, y) = I exp,n(x, y) + Rexp,n(x, y), according to the decompo-
sition made in Section 4.4. The pointwise asymptotics of Proposition 5.8 can be
readily adapted when α = 1/2.

PROPOSITION 6.2. For α = 1/2, we have

I
exp,n
11 (x, y) −−−→

n→∞

∫
Cπ/3

1

dz

∫
Cπ/3

1

dw
z − w

z + w
ez3/3+w3/3−xz−yw,

I
exp,n
12 (x, y) −−−→

n→∞

∫
Cπ/3

1

dz

∫
Cπ/3

−1/2

dw
w − z

2w(z + w)
ez3/3+w3/3−xz−yw,

I
exp,n
22 (x, y) −−−→

n→∞

∫
Cπ/3

1

dz

∫
Cπ/3

1

dw
z − w

4zw(z + w)
ez3/3+w3/3−xz−yw.

PROOF. We adapt the asymptotic analysis from Proposition 5.8. For I
exp,n
11 ,

the arguments are strictly identical. For I
exp,n
12 , we have a pole for the variable w

in 0 [coming from the factor 1
2α−1−2w

in (68)] which must stay on the right of
the contour. Hence, we cannot use the contour C0/∈ as for I

exp,n
11 but another mod-

ification of the contour Cπ/3
0 in a n−1/3-neighborhood of 0 such that the contour

passes to the left of 0. We denote by C0∈ this new contour; see Figure 9. Instead of
working with a formula similar to (69), we start with

I
exp,n
12 (x, y) = σn1/3

∫
C0∈

dz

∫
C0∈

dw
z − w

2z(z + w)

2α − 1 + 2z

2α − 1 − 2w
(76)

× exp
[
n
(
f (z) + f (w)

)− n1/3σ(zx + wy)
]
,

where f is defined in (66). The arguments used to perform the asymptotic analysis
of (69) can be readily adapted to (76).

This explains the choice of Cπ/3
−1/2 as the contour for w in I12 in the limit. For

I
exp,n
22 however, thanks to the deformation of contours performed in Section 4.3,

the presence of poles for z and w at 0 has no influence in the computation of the
limit, and the asymptotic analysis is very similar as in Proposition 5.8. �

PROPOSITION 6.3. Assume α = 1/2. Then we have R̄
exp,n
11 (x, y) =

R̄
exp,n
12 (x, y) = R̄

exp,n
21 (x, y) = 0, and for any x, y ∈ R,

R̄
exp,n
22 (x, y) −−−→

n→∞ −
∫
Cπ/3

1

ez3/3−zx dz

4z
+
∫
Cπ/3

1

ez3/3−zy dz

4z
− sgn(x − y)

4
.
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FIG. 9. The contour C0∈ used in the end of the proof of Proposition 6.2, for the asymptotics of
K

exp
12 .

PROOF. The fact that R̄
exp,n
11 (x, y) = R̄

exp,n
12 (x, y) = R̄

exp,n
21 (x, y) = 0 is just

by definition of R̄exp,n in Section 4.4. Regarding R̄
exp,n
22 , when x > y,

R̄
exp,n
22 (x;y) = −

∫
Cπ/3

1/4

enf (z)−xσn1/3z

4z
dz +

∫
Cπ/3

1/4

enf (z)−yσn1/3z

4z
dz

(77)

+
∫
Cπ/3

1/4

1

2z
e−σn1/3|x−y|z dz − 1

4
,

where f is defined in the proof of Proposition 5.8, and R̄
exp
22 (i, x; j, y) is antisym-

metric. Similar arguments as in Proposition 5.8 show that∫
Cπ/3

1/4

enf (z)−xσn1/3z

4z
dz −−−→

n→∞

∫
Cπ/3

1

ez3/3−zx dz

4z
,

so that the proposition is proved, using the antisymmetry of R̄22. �

At this point, we have shown that when α = 1/2,

Pf
(
Kexp,n(xi, xj )

)k
i,j=1 −−−→

q→1
Pf
(
KGOE(xi, xj )

)k
i,j=1.

In order to conclude that the Fredholm Pfaffian likewise has the desired limit, we
need a control on the entries of the kernel Kexp,n, in order to apply dominated
convergence.
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LEMMA 6.4. Assume α = 1/2 and let a ∈ R be fixed. There exist positive
constants C,c1,m for n > m and x, y > a,∣∣n2/3K

exp,n
11 (x, y)

∣∣< Ce−c1x−c1y,
∣∣n1/3K

exp,n
12 (x, y)

∣∣< Ce−c1x,∣∣Kexp,n
22 (x, y)

∣∣< C.

PROOF. The proof is very similar to that of Lemma 5.11. The contour for w

in K
exp
12 used in the asymptotic analysis is now C0∈ instead of C0/∈, resulting in an

absence of decay as y → ∞. The kernel I
exp,n
22 has exponential decay in x and y

using arguments similar with Lemma 5.11. However, the bound on K
exp,n
22 is only

constant, due to the term sgn(x − y). �

The bounds from Lemma 6.4 are such that the hypotheses in Lemma 2.5 are
satisfied, and we conclude, applying dominated convergence in the Pfaffian series
expansion, that

lim
n→∞P

(
H(n,n) < 4n + 24/3n1/3x

)= Pf
(
J − KGOE)

L2(x,∞).

6.3. GUE asymptotics. In this section, we prove Theorem 1.4. Fix a parameter
κ ∈ (0,1) and assume that m = κn. Again we expect that H(n,m)/n converges to
some constant h depending on κ , with fluctuations on the n1/3 scale.

The kernel K
exp
11 can be rewritten as

K
exp,n
11

(
r(x, y)

)=
∫
Cπ/3

1/4

dz

∫
Cπ/3

1/4

dw
z − w

4zw(z + w)

× (2z + 2α − 1)(2w + 2α − 1)(78)

× exp
[
n
(
fκ(z) + fκ(w)

)− n1/3σ(xz + yw)
]
,

where

(79) fκ(z) = −hz + log(1 + 2z) − κ log(1 − 2z).

It is convenient to parametrize the constant κ by a constant θ ∈ (0,1/2), and set
the values of h and σ such that

κ =
(

1 − 2θ

1 + 2θ

)2
, h = 4

(1 + 2θ)2 , σ =
(

8

(1 + 2θ)3 + 8κ

(1 − 2θ)3

)1/3
.

With this choice, f ′
κ(θ) = f ′′

κ (θ) = 0 and by Taylor expansion,

(80) fκ(z) = fκ(θ) + σ 3

3
(z − θ)3 +O

(
(z − θ)4).

The kernel K
exp
22 can be rewritten as

K
exp
22 = I

exp
22 +

⎧⎪⎪⎨⎪⎪⎩
R

exp
22 when α > 1/2,

R̂
exp
22 when α < 1/2,

R̄
exp
22 when α = 1/2,
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where

I
exp
22

(
r(x, y)

)=
∫
Cπ/3

1/4

dz

∫
Cπ/3

1/4

dw
z − w

z + w

1

2α − 1 − 2z

1

2α − 1 − 2w

× exp
[
n
(
gκ(z) + gκ(w)

)− n1/3σ(xz + yw)
]
,

with gκ(z) = −fκ(−z). When α > 1/2,

R
exp
22

(
r(x, y)

)= −sgn(x − y)

∫
Cπ/3

0

en(gκ(z)−fκ(z))−|x−y|n1/3σz

(2α − 1 − 2z)(2α − 1 + 2z)
2z dz.

When α < 1/2,

R̂
exp
22

(
r(x, y)

)= −sgn(x − y)

∫
Cπ/3

0

en(gκ (z)−fκ(z))−|x−y|n1/3σz

(2α − 1 − 2z)(2α − 1 + 2z)
2z dz

− e
1−2α

2 σn1/3y
∫
Cπ/3

0

en(gκ(z)+gκ( 1−2α
2 ))−xσn1/3z dz

2α − 1 − 2z

+ e
1−2α

2 σn1/3x
∫
Cπ/3

0

en(gκ(z)+gκ( 1−2α
2 ))−yσn1/3z dz

2α − 1 − 2z

when α = 1/2,

R̄
exp
22

(
r(x, y)

)= sgn(x − y)

∫
Cπ/3

1/4

en(gκ (z)−fκ(z))−|x−y|n1/3σz dz

2z

+
∫
Cπ/3

1/4

en(gκ(z)+gκ( 1−2α
2 ))−xσn1/3z dz

2z

−
∫
Cπ/3

1/4

en(gκ(z)+gκ( 1−2α
2 ))−yσn1/3z dz

2z
− sgn(x − y)

4
.

Since g′
κ(−θ) = g′′

κ (−θ) = 0, and g′′′
κ (−θ) = f ′′′

κ (θ), Taylor expansion around −θ

yields

gκ(z) = gκ(−θ) + σ 3

3
(z + θ)3 +O

(
(z + θ)4).

Scale the kernel Kexp as

Kexp,n(x, y) :=

⎛⎜⎜⎜⎝
σn1/3K

exp
11 (r(x, y))

e2nfκ (θ)−σn1/3(x+y)θ
σn1/3K

exp
12

(
r(x, y)

)
σn1/3K

exp
21

(
r(x, y)

) σn1/3K
exp
22 (r(x, y))

e2ngκ (−θ)+σn1/3(x+y)θ

⎞⎟⎟⎟⎠ .

By a conjugation of the kernel preserving the Pfaffian, the factor e2nfκ (θ) in
K

exp
11 cancels with e2ngκ (−θ) in K

exp
22 [since fκ(θ) = −gκ(−θ)], and the factor
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e−σn1/3(xθ+yθ) in K
exp
11 cancels with e−σn1/3(−xθ−yθ) in K

exp
22 . This implies that

by a change of variables in the Pfaffian series expansion,

P

(
H(n, κn) − hn

σn1/3 ≤ y

)
= Pf

(
J − Kexp,n)

L2(y,∞).

PROPOSITION 6.5. We have that

σ 2n2/3K
exp,n
11 (x, y)

n→∞−−−→
∫
Cπ/4

1

dz

∫
Cπ/4

1

dw
z − w

8θ3 (2θ + 2α − 1)2e
z3
3 +w3

3 −xz−yw,

so that in particular K
exp,n
11 (x, y) −−−→

n→∞ 0.

PROOF. We start with (78). Since for fixed n, the integrand has exponential
decay in the direction eiφ for any φ ∈ (−π/2, π/2), we are allowed to deform the
contour from Cπ/3

1/4 to Cπ/4
1/4 . Then we deform the contour from Cπ/4

1/4 to Cπ/4
θ . This is

valid as soon as we do not cross any pole during the deformation, which is the case
when θ ∈ (0,1/2). The following shows that the contour Cπ/4

θ is steep-descent.

LEMMA 6.6. For any θ ∈ (0,1/2), the functions t �→ Re[fκ(θ + t (1 + i))]
and t �→ Re[fκ(θ + t (1 − i))] are strictly decreasing for t > 0. Moreover, for
t > 1, d

dt
Re[fκ(θ + t (1 + i))] is uniformly bounded away from zero.

PROOF. Straightforward calculations show that

d

dt
Re

[
fκ

(
θ + t (1 + i)

)]
= −h(θ + t) + 1

2
log

(
(1 + 2θ + 2t)2 + (2t)2)

− κ

2
log

(
(1 − 2θ − 2t)2 + (2t)2)

is strictly negative for t > 0 and θ ∈ (0,1/2). Calculations are the same for the
other branch (in direction 1 − i) of the contour. �

Using similar arguments as in Section 5.2, we estimate the integral in two parts.
We call Clocal

θ the intersection between Cπ/4
θ with a ball of radius ε centred at θ ,

and we write

Cπ/4
θ = Clocal

θ � Ctail
θ .

Using the steep-descent properties of Lemma 6.6, we can show that the integration
over Ctail

θ goes to 0 exponentially fast as n goes to infinity. We are left with finding
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the asymptotic behavior of∫
Clocal

θ

∫
Clocal

θ

(z − w)(2z + 2α − 1)(2w + 2α − 1)

4zw(z + w)

× en(fκ (z)+fκ(w))−n1/3σ(xz+yw) dz dw.

We make the change of variables z = θ + z̃n−1/3 and w = θ + w̃n−1/3, and find

n−2/3
∫
n1/3Clocal

θ

∫
n1/3Clocal

θ

n−1/3(z̃ − w̃)

8θ3 (2θ + 2α − 1)(2θ + 2α − 1)

× exp
[
2nf (θ) − σn1/3(x + y)

]
exp

[
σ 3

3
z̃3 − σ(xz̃ + yw̃)

]
dz̃ dw̃,

where the n−2/3 factor is due to the Jacobian of the change of variables. Finally,
we can extend n1/3Clocal

θ to an infinite contour making a negligible error and then

freely deform the contour to Cπ/4
1 . �

For K
exp,n
22 , the presence of the pole in 1/(2α − 1 − 2z) imposes the condition

α > 1/2 − θ , or equivalently, α >
√

κ

1+√
κ

.

PROPOSITION 6.7. For α >
√

κ

1+√
κ

, we have that

σ 2n2/3K
exp,n
22 (x, y) −−−→

n→∞

∫
Cπ/4

0

dz

∫
Cπ/4

0

dw
z − w

−2θ

e
z3
3 +w3

3 −xz−yw

(2α − 1 + 2θ)2 ,

so that in particular K
exp,n
22 (x, y) −−−→

n→∞ 0.

PROOF. Since n > m = κn, all contours can be deformed to the vertical con-
tours Cπ/2

0 or Cπ/2
1/4 in the expressions for I22,R22, R̂22 and R̄22. This is because the

quantity egκ(z) has enough decay along vertical contours as long as κ < 1 and n is
large enough. By reversing the deformations of contours performed in Section 4.3,

K
exp
22

(
r(x, y)

)=
∫
Cπ/2

az

dz

∫
Cπ/2

aw

dw
z − w

z + w

en(gκ(z)+gκ(w))−n1/3σ(xz+yw)

(2α − 1 − 2z)(2α − 1 − 2w)
,

where az, aw are chosen as any value in R<0 when α ≥ 1/2 and any value in
(2α−1

2 ,0) when α < 1/2. Since we have assumed that θ ∈ (2α−1
2 ,0), we can freely

deform the contours to the contour C|η depicted on Figure 10, where the constant
η > 0 can be chosen as small as we want.

Now, we estimate the behavior of Re[gκ ] on the contour C|η.
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FIG. 10. The contour C|η used in the proof of Proposition 6.7.

LEMMA 6.8. For any θ ∈ (0,1/2), the functions t �→ Re[fκ(θ − t (1 + i))]
and t �→ Re[fκ(θ − t (1 − i))] are strictly increasing for t > 0. Moreover, for
t > 1, d

dt
Re[fκ(θ − t (1 + i))] is uniformly bounded away from zero. In particular,

the contour Cπ/4
−θ is steep descent for Re[gκ ].

PROOF. The calculations are analogous to the proof of Lemma 6.6. �

LEMMA 6.9. For η > 0 small enough, the function Re[gκ(−η + iy)] is de-
creasing for y ∈ (c(η),+∞) where 0 < c(η) < θ − η, and increasing for y ∈
(−c(η),−∞).

PROOF. We have

d

dy
Re

[
gκ(−η + iy)

]= (κ − 1)(32y3 + (1 + 2η)2) + 8η

2((1 − 2η)2 + 4y2)((1 + 2η)2 + 4y2)
,

from which the result follows readily because κ < 1. �

Lemmas 6.8 and 6.9 together imply that for η small enough, the contour C|η is
steep descent for the function Re[gκ ]. Then an adaptation of the proof of Proposi-
tion 6.5 concludes the proof. �

Turning to the kernel K
exp
12 , after the change of variables w = −w̃, we have

K
exp,n
12 (x, y) = σ−1n−1/3

(2iπ)2

∫
Cπ/3

1/4

dz

∫
C2π/3

−1/4

dw̃
z + w̃

2z(z − w̃)

2α − 1 + 2z

2α − 1 + 2w̃
(81)

× exp
[
n
(
fκ(z) − fκ(w̃)

)− n1/3σ(z − w̃)
]
,

where fκ is defined in (79).



PFAFFIAN SCHUR PROCESSES AND LPP IN A HALF-QUADRANT 3083

FIG. 11. Contours used in the proof of Proposition 5.8. Left: the contours Clocal
θ /∈ and Dlocal

θ /∈ . Right:
the contours Cθ /∈ and Dθ /∈.

PROPOSITION 6.10. For α >
√

κ

1+√
κ

,

K
exp,n
12 (x, y) −−−→

n→∞ KAi(x, y),

where KAi is the Airy kernel defined in (1).

PROOF. We have already seen in Lemma 6.6 that the contour Cπ/4
θ is

steep-descent for Re[fκ(z)], and in Lemma 6.8 that C3π/4
θ is steep descent for

−Re[fκ(z)]. Due to the term 1/(z − w) in (81), we cannot in principle use simul-
taneously the contour Cπ/4

θ for z and C3π/4
θ for w. Hence, we deform the contours

in a n−1/3-neighborhood of θ . Let us denote Cθ /∈ and Dθ /∈ the modified contours;
see Figure 11. As in the proof of Proposition 5.8, we call Clocal

θ /∈ and Dlocal
θ /∈ the in-

tersection of Cθ /∈ and Dθ /∈ with a ball of radius ε around θ , as in Section 5.2. Using
the same arguments as in Section 5.2, we can first deform the contours in (81) to
Cθ /∈ and Dθ /∈, and then approximate the integrals by integrations over Clocal

θ /∈ and
Dlocal

θ /∈ . By making the change of variables z = θ + z̃n−1/3 and w = θ + w̃n−1/3,
and approximating the integrand using the Taylor approximation (80) and straight-
forward pointwise limits, we are left with

n−2/3
∫
Cπ/4

1/4

dz̃

∫
C3π/4

−1/4

dw̃
e

σ3
3 z̃3− σ3

3 w̃3−xσ z̃+yσw̃

n−1/3(z̃ − w̃)
,

as desired. Note that the integration contours should be n1/3(Clocal
0/∈ − θ) and

n1/3(Dlocal
0/∈ − θ), but in the large n limit, we can use Cπ/4

1 and C3π/4
−1 instead for the

same reasons as in Proposition 5.8, so that we recognize the Airy kernel. �
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Let us denote the pointwise limit of Kexp,n by

KGUE(x, y) :=
(

0 KAi(x, y)

−KAi(y, x) 0

)
.

The pointwise convergence of the kernel (Propositions 6.5, 6.7 and 6.10) along
with the fact that Kexp,n satisfies uniformly the hypotheses of Lemma 2.5 (this is
clear for K

exp,n
11 and K

exp,n
22 and it is proved as in Lemma 6.4 for K

exp,n
12 ), shows

by dominated convergence that

lim
n→∞P

(
H(n, κn) < (1 + √

κ)2n + σn1/3x
)= Pf

(
J − KGUE)

L2(x,∞).

Finally,

Pf
(
J − KGUE)

L2(x,∞) =
√

det
(
I + JKGUE

)
L2(x,∞)

=
√√√√det

((
I 0
0 I

)
−
(
KAi 0

0 KAi

))
L2(x,∞)

= det(I − KAi)L2(x,∞) = FGUE(x).

REMARK 6.11. We have assumed in the statement of Theorem 1.4 that m =
κn for some fixed κ . A stronger statement holds. When m = κn + sn2/3−ε for any
s ∈ R and ε > 0,

lim
n→∞P

(
H(n, κn) − (1 + √

κ)2n − 2sn2/3−ε

σn1/3 < x

)
= FGUE(x).

This change results in an additional factor e2sn2/3−εw−sn2/3−ε log(1−2w) in (78). After
the change of variables w = n−1/3w̃ in the proof of Propositions 6.5, 6.7 and 6.10,
the additional factor becomes e2n−εw̃ and does not contribute to the limit.

6.4. Gaussian asymptotics. In this section, we prove the third part of Theo-
rem 1.3. Assume that α < 1/2. The factors 1

2α−1−2w
and 1

2α−1−2z
in the expres-

sions of K
exp
12 and K

exp
22 in Proposition 1.6 prevent us from deforming the contours

to go through the critical point at zero as in Section 5.2. We already know that the
LLN of H(n,n) will be different, and so too will the critical point (its position will
coincide with the poles above-mentioned). We have already argued in Section 6.1
that

H(n,n)

n
−−−→
n→∞

1

α(1 − α)
=: h(α),

and we expect Gaussian fluctuations on the n1/2 scale. Let rα(x, y) = (nhα +
n1/2σαx,nhα + n1/2σαy) for some constants hα,σα depending on α. The kernel
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K
exp
11 can be rewritten as

K
exp
11

(
rα(x, y)

)
=
∫
Cπ/3

1/4

dz

∫
Cπ/3

1/4

dw
z − w

4zw(z + w)
(82)

× (2z + 2α − 1)(2w + 2α − 1)en(fα(z)+fα(w))−n1/2σ(xz+yw),

where

fα(z) = −hαz + log(1 + 2z) − log(1 − 2z).

There are two critical points, f ′
α(2α−1

2 ) = f ′
α(1−2α

2 ) = 0. Setting θ = 1−2α
2 , and

σα > 0 such that σ 2
α = f ′′

α (θ) = 1−2α
α2(1−α)2 , Taylor expansions of fα around θ and

−θ yield

fα(z) = fα(θ) + σ 2
α

2
(z − θ)2 +O

(
(z − θ)3),

fα(z) = fα(−θ) − σ 2
α

2
(z + θ)2 +O

(
(z + θ)3).

Let us rescale the kernel by setting

Kexp,n(x, y) :=

⎛⎜⎜⎜⎝
σ 2

αnK
exp
11 (rα(x, y))

e2nfα(θ)−σn1/2(x+y)θ
σαn1/2K

exp
12

(
rα(x, y)

)
σαn1/2K

exp
21

(
rα(x, y)

) K
exp
22 (rα(x, y))

e2nfα(−θ)+σαn1/2(x+y)θ

⎞⎟⎟⎟⎠ .

We can conjugate the kernel without changing the Pfaffian so that factors
exp[2nfα(−θ) − σn1/3(−xθ − yθ)] and exp[2nfα(θ) − σn1/2(x + y)θ] cancels
out each other. Moreover, a factor σαn1/2 will be absorbed by the Jacobian of the
change of variables in the Fredholm Pfaffian expansion of Kexp,n, so that

P

(
H(n, κn) − h(α)n

σαn1/2 ≤ y

)
= Pf

(
J − Kexp,n)

L2(y,∞).

Saddle-point analysis of K
exp
11 around the critical point θ = 1−2α

2 shows

σ 3
αn1/2K

exp,n
11 (x, y)

(83)
−−−→
n→∞ −

∫
Cπ/3

1

dz

∫
Cπ/3

1

dw
z − w

8θ3 zwez2/2+w3/3−xz−yw.

Notice that since α < 1/2, θ > 0. Since the contours for K
exp
11 in Proposition 1.6

must stay in the positive real part region, we choose the critical point θ .
The derivation of (83) follows the same steps as in Proposition 6.5. The most im-

portant step is to find a steep-descent contour. The contour Cπ/4
θ used in in Propo-

sition 6.5 is not a good choice here, but it is easy to check by direct computation
that Cπ/3

θ is steep descent for z �→Re[fα] for any value of α ∈ (0,1/2).
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Similarly for K
exp
22 , by a saddle-point analysis around the critical point −θ =

2α−1
2 (the restriction on the contours of K

exp
22 in Proposition 1.6 impose now to

chose the negative critical point), we get that

σαn1/2K
exp,n
22 (x, y) −−−→

n→∞

∫
Cπ/6

1

dz

∫
Cπ/6

1

dw
z − w

−4θ2zw
e−z2/2−w2/2−xz−yw.

The angle is chosen as π/6 because the contour Cπ/6
−θ is steep descent for the func-

tion z �→ Re[fα], which can be checked again by direct computation. Note that it
is less obvious here that we can use vertical contours as in the proof of Proposi-
tion 6.7, but it is still possible because the integrand is oscillatory with 1/z decay.

In the case of K
exp
12 , we use the critical point θ for the variable z and −θ for the

variable w and obtain

K
exp,n
12 (x, y) −−−→

n→∞

∫
Cπ/3

2

dz

∫
Cπ/6

−1

dw
1

z + w

z

−w
ez2/2−w2/2−xz−yw.

We recognize the Hermite kernel in the RHS (see [11]), which yields K
exp,n
12 (x,

y) −−−→
n→∞

1√
2π

e− x2+y2

4 .

Finally, using exponential bounds for the kernel as in Lemmas 5.11 and 6.4, we
obtain that

lim
n→∞P

(
H(n,n) − h(α)n

σn1/2 < x

)
= Pf

(
J − KG)

L2(x,∞),

where KG is defined by the matrix kernel

KG
11(x, y) = KG

22(x, y) = 0, KG
12(x, y) = −KG

21(x, y) = 1√
2π

e− x2+y2

4 .

It is clear that KG is of rank one and its Fredholm Pfaffian is the cumulative dis-
tribution function of the standard Gaussian.

6.5. Convergence of the symplectic-unitary transition to the GSE distribution.
We have seen in Section 5 that when α > 1/2, Kexp is the correlation kernel of a
simple point process which converges to a point process where each point has mul-
tiplicity two in the limit. The symplectic-unitary kernel KSU is another example of
such kernel in the limit η → 0. The framework that we introduced in Section 5—in
particular Proposition 5.7—can be used to prove the following.

PROPOSITION 6.12. Let FSU(x) = Pf(J − KSU)L2(x,∞) where KSU(x, y) :=
KSU(1, x;1, y) be the cumulative distribution function of the largest eigenvalue of
the symplectic-unitary transition ensemble, depending on a parameter η := η1 ∈
(0,+∞). We have that for all x ∈R,

FSU(x) −−→
η→0

FGSE(x) and FSU(x) −−−−→
η→+∞ FGUE(x).
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PROOF. The limit FSU(x) −−−−→
η→+∞ FGUE(x) is straightforward as KSU con-

verges pointwise to KGUE and we readily check that we can apply dominated
convergence in the Fredholm Pfaffian expansion.

Regarding the convergence FSU(x) −−→
η→0

FGSE(x), the limit of ISU(x, y) when

η → 0 is straightforward as well, and we compute that

RSU
22 (x, y) = (y − x) exp(

(x−y)2

8η
+ 2η3

3 − η(x + y))

4
√

2πη3/2
∼

η→0

(y − x) exp(
(x−y)2

8η
)

4
√

2πη3/2
.

Then we readily verify that RSU
22 converges to the distribution δ′ in the same sense

as in Proposition 5.10. Hence, KSU converges as η → 0 to the kernel K∞ in the
sense of Proposition 5.7, and we conclude that

Pf
(
J − KSU)

L2(x,∞) −−→
η→0

Pf
(
J − KGSE)

L2(x,∞). �
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