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Abstract

We consider a q-TASEP model started from step initial condition where all but finitely many particles
have speed 1 and a few particles are slower. It is shown in Ferrari and Veto (2013) that the rescaled particles
position of q-TASEP with identical hopping rates obeys a limit theorem à la Tracy–Widom. We adapt
this work to the case of different hopping rates and show that one observes the so-called BBP transition.
Our proof is a refinement of Ferrari–Vető’s and does not require any condition on the parameter q nor the
macroscopic position of particles.
c⃝ 2015 Elsevier B.V. All rights reserved.
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1. Introduction and main result

The totally asymmetric simple exclusion process is a stochastic model of particles on the
lattice Z, with at most one particle per site (exclusion principle). Each particle has an independent
exponential clock and jumps to the right by one when it rings, provided the neighbouring site is
empty. The q-TASEP is a generalization introduced in [5]. In this model, the i th particle jumps
to the right by one at rate ai (1− qgap) where the gap is the number of consecutive empty sites to
the next particle on the right. The parameter q ∈ (0, 1) can hence be seen as a repulsion strength
between particles.
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Among many other stochastic models, the TASEP and the q-TASEP lie in the KPZ universal-
ity class, named from the Kardar–Parisi–Zhang stochastic partial differential equation modelling
the growth of interfaces. The most prominent common features of models belonging to this class
are fluctuations on a scale t1/3, spatial correlations on a scale t2/3, and Tracy–Widom type statis-
tics (see the review [8] on the KPZ class).

Borodin–Corwin’s theory of Macdonald processes [5] provides an algebraic framework to
study integrable models in the KPZ universality class, extending the Schur processes [13,14]
which prove useful in the study of TASEP and other models. Macdonald processes are a two
parameter family of measures on interlacing sequences of integer partitions, or Gelfand–Tsetlin
patterns. The probability of a given pattern is expressed as a product of Macdonald functions,
which are symmetric functions depending on two formal parameters q and t . Various particu-
lar choices of the parameters are examined in [5], leading to applications to several stochastic
models from statistical mechanics. When the parameter t is set to zero, Macdonald functions
degenerate to q-Whittaker functions. Besides the potential interest of the model itself, the in-
troduction of q-TASEP is natural since it is a marginal of the q-Whittaker process in the same
way as the TASEP is a marginal of the Schur process. When q tends to 1, the q-Whittaker func-
tions become Whittaker functions whose connections with directed polymers were established
in [12]. The limit of the q-Whittaker process when q goes to 1 is investigated in [5,6]. Hence,
q-TASEP interpolates between TASEP when q = 0, and the O’Connell–Yor semi-discrete poly-
mer when q → 1, under a particular scaling of the parameters [6]. After further rescaling the
space, the semi-discrete polymer model converges to the continuum directed random polymer.
The predictions of the KPZ universality class about the scaling exponents and the limit theorem
towards the Tracy–Widom distribution are proved in [10] for TASEP and in [6] for the one-point
distribution of the free energy of continuous polymers. As for the q-TASEP, when all particles
have the same speed ai ≡ 1 and starting from the so-called step initial condition, Ferrari and
Vető [9] show that the properly rescaled position of particles converges in law to the emblematic
GUE Tracy–Widom distribution. Moreover, they confirm the KPZ scaling theory [16,11], which
conjecturally predicts the exact value of all non-universal constants arising in the law of large
numbers and the Tracy–Widom limit theorem.

Another ubiquitous probability distribution appearing in the KPZ universality class is a
generalization of the Tracy–Widom distribution called the BBP distribution. It first arose in
spiked random matrix theory [3]. A phase transition happens for perturbed Gaussian ensembles
of hermitian matrices, and the fluctuations at the edge of the spectrum lie in the Gaussian regime
or in the Tracy–Widom regime, according to the rank and the structure of the perturbation. Using
connections between sample covariance matrices and last passage percolation (LPP), Baik, Ben
Arous and Péché [3] explain how their results translate in terms of last passage percolation on
the first quadrant where the first finitely many rows have different means. Using then a coupling
between LPP and TASEP, Baik [2] explains that one also observes the BBP transition for the
fluctuations of the current in TASEP started from step initial condition, where all but finitely
many particles have rate 1 and a few have a smaller rate. The number of slower particles plays
the same role as the rank of the perturbation in the matrix model. On the other degeneration,
that is when q goes to 1, Borodin, Corwin and Ferrari [6] show the same phase transition for
the fluctuations of the free energy of the O’Connell–Yor directed polymer when adding a local
perturbation of the environment in a quite similar way.

A finite number of slower particles in the q-TASEP creates a shock on a macroscopic scale.
Our purpose is to show the same phase transition for the fluctuations of particles around their
hydrodynamic limit, depending on the minimum rate and the number of slower particles. We
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adapt the asymptotic analysis made in [9]. The main technical difference is the following: in [9],
the fluctuation result is proved with a slightly restrictive condition on the macroscopic position
of particles, which forbids to study the very first particles. It concerns a O(time) quantity of
particles though. In our work, we do not assume this condition to hold, confirming that it was
purely technical as suspected by Ferrari and Vető.

1.1. The q-TASEP

The q-TASEP is a continuous-time Markov process described by the coordinates of particles
X N (t) ∈ Z, N ∈ N∗, t ∈ R+. Its infinitesimal generator is given by

(L f ) (x) =

k∈N∗

ak(1− qxk−1−xk−1)( f (xk)− f (x)) (1)

where x = (x0, x1, . . .) is such that xi > xi+1 for all i , xk is the configuration where xk is in-
creased by one, and by convention x0 = +∞. The step initial condition corresponds to ∀i ∈ N∗,
xi (0) = −i .

Let us first focus on the case where all particles have equal hopping rates, ai ≡ 1. In this
case, the gaps between particles (xi − xi+1 − 1)i have the same dynamics as a q-TAZRP
(q-deformed Totally Asymmetric Zero-Range Process) introduced in [15], for which general
results on invariant distributions of zero-range processes apply [1]. Hence, [5] shows that trans-
lation invariant extremal invariant measures are renewal processes µr for r ∈ [0, 1) on Z, with
renewal measure according to the q-Geometric distribution of parameter r , i.e.

µr (xi − xi+1 − 1 = k) = (r, q)∞
rk

(q, q)k

where (z, q)k = (1− z)(1− qz) . . . (1− qk−1z).
One expects that the rescaled particle density ρ(x, τ ), given heuristically by

ρ(x, τ ) = lim
t→∞

P(There is a particle at ⌊xt⌋ at time tτ),

satisfies the PDE

∂

∂τ
ρ(x, τ )+

∂

∂x
j (ρ)(x, τ ) = 0 (2)

where j (ρ) is the particle current at density ρ.
By local stationarity assumption, we mean that gaps between particles are locally distributed

according to i.i.d. q-geometric random variables for some parameter r which depends on the
macroscopic position. Under this assumption and using the particle conservation PDE (2), one
can guess the deterministic profile of the q-TASEP, see [9, Section 3] for details. In order to state
this result, we need some preliminary definitions. We fix the parameter q ∈ (0, 1) and choose a
real number θ > 0 which parametrizes the macroscopic position of particles, as explained below.

Definition 1 ([9]). We recall the definition of the q-Gamma function

0q(z) = (1− q)1−z (q; q)∞

(q z; q)∞
.

Then the q-digamma function is defined by

Ψq(z) =
∂

∂z
log 0q(z).
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For q ∈ (0, 1) and θ > 0, we also define the functions

κ ≡ κ(q, θ) =
Ψ ′q(θ)

(log q)2qθ
, (3)

f ≡ f (q, θ) =
Ψ ′q(θ)

(log q)2 −
Ψq(θ)

log q
−

log(1− q)

log q
, (4)

χ ≡ χ(q, θ) =
Ψ ′q(θ) log q −Ψ ′′q (θ)

2
. (5)

Then, the following law of large numbers holds when N goes to infinity,

X N (τ = κ N )

N
−→ f − 1.

Let us explain the arguments leading to this result. Under local stationarity assumption, for a real
number x such that around xt , gaps between particles are distributed as q-Geometric random
variables of parameter r , we have

ρ(x, t) =
1

1+ E[gap]
=

log q

log(q)+ log(1− q)+Ψq(logq r)
. (6)

Writing x = x(r) and after the change of variables logq r = θ , the PDE (2) implies that
x(θ) = ( f (q, θ)− 1) /κ(q, θ). Finally, integrating this density gives a law of large numbers for
the integrated current of particles, or the equivalent statement on X N (τ ) given above. Moreover,
under local stationarity assumption, the gaps between consecutive particles around particle N at
time κ(q, θ)N are distributed according to i.i.d. q-Geometric random variables of parameter qθ .
The averaged hopping rate (or the averaged speed of a tagged particle) is then E[1− qgap

] = qθ .

Remark 1.1. One could choose the time τ to be the free parameter which tends to infinity, but
the formulae are slightly simpler when N tends to infinity and τ depends on N .

1.2. Main result

In this paper, we aim to study a q-TASEP started form step initial condition where all but
finitely many particles have rate 1, and some particles are slower. Notice that as we will see
in the proofs, the case of a finite number of faster particles does not change anything to the
macroscopic behaviour.

Let ai1 , ai2 , . . . , aim be the rates of the slower particles, and α be the rate of the slowest particle
and suppose that k 6 m particles have rate α. For later use, it is convenient to set the notation
A := logq(α).

The slower particles create a shock on a macroscopic scale and influence the law of large
numbers. The particles which are concerned by the shock are all the particles that, in the absence
of slower particles, would have an averaged hopping rate greater than α. In order to state the
results precisely, we need to define some additional functions.

Definition 2. For q ∈ (0, 1) and θ > 0, we define

g ≡ g(q, θ) =
Ψ ′q(θ)

(log q)2

α

qθ
−

Ψq(A)

log q
−

log(1− q)

log q
, (7)
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Fig. 1. Limit shapes of 1
τ (X N (τ ) + N , N ) for q = 0.6. The solid line corresponds to α = 1 (no slow particle). The

dashed line corresponds to α = 0.4 (one or several slower particles). Note that the curved line is the parametric curve
( f/κ, 1/κ), whereas the straight line part is the parametric curve (g/κ, 1/κ), when θ ranges from 0 to logq α, i.e. θ

satisfying the condition α < qθ .

σ ≡ σ(q, θ) = Ψ ′q(θ)
α

qθ
−Ψ ′q(A). (8)

Then the following law of large numbers holds, when N goes to infinity,

X N (τ = κ N )

N
−→


f − 1 when α > qθ ,

g − 1 when α 6 qθ .

The limit shape of 1
τ
(X N (τ )+N , N ) is drawn in Fig. 1. One sees that the limiting profile is linear

when α < qθ . It means that the density of particles is constant inside the shock and particles have
an averaged speed α.

The scaling theory of single-step growth models explained in [16] and the KPZ class con-
jecture give a way to compute the non universal constants arising in the law of large numbers,
and the scale and precise variance of fluctuations. Nevertheless, these results are expected to hold
only at points where the limiting shape is strictly convex. The results in [9] confirm the conjecture
for a q-TASEP where all particles have equal hopping rates. In the presence of slower particles,
the limiting shape is linear inside the shock (cf. Fig. 1), and the fluctuations are not predicted by
the KPZ class conjecture.

Remark 1.2. In [16], the convexity condition is given on the limit profile of the height function,
but this is equivalent.

Let us explain the scalings that we use in the paper. When θ is such that qθ < α, particles
around the macroscopic position parametrized by θ have speed qθ and are asymptotically
independent from the slower particles. We expect to observe Tracy–Widom fluctuations on a
N 1/3 scale with spatial correlation on a N 2/3 scale. Hence, the time τ(N , c) is set as

τ(N , c) = κ N + cq−θ N 2/3,

where c is a free but fixed parameter. The macroscopic position of the N th particle, denoted
p(N , c), is given by

p(N , c) = ( f − 1)N + cN 2/3
− c2 (log q)3

4χ
N 1/3.
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When θ is such that α < qθ , we expect the fluctuations to live on the N 1/2 scale, although the
limiting law is not necessarily Gaussian. We set

τ ∗(N , c) = κ N + cN 1/2/α,

and the macroscopic position is

p∗(N , c) = (g − 1)N + cN 1/2.

The aim is to study the fluctuations of X N (τ (N , c)) (resp. X N (τ ∗(N , c))) around p(N , c) (resp.
p∗(N , c)).

Next, we define classical probability distributions from random matrix theory in a convenient
way for our purposes.

Definition 3 (Distribution Functions).

1. The distribution function FGUE(x) of the GUE Tracy–Widom distribution is defined by
FGUE(x) = det(I − KAi)L2(x,+∞) where KAi is the Airy kernel,

KAi(u, v) =
1

(2iπ)2

 e2iπ/3
∞

e−2iπ/3∞

dw

 eiπ/3
∞

e−iπ/3∞

dz
ez3/3−zu

ew3/3−wv

1
z − w

,

where the contours for z and w do not intersect.
2. Let b = (b1, . . . , bk) ∈ Rk . The BBP distribution of rank k from [3] is defined by FBBP,k,b(x)

= det(I − KBBP,k,b)L2(x,+∞) where KBBP,k,b is given by

KBBP,k,b(u, v) =
1

(2iπ)2

 e2iπ/3
∞

e−2iπ/3∞

dw

 eiπ/3
∞

e−iπ/3∞

dz
ez3/3−zu

ew3/3−wv

1
z − w


z − b

w − b

k

,

where the contour for w passes to the right of the bi ’s, and the contours for z and w do not
intersect.

3. Gk(x) is the distribution of the largest eigenvalue of a k× k GUE, which also has a Fredholm
determinant representation. Gk(x) = det(I − Hk)L2(x,+∞), where Hk is the Hermite kernel
given by

Hk(u, v) =
ck−1

ck

pk(u)pk−1(v)− pk−1(u)pk(v)

u − v
e−(u2

+v2)/4,

where cn = 1/((2π)1/4
√

n!) and (pn)n>0 is a family of orthogonal polynomials determined
by

∞

−∞
pm(t)pn(t)e−t2/2dt = δmn . The kernel Hk has an integral representation

Hk(u, v) =
1

(2iπ)2

 ei(π−ϕ)
∞

ei(ϕ−π)∞

dw

 ei(π/2−γ )
∞

ei(γ−π/2)∞

dz
ez2/2−zu

ew2/2−wv

1
z − w

 z

w

k
,

with ϕ, γ ∈ (0, π/4), and where the contour for w passes to the right of 0, and the contours do
not intersect. For the equivalence between these formulas, see e.g. [4] and references therein.

We are now able to state our main result.

Theorem 1. Let k be the number of particles having rate α.

• If qθ < α, then writing X N (τ (N )) = ( f − 1)N + cN 2/3
− c2 (log q)3

4χ
N 1/3
+

χ1/3

log q ξN N 1/3, we
have for any x ∈ R,

lim
N→∞

P(ξN < x) = FGUE(x).
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• If qθ
= α then writing again X N (τ (N )) = ( f −1)N+cN 2/3

−c2 (log q)3

4χ
N 1/3
+

χ1/3

log q ξN N 1/3,
we have for any x ∈ R,

lim
N→∞

P(ξN < x) = FBBP,k,b(x)

where b = (b, . . . , b) with b = c(log q)2

2χ2/3 .

• If qθ > α, then writing X N (τ ∗(N )) = (g − 1)N + cN 1/2
+

σ 1/2

log q ξN N 1/3, we have for any
x ∈ R,

lim
N→∞

P(ξN < x) = Gk(x).

Remark 1.3. These results on the asymptotic positions of particles readily translate in terms of
current of particles or height function, as in [9, Theorem 2.9].

Remark 1.4. Furthermore, it is possible to observe the BBP distribution FBBP,k,b for any arbi-
trary vector b. One has to perturb the rates on a scale N−1/3. Let us fix some θ > 0 and assume
that for 1 6 i 6 k, ai = qθ+b̃i N−1/3

and the rates of all other particles are higher than qθ .
Then, if the random variable ξN is defined as in Theorem 1, limN→∞ P(ξN < x) = FBBP,k,b(x)

where b = (b + b̃1, . . . , b + b̃1) with b = c(log q)2

2χ2/3 as before. In terms of Macdonald processes,
this perturbation of the rates corresponds to a perturbation of the parameters of the q-Whittaker
process. It is the precise analogue of the perturbation of the parameters of the Whittaker process
applied to the O’Connell–Yor semi-discrete random polymer, for which the same result holds for
the fluctuations of the free energy [6, Theorem 2.1].

2. Asymptotic analysis

In this section, we prove the main Theorem 1. The asymptotic analysis we present here is an
instance of Laplace’s method closely adapted from [9]. Fix a θ > 0 and the parameter c ∈ R.
We start from a Fredholm determinant representation for the q-Laplace transform of q X N (τ ),
which characterizes the law of X N (τ ). It was first proved in [5,7] in a slightly different form, and
in [6] in the form which seems the most convenient for an asymptotic analysis. Before stating
this result, we need to define some integration contours in the complex plane.

Definition 4 (See Fig. 2). We define a family of contours C̃ᾱ,ϕ for ᾱ > 0 and ϕ ∈ (0, π/2) by

C̃ᾱ,ϕ = {ᾱ + eiϕ sgn(y)
|y|, y ∈ R},

oriented from bottom to top. For every w ∈ C̃ᾱ,ϕ , we define a contour D̃w by

D̃w =

R − i∞, R − id


∪

R − id, 1/2− id


∪

1/2− id, 1/2+ id


∪

1/2+ id, R + id


∪

R + id, R + i∞


oriented from bottom to top, where R, d > 0 are chosen such that:

(i) Let b = π/4− ϕ/2, then arg(w(qs
− 1)) ∈ (π/2+ b, 3π/2− b) for any s ∈ D̃w.

(ii) qsw, s ∈ D̃w stays to the left of C̃ᾱ,ϕ .



G. Barraquand / Stochastic Processes and their Applications 125 (2015) 2674–2699 2681

Fig. 2. The contours in Definition 4. One sees that qsw, s ∈ D̃w stays to the left of C̃ᾱ,ϕ .

These contours always exist (see Remark 4.9 in [6]): to check condition (ii), it is enough to prove
that the points wq1/2±ir stay on the left of C̃ᾱ,ϕ which follows from simple geometric arguments
for d small enough. It can be seen in Fig. 2. To satisfy condition (i), the argument of wqs

− w

can be made as small as we want choosing d small enough and R large enough.

Theorem 2. Let ζ ∈ C \ R+ and N > max16 j6m{i j }. Then,

E


1

(ζq X N (t)+N ; q)∞


= det(I + K̃ζ )L2(C̃ᾱ,ϕ)

(9)

for any ϕ ∈ (0, π/4) provided the condition 0 < ᾱ < α is satisfied. The operator K̃ζ is defined
by its integral kernel

K̃ζ (w, w′) =
1

2iπ


D̃w

ds0(−s)0(1+ s) (−ζ )s gw,w′(q
s),

where

gw,w′(q
s) =

exp(tw(qs
− 1))

qsw − w′


(qsw; q)∞

(w; q)∞

N−m 
16 j6m


(qsw/ai j ; q)∞

(w/ai j ; q)∞


.

Remark 2.1. The condition 0 < ᾱ < α ensures that all the poles for the variable w in gw,w′(qs)

are inside the contour C̃ᾱ,ϕ .

Proof. Let us explain how this theorem is a rephrasing of a known result on Macdonald pro-
cesses. The (ascending) Macdonald processes introduced in [5] are a family of probability
measures on sequences of integer partitions λ1, λ2, . . . , λN , where λi has at most i non-zero
components, and the sequence satisfies the interlacing condition λk

j+1 6 λk−1
j 6 λk

j , for all
1 6 j 6 k−1 < N . The Macdonald measures are a family of measures on integer partitions such
that the marginals of Macdonald processes are Macdonald measures, cf. [5, Paragraph 2.2.2].

The probability of a given configuration is expressed as a product of Macdonald functions,
which are symmetric functions in infinitely many variables, such that the coefficient of each
monomial is a rational function in two parameters q and t . In order to build a genuine positive
measure, one has to properly specialize Macdonald functions and consider q and t as real param-
eters.
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Fig. 3. The contours for the variables Z , W and W ′ are on the right-hand-side. The left-hand-side is the image by the
map Z → q Z . In this example, kW = 2.

Different choices for the parameters q and t are examined in [5]. When t = 0, the study of
the dynamics preserving the Macdonald process leads to the definition of the q-TASEP. Indeed,
under a specialization of the Macdonald process with parameters (a1, . . . , aN ; ρτ ) where ρτ is
the Plancherel specialization of parameter τ , the marginal (λk

k)16k6N has Markovian dynamics
which is exactly that of the q-TASEP. More precisely, (Xk(τ )+k)16k6N has the same distribution
as the marginal (λk

k)16k6N for any time τ . The theorem is now a reformulation of Theorem 4.13

in [6] which proves the same formula for E

1/(ζqλN

N ; q)∞


when λN is distributed according

to the Macdonald measure under specialization (a1, . . . , aN ; ρτ ). �

We make the change of variables:

w = qW , w′ = qW , s +W = Z .

This demands to introduce new integration contours for the variables Z , W and W ′, depicted
in Fig. 3. Let Ā = logq(α) and let C Ā,ϕ be the image of C̃ᾱ,ϕ under the map x → logq x .

For every W ∈ C Ā,ϕ , let DW = { Ā + σ + iR} ∪ E1 ∪ · · · ∪ EkW , the value of σ > 0 to be

chosen later,1 where E1, . . . , EkW are small circles around the residues coming from the sine at
W + 1, W + 2, . . . , W + kW .

More precisely, the vertical line is modified in a neighbourhood of size δ around the real axis
as in Fig. 3, and we choose σ such that the poles coming from the sine inverse are at a distance
from the vertical line at least σ/2. To make this possible, the vertical lines of the contour are
chosen to have real part Ā + σ or Ā + 2σ .

We obtain, as in [9], the kernel

K̂ζ (W, W ′) =
qW log q

2iπ


DW

dZ

q Z − qW ′
π

sin(π(W − Z))

×

(−ζ )Z exp(τq Z
+ (N − m) log(q Z

; q)∞ +
m

j=1
log(q Z/ai j ; q)∞)

(−ζ )W exp(τqW + (N − m) log(qW ; q)∞ +
m

j=1
log(qW /ai j ; q)∞)

.

1 Note that the real number σ that we use here has nothing to do with the standard deviation σ in Eq. (8), but we allow
this abuse of notations to keep the same notations as in [9].
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2.1. Case α > qθ , Tracy–Widom fluctuations

Fix θ > 0 such that α > qθ and c ∈ R. We want to study the limit of

P


X N (τ (N , c))− p(N , c)

χ1/3/(log q)N 1/3 < x


. (10)

The function z → 1/(z; q)∞ converges uniformly as an infinite product for z ∈] −∞, 0]. Thus
when z goes to −∞, then 1/(z; q)∞ goes to zero, and when z goes to zero then 1/(z; q)∞ goes
to 1. Modulo a justification of the exchange between expectation and limit that we explicit in the
end of this subsection, if

ζ = −q−p(N ,c)−N− χ1/3
log q x N 1/3

then (10) and E

1/(ζq X N (τ )

; q)∞


have the same limit. Thus, in the following of this subsection,
we set ζ as above. We fix also ᾱ = qθ (or equivalently Ā = θ ). As we assume α > qθ ,
the condition 0 < ᾱ < α in Theorem 2 is satisfied. We then obtain det(I + K̃ζ )L2(C̃ᾱ,ϕ)

=

det(I + Kx )L2(Cθ,ϕ) where

Kx (W, W ′) =
qW log q

2iπ


DW

dZ

q Z − qW ′
π

sin(π(Z −W ))

×
exp(N f0(Z)+ N 2/3 f1(Z)+ N 1/3 f2(Z))

exp(N f0(W )+ N 2/3 f1(W )+ N 1/3 f2(W ))

φ(Z)

φ(W )
, (11)

with

f0(Z) = − f (log q)Z + κq Z
+ log(q Z

; q)∞,

f1(Z) = −c(log q)Z + cq Z−θ ,

f2(Z) = c2 (log q)4

4χ
Z − χ1/3x Z ,

φ(Z) =

m
j=1

(q Z/ai j ; q)∞
(q Z ; q)∞

m .

Let us describe the idea of Laplace’s method in our context. The asymptotic behaviour of
the kernel is governed by the variations of the real part of f0. In the sequel, we exhibit steep-
descent contours, which allows us to prove that in the large N limit, the main contribution to
the Fredholm determinant is localized in a neighbourhood of θ which is the critical point of
ℜ[ f0]. Then, using estimates and Taylor expansions for the argument of the exponential inside
the kernel, we prove the limit. Due to the difficulty to simultaneously find a steep-descent path
for the contour of the Fredholm determinant and to control the extra residues coming from the
sine inverse in formula (11), the authors in [9] impose a technical condition qθ 6 1

2 , suspecting
that it was purely technical (see Remark 2.5). In order to get rid of this condition, we do not
choose exactly the same contours. Our contour for the variable W is Cθ,π/4 instead of Cθ,ϕ for ϕ

close to π/2. Indeed, for ϕ ≠ π/4, the contour Cθ,ϕ is not necessarily steep-descent for −ℜ[ f0]

when qθ > 1/2.
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For later use, we give two useful series representations for Ψq and its derivative

Ψq(Z) = − log(1− q)+ log q
∞

k=0

q Z+k

1− q Z+k , (12)

Ψ ′q(Z) = (log q)2
∞

k=0

q Z+k

(1− q Z+k)2 . (13)

In general, we parametrize the contour C Ā,ϕ by W (s) = logq(α + |s|eiϕ sgn(s)) for s ∈ R. For

instance, the contour Cθ,π/4 is parametrized by W (s) = logq(qθ
+ |s|esgn(s)iπ/4).

Lemma 1 ([9]).

(1) The two following expressions for f ′0 are useful:

f ′0(Z) =
Ψ ′q(θ)

log q
(q Z−θ

− 1)+Ψq(θ)−Ψq(Z) (14)

= − log q
∞

k=0

q2k(qθ
− q Z )2

(1− qθ+k)2(1− q Z+k)
. (15)

(2) We have that

d
dY

(ℜ [ f0(X + iY )])

= − sin(Y log q) log q
∞

k=0

q X+k


1

(1− qθ+k)2 −
1

|1− q X+iY+k |2


. (16)

(3) The contour Cθ,π/4 is steep-descent for −ℜ [ f0], in the sense that the function s →
ℜ [ f0(W (s))] is increasing for s > 0, where W (s) is a parametrization of the contour Cθ,π/4.

(4) The function ℜ [ f0] is periodic on {θ + σ + iR} with period 2π/| log q|. Moreover, t →
ℜ [ f0(θ + σ + i t)] is decreasing on [0,−π/ log q] and increasing on [π/ log q, 0], for any
σ > 0.

Proof. Eqs. (15) and (14) correspond to Eqs. (6.19) and (6.22) in [9]. Eq. (16) is Eq. (6.24) in [9]
with X = θ + γ and Y = t . (4) follows directly from this expression. (3) is a particular case of
Lemma 6.8 in [9] and still holds when qθ > 1/2. Indeed, after some algebra,

d
ds

(ℜ [ f0(W (s))]) =
∞

k=0

q2ks2
√

2/2

qks2
+ qθ (1− qθ+k)


(1− qθ+k)2|1− qθ+k − eiπ/4sqk |2|qθ+eiπ/4s |2

> 0. �

Lemma 2 ([9]). The kernel Kx (W (s), W ′) has exponential decay, in the sense that there exist
N0, s0 > 0 and c > 0 such that for all s > s0 and N > N0,

|Kx (W (s), W ′)| 6 exp(−cNs).

Proof. This is a particular case of Lemma 6.10 in [9], i.e. when ϕ = π/4. The proof consists
in estimating separately the contributions of the vertical line θ + σ + iR and the small circles
E1, . . . , EkW . The factor exp(N ( f0(Z) − f0(W ))) inside the kernel commands the asymptotic
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behaviour. Thus the result boils down to showing that there exists a constant c > 0 such that for
N > N0, s > s0 and any Z ∈ DW ,

ℜ [ f0(Z)− f0(W (s))] < −cs.

This follows from the properties of the function f0 given in Lemma 1. Note that this result is also
a degeneration of Lemma 7 proved thereafter. �

The previous Lemma allows to extend the contour Cθ,ϕ with ϕ ∈ (0, π/4) in Theorem 2
to ϕ = π/4, without altering the Fredholm determinant det(I + Kx )L2(Cθ,ϕ). Indeed, for
ϕ ∈ (0, π/4), it is known from the proof of Theorem 4.13 in [6] that the kernel decays ex-
ponentially on Cθ,ϕ . For large N , Lemma 2 gives an exponential bound on the kernel Kx along
the tails of the contour Cθ,π/4, i.e. for |s| > s0. The behaviour of the kernel around s = 0 is
logarithmic, so that for a fixed N > N0 one has (cf also [9, Eq. (6.28)])

|Kx (W (s), W (s′))| 6 C exp(−cN |s|)+ C(log |s|)−(log |s′|)−. (17)

where (x)− denotes the negative part of x . Hence, for any fixed N > N0, each term in the se-
ries expansion of the Fredholm determinant is constant when ϕ varies in (0, π/4], yielding the
validity of the contour deformation for the Fredholm determinant.

Next, we want to show that the parts of the contours which give the main contribution to the
Fredholm determinant are in a neighbourhood of θ . When qθ 6 1/2 and the contour for the
variables W and W ′ is Cθ,ϕ with ϕ close to π/2, it is proved in Proposition 6.3 of [9]. In order
to get rid of the condition qθ 6 1/2, we need to control the real part of f0 on the small circles
E1, . . . , EkW . This is done by the following lemma.

Lemma 3. There exists η > 0 such that for any W ∈ Cθ,π/4, ℜ( f0(W ) − f0(W + j)) > η, for
all j = 1, . . . , kW .

Proof. It is proved in Lemma 6.10 in [9] (in the proof thereof, more exactly) that for W far
enough from θ , i.e. for W = W (s) with |s| > s0,

ℜ [ f0(W (s))− f0(W (s)+ j)] > c · |s|

for some c > 0. Thus, we can consider the residues lying only in a compact domain, and we are
left to prove that ℜ [ f0(W )− f0(W + j)] > 0 for each residue.

We split the proof into two cases according to the sign of ℜ

qW+ j

− qθ

, or in other words,

according to the relative position of the residue W + j and the contour Cθ,π/2. By symmetry, we
can consider only the residues above the real axis.

Case 1: ℜ

qW+ j

− qθ


> 0. This condition geometrically means that W + j lies on the left of
Cθ,π/2, i.e. between Cθ,π/4 and Cθ,π/2. We show that on the straight line from W to W+ j ,
ℜ[ f0] is decreasing. For that purpose, it is enough to prove that ℜ


f ′0(W + X)


< 0

for X ∈ (0, j). From the expression of f ′0 in Lemma 1 Eq. (15),

ℜ


d

dX
f0(W + X)


= − log q

∞
k=0

q2k(qθ
− qW+X )2(1− qW+X+k)

(1− qθ+k)2|1− qW+X+k |2
.

Writing qW+X
= qθ

+ z′, the k-th term in the series above has the same sign as

ℜ


(qθ
− qW+X )2(1− qW+X+k)


= (z′2(1− qk(qθ + z′)))

= z′2(1− qθqk)− z′|z′|2qk . (18)
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Fig. 4. The thick line is the path from W to W + j in Case 2, for j = 2.

Fig. 5. Image of Fig. 4 by the map x → qx .

If ℜ

qW+ j

− qθ


> 0, then arg(z′) 6 π/2. Moreover, since W ∈ Cθ,π/4, W + X is on
the right of Cθ,π/4, which exactly means that arg(z′) > π/4. Hence both terms in the
right-hand-side of (18) have negative real part.

Case 2: ℜ[qW+ j
− qθ
] < 0. This condition geometrically means that W + j lies on the right of

Cθ,π/2. Now, it may happen that ℜ[ f0] is not decreasing on the horizontal line between
W and W + j . The idea here, inspired from the proofs of Lemmas 6.10 and 6.12 in [9],
is to find another path from W to W + j along which ℜ[ f0] is decreasing.

Let Ŵ (t) = logq(qθ
+ eiπ/2 sgn(t)

|t |) a parametrization of Cθ,π/2. Let t j be the real num-

ber such that ℜ [W + j] = ℜ

Ŵ (t j )


(see Figs. 4 and 5). Let s j be the real such that

ℑ

W (s j )


= ℑ


Ŵ (t j )


. From W to W (s j ) along the contour Cθ,π/4, ℜ[ f0] is decreasing by

steep-descent property of this contour stated in Lemma 1. From W (s j ) to Ŵ (t j ) on a horizontal
line, ℜ[ f0] is decreasing from the first part of the proof, because for any Z on this line, we have
ℜ

q Z
− qθ


> 0. It remains to prove that on the vertical line from Ŵ (t j ) to W + j , ℜ[ f0] is

decreasing. It is enough to prove that

∀Y ∈


0,ℑ[W + j − Ŵ (t j )]


,
d

dY


ℜ


f0(Ŵ (t j )+ iY )


< 0.
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Each summand in the series representation for d
dY (ℜ [ f0(X + iY )]) in Eq. (16) has the same sign

as |1−qŴ (t j )+iY+k
|
2
−(1−qθ+k)2. This last quantity is positive whenℜ


qŴ (t j )+iY

− qθ


< 0.

Taking into account the negative prefactor− sin(Y log q) log q < 0 in Eq. (16), we conclude that
d

dY


ℜ


f0(Ŵ (t j )+ iY )


< 0.

It may also happen that ℜ [W + j] = θ + σ ′ with 0 < σ ′ < 2σ , and in this case the path we
have just described does not exist. But it suffices to go from W to θ along Cθ,π/4, from θ to θ+σ ′

by a straight horizontal line, and finally to W + j by a vertical line. On the short horizontal line,
ℜ[ f0] may increase, but the derivative is bounded, and σ can be chosen as small as we want.
Hence the possible increase of ℜ [ f0] from θ to θ + 2σ can be made arbitrarily small, which is
enough to prove the lemma. �

We are now able to prove the following analogue of [9, Proposition 6.3].

Proposition 1. Asymptotically, the contribution to the Fredholm determinant of the parts of the
contours outside any neighbourhood of θ is negligible. More rigorously, for any fixed δ > 0 and
ϵ > 0, there is an N1 such that for all N > N1

| det(I + Kx )L2(Cθ,π/4)
− det(I + Kx,δ)L2(Cδ

θ )| < ϵ

where Cδ
θ is the truncated contour Cθ,π/4 ∩ {W ; |W − θ | 6 δ}, and

Kx,δ(W, W ′) =
qW log q

2iπ


Dδ

W

dZ

q Z − qW ′
π

sin(π(Z −W ))

×
exp(N f0(Z)+ N 2/3 f1(Z)+ N 1/3 f2(Z))

exp(N f0(W )+ N 2/3 f1(W )+ N 1/3 f2(W ))

φ(Z)

φ(W )
(19)

and analogously Dδ
W = DW ∩ {Z; |Z − Ā| 6 δ}.

Proof. This proposition is the precise adaptation of Proposition 6.3 in [9] and we reproduce the
proof done therein. We have the Fredholm determinant expansion

det(I + Kx )L2(Cθ,π/4)

=

∞
k=0

1
k!


R

ds1 . . .


R

dsk det


Kx

W (si ), W (s j )


16i, j6k

 dW (si )

dsi
. (20)

Let us denote by sδ the positive real number such that |W (sδ)− θ | = δ. We need to prove that if
we replace all the integrations on R in (20) by integrations on [−sδ, sδ], the error that we make
goes to zero when N goes to infinity. We give a dominated convergence argument. Note that the
integrable bound in Eq. (17) is not useful here since this bound is valid for a fixed N .

By Lemmas 2 and 3 together with the steep-descent properties of the contours, one can find a
constant cδ > 0 such that for any N > N0 and |s| > sδ ,

ℜ [ f0(Z)− f0(W (s))] < −cδs.

Furthermore the integral in (19) is absolutely integrable. For the vertical part of the contour DW ,
this is due to the exponential decay of the sine in the denominator. Thus, one can find another
positive constant Cδ such that for |s| > sδ and N > N0, one has

|Kx (W (s), W ′)| < Cδ exp

−

cδ

2
Ns


. (21)
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Hence, when N > N0 the series expansion of the error term, that is the expression in (20) with
integrations on Rk

\ [−sδ, sδ]
k , can be uniformly bounded by a convergent series of absolutely

convergent integrals. Thus, by dominated convergence, the error goes to zero.
To conclude the proof of the Proposition, we have to localize the Z integrals on Dδ

W , and
we outline the arguments of [9]. The behaviour in the Z variables is e−πℑ[Z ] due to the sine
in the denominator. Hence by the steep-descent property of the contour for Z on each period,
and the same kind of dominated convergence arguments, one can localize the Z integrals in
neighbourhoods of size δ around each θ + i2kπ/ log q for k ∈ Z. Moreover one can show that
the contribution of the integrals on these δ-neighbourhoods is O(N−1/3) as soon as k ≠ 0, and
summable on k. �

We make the change of variables

W = θ + wN−1/3, W ′ = θ + w′N−1/3, Z = θ + zN−1/3.

In order to adapt the rest of the asymptotic analysis made in [9], we need the following estimate
on the behaviour of our additional factor inside the kernel.

Lemma 4. For any z and w, we have

φ(θ + zN−1/3)

φ(θ + wN−1/3)
−→

N→∞
1. (22)

Moreover, there exist constants cφ, Cφ > 0 such that for |Z − θ | < cφ and |W − θ | < cφ , one
has  φ(Z)

φ(W )

 6 Cφ . (23)

Proof. The infinite product (z; q)∞ converges uniformly on any disc centred in 0. Here for all
1 6 j 6 m, qθ < α 6 ai j . Thus, each factor tends to a non null real number, and one can
exchange limit and infinite product. The limit does neither depend on z nor on w, and one has

(qθ+zN−1/3
/ai j ; q)∞

(qθ+zN−1/3
; q)∞

 −→
N→∞

(qθ/ai j ; q)∞
(qθ ; q)∞

 . (24)

The factors in φ(θ + zN−1/3) and φ(θ + wN−1/3) compensate in the limit, and φ(θ+zN−1/3)

φ(θ+wN−1/3)

−→
N→∞

1.

Assuming |Z − θ | < cφ and |W − θ | < cφ where cφ is chosen small enough, |q Z+k/ai j | is
uniformly bounded by a constant smaller than 1. Hence φ(Z) and φ(W ) are uniformly bounded
above and below by positive constants, and one can find a constant Cφ so that (23) holds. �

Due to the change of variables, we define new integration contours which we choose as
straight lines for simplicity. For L ∈ R+∪{∞}, the contours Cϕ,L and Dϕ,L are adapted from [9]
and defined in the following way: Cϕ,L = {ei(π−ϕ)sgn(y)

|y|, |y| 6 L} for some angle ϕ < π/4.
Analogously we define Dϕ,L = {eiϕ sgn(y)

|y|, |y| 6 L}. This modification of contours can be
performed without changing the value of the integral as soon as we keep the same endpoints, and
the angle ϕ and the parameter σ can be chosen so that it is the case.
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Proposition 2. We have the convergence

lim
N→∞

det(I + Kx )L2(Cθ,π/4)
= det(I + K ′x,∞)L2(Cϕ,∞)

where for L ∈ R+ ∪ {+∞},

K ′x,L =
1

2iπ


Dϕ,L

dz

(z − w′)(w − z)

×
exp(χ z3/3+ c(log q)2z2/2+ zc2(log q)4/(4χ)− zxχ1/3)

exp(χw3/3+ c(log q)2w2/2+ wc2(log q)4/(4χ)− wxχ1/3)
. (25)

Proof. For the sake of self-containedness, we reproduce the proofs of Propositions 6.4 to 6.6
of [9] which still hold with a slight modification for the pointwise limit.

Consider the rescaled kernel

K N
x,δ(w, w′) = N−1/3 Kx,δN 1/3(θ + wN−1/3, θ + w′N−1/3)

where we use the contours Cϕ,δN 1/3 and Dϕ,δN 1/3 . By a simple change of variables,

det(I + Kx,δ)L2(Cδ
θ ) = det(I + K N

x,δ)L2(C
ϕ,δN1/2 ).

First we estimate the argument in the exponential in (19). By Taylor approximation, there exists
C f0 , such that for |Z − θ | < θ , f0(Z)− f0(θ)−

χ

3
(Z − θ)3

 < C f0 |Z − θ |4 (26)

and since f ′1(θ) = 0 and f ′′1 (θ) = c(log q)2, there exists C f1 , such that for |Z − θ | < θ , f1(Z)− f1(θ)− c(log q)2(Z − θ)2
 < C f1 |Z − θ |3.

Let us denote the argument in the exponential in (19) as

f (Z , W, N ) := N f0(Z)+ N 2/3 f1(Z)

+ N 1/3 f2(Z)− N f0(W )− N 2/3 f1(W )− N 1/3 f2(W ),

and the argument in the exponential in (25) as

f lim(z, w) :=

χ z3/3+ c(log q)2z2/2+ c2(log q)4/(4χ)z − xχ1/3z


−


χw3/3+ c(log q)2w2/2+ c2(log q)4/(4χ)w − xχ1/3w


.

Using the Taylor approximations above and rescaling the variables, one has that for w ∈ Cϕ,δN 1/3 ,
z ∈ Dϕ,δN 1/3 , and Z = θ + zN−1/3, W = θ + wN−1/3, f (Z , W, N )− f lim(z, w)

 < N−1/3


C f0(|z|
4
+ |w|4)+ C f1(|z|

3
+ |w|3)


(27)

6 δ


C f0(|z|
3
+ |w|3)+ C f1(|z|

2
+ |w|2)


. (28)

Now we estimate the remaining factors in the integrand in (19). Let us denote

F(Z , W, W ′) :=
N−1/3

q Z − qW ′
π

sin(π(Z −W ))

φ(Z)

φ(W )
,
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and the remaining factors in the integrand in (25) as

F lim(z, w,w′) :=
1

z − w′

1
z − w

.

Let us prove that for any w, w′ ∈ C N , K N
x,δ(w, w′)− K ′

x,δN 1/3(w, w′) goes to zero when N goes
to infinity. Indeed, the error can be estimated by

|K N
x,δ(w, w′)− K ′x,δN 1/3(w, w′)|

<


D N

dz exp( f lim)|F(Z , W, W ′)|
exp( f − f lim)− 1


+


D N

dz exp( f lim)

F − F lim
 , (29)

where we have omitted the arguments of the functions f (Z , W, N ), f lim(z, w), F(Z , W, W ′),
F lim(z, w,w′), with Z = θ + zN−1/3 as before, and likewise for W, W ′. By estimates (27) and
(28) and the inequality | exp(x)− 1| 6 |x | exp(|x |), we have

| exp( f − f lim)− 1|

< N−1/3 P(|z|, |w|) exp

δ


C f0(|z|
3
+ |w|3)+ C f1(|z|

2
+ |w|2)


,

where P is the polynomial P(X, Y ) = C f0(X4
+ Y 4) + C f1(X3

+ Y 3). Hence, for δ small
enough,

exp( f lim)| exp( f − f lim)− 1|

has cubic exponential decay in |z| when z goes to infinity along the contour D∞. Hence the first
integral in (29) goes to zero as N goes to infinity by dominated convergence. The second integral
in (29) also goes to zero by dominated convergence since one can boundF(θ + zN−1/3, θ + wN−1/3, θ + w′N−1/3)− F lim(z, w,w′)


< N−1/3 Q(|z|, |w|, |w′|)F lim(z, w,w′),

for some polynomial Q.
In order to prove that the difference of Fredholm determinants goes to zero as well, one

could show that the difference of operators K N
x,δ and K ′

x,δN 1/3 acting on L2(C∞) goes to zero in
trace-class norm, but we give a simpler dominated convergence argument instead. The estimates
in right-hand-sides of Eqs. (28) and (23) show that K N

x,δ has cubic exponential decay. More
precisely, there exists a constant C > 0 independent of N such that for all w, w′ ∈ Cϕ,δN 1/3 ,

|K N
x,δ(w, w′)| < C exp


f lim(0, w)+ C f0δ|w|

3
+ C f1δ|w|

2


.

Hence for δ small enough, Hadamard’s bound yieldsdet


K N
x,δ(wi , w j )16i, j6n

 6 nn/2Cn
n

i=1

eχ/6ℜ

w3

i


.

It follows that the Fredholm determinant expansion,

det(I + K N
x,δ)L2(C

ϕ,δN1/3 )

=

∞
n=0

1
n!


C

ϕ,δN1/3

dw1 . . .


C

ϕ,δN1/3

dwn det


K N
x,δ(wi , w j )16i, j6n


,
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is absolutely integrable and summable. Thus, by dominated convergence,

lim
N→∞

det(I + Kx )L2(Cθ,π/4)
= lim

N→∞
det(I + K ′x,δN 1/3)L2(C

ϕ,δN1/3 ).

Since the integrand in K ′
x,δN 1/3 has cubic exponential decay along the contours C∞ and D∞,

dominated convergence, again, yields

det(I + Kx )L2(Cθ,π/4)
−→

N→∞
det(I + K ′x,∞)L2(C∞). �

Now we explain how the limit of the q-Laplace transform characterizes the limit law of the
rescaled position of particles. The sequence of functions EN (y) := 1/(−q−yN 1/3

; q)∞ is such
that for any N > 0, EN (y) is strictly decreasing with limit 1 when y goes to −∞, and with
limit 0 when y goes to +∞. Additionally, for each ε > 0, EN converges uniformly to 1y60 on
R \ [−ε, ε]. Using Lemma 4.39 in [5] to replace EN by its limit and with our choice of ζ ,

lim
N→∞

P(ξN < x) = lim
N→∞

E


EN


χ1/3

| log q|
(ξN − x)


= lim

N→∞
E


1

(ζq X N (t)+N ; q)∞


= det(I + K ′x,∞)L2(Cϕ,∞).

Finally, using a classical reformulation of the kernel (see [6, Lemma 8.7]) to get the
Fredholm determinant of an operator acting on L2(R+), and after the change of variables z ←
χ1/3(z + c(log q)2/(2χ)) and likewise for w and w′,

det(I + K ′x,∞)L2(Cϕ,∞) = det(I − KAi)L2(x,+∞)

and we conclude that

lim
N→∞

P(ξN < x) = FGUE(x).

2.2. Case α = qθ , critical value

The function φ introduces a pole of order k in A = θ in the kernel Kx , for the variable W .
The contour of W must enclose this pole, and thus C Ā,ϕ has to pass on the right of θ . The contour
can be chosen as in the previous section, except for a modification (e.g. a small circle of radius
(ϵ/2)N−1/3 centred at θ ) in a N−1/3-neighbourhood of θ . In order to stay on the right of C Ā,ϕ ,

the contour DW can be simply shifted to the right by ϵN−1/3. In order to adapt the arguments of
the case α > qθ , we only need the pointwise limit and a uniform bound in a neighbourhood of θ

for the factor φ(Z)/φ(W ) introduced in the kernel.

Lemma 5. For any z and w, we have

φ(θ + zN−1/3)

φ(θ + wN−1/3)
−→

N→∞

 z

w

k
.

Moreover, there exist constants c′φ, C ′φ > 0 such that for |Z − θ | < c′φ and |W − θ | < c′φ , one
has  φ(Z)

φ(W )

 < C ′φ

 Z − θ

W − θ

k . (30)
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Proof. For j such that ai j > qθ , the limit in (24) still holds. We are left with the k factors for
which ai j = α. In this case

(qθ+zN−1/3
/α; q)∞

(qθ+zN−1/3
; q)∞

=
(q zN−1/3

; q)∞

(qθ+zN−1/3
; q)∞

∼
N→∞

(− log q)zN−1/3(q; q)∞

(qθ ; q)∞
. (31)

The N−1/3 and constant factors in φ(Z) and φ(W ) compensate in the limit, and we get the result.

Let us prove the bound (30). For j such that ai j > qθ the factors
(qθ+zN−1/3

/ai j ;q)∞

(qθ+zN−1/3
;q)∞

are

bounded as in Lemma 4. For the factors for which ai j = α, we use the fact that the function
u → |(1 − qu)/u| is bounded above and below by positive constants on some disc centred in 0
of positive radius r . Choosing c′φ 6 r and small enough so that Lemma 4 applies, one gets the
result. �

With this lemma, the local modification of the paths has no influence on any of the bounds
given previously for large w and z. Only the pointwise limit of the modified kernel is slightly
different and given by the above lemma. We conclude that

lim
N→∞

E


1

(ζq X N (t)+N ; q)∞


= det(I + K ′x )L2(Cϕ,∞)

where

K ′x =
1

2iπ


Dϕ,∞

dz

(z − w′)(w − z)

×
exp(χ z3/3+ c(log q)2z2/2+ c2(log q)4/(4χ)z − xχ1/3z)

exp(χw3/3+ c(log q)2w2/2+ c2(log q)4/(4χ)w − xχ1/3w)

 z

w

k
. (32)

The contours Cϕ,∞ and Dϕ,∞ are slight modifications of those defined in the previous section.
Here, Cϕ,∞ = {θ + ei(π−ϕ)sgn(y)

|y|; |y| > N−1/3ϵ/2} ∪ {ϵ/2N−1/3eiγ
; γ ∈ [ϕ − π;π − ϕ]}.

The contour Dφ,∞ can be chosen as {ϵN−1/3
+ eiϕ sgn(y)

|y|, y ∈ R}.
We reformulate the kernel as a Fredholm determinant acting on L2(R+) (see [6, Lemma 8.7]),

and after the change of variables z ← χ1/3(z + c(log q)2/(2χ)) and likewise for w and w′, we
conclude that

lim
N→∞

P(ξN < x) = det(I − K ′′x (w, w′))L2(x,+∞)

where

K ′′x (u, v) =
1

(2iπ)2

 e2iπ/3
∞

e−2iπ/3∞

dw

 eiπ/3
∞

e−iπ/3∞

dz
ez3/3−zu

ew3/3−wv

1
z − w

 z − c(log q)2

2χ2/3

w −
c(log q)2

2χ2/3

k

,

where the contour for w passes to the right of b := c(log q)2

2χ2/3 , and the contours for z and w do not
intersect. Finally, by Definition 3,

lim
N→∞

P(ξN < x) = FBBP,k,b(x),

with b = (b, . . . , b).
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Remark 2.2. In the case where for 1 6 i 6 k, ai = qθ+b̃i N−1/3
and the rates of all other particles

are higher than qθ , Lemma 5 still applies and the factor (z/w)k in Eq. (32) has to be replaced byk
i=1(z − bi )/(w − bi ). Then ((z − b)/(w − b))k with b = c(log q)2χ−2/3/2 gets replaced byk
i=1(z − bi )/(w − bi ) with bi = b + b̃i , and finally

lim
N→∞

P(ξN < x) = FBBP,k,b(x),

with b = (b1, . . . , bk).

2.3. Case α < qθ , Gaussian fluctuations

We start again from the result of Theorem 2. One cannot use the same contour for the
Fredholm determinant, because the pole for W = A in Kx (W, W ′) has to be inside the contour
C Ā,ϕ , which means Ā > A > θ . Let us choose

ζ = −q−gN−cN 1/2
−σ 1/2 N1/2

log q

so that

lim
N→∞

P


X N (τ ∗(N , c))− p∗(N , c)

N 1/2σ 1/2/(log q)
< x


= lim

N→∞
E

1/(ζq X N (τ )

; q)∞


with the new macroscopic position p∗(N , c) = (g − 1)N + cN 1/2.

Again, det(I + K̃ζ )L2(C̃ᾱ,ϕ)
= det(I + Kx )L2(C Ā,ϕ) where

Kx (w, w′)

=
qW log q

2iπ


DW

dZ

q Z − qW ′
π

sin(π(Z −W ))

exp(Ng0(Z)+ N 1/2g1(Z))

exp(Ng0(W )+ N 1/2g1(W ))

φ(Z)

φ(W )
(33)

with

g0(Z) = −g log(q)Z + κq Z
+ log(q Z

; q)∞,

g1(Z) = −Z log(q)c − σ 1/2x Z +
c

α
q Z .

The asymptotic behaviour is governed by the real part of the function g0. By a direct calculation
and Eqs. (7) and (3), one has that

g′0(Z) = −g log(q)+ log(q)κq Z
+

∞
k=0

− log(q)q Z+k

1− q Z+k

=
Ψ ′q(θ)

qθ log(q)
(q Z
− α)+Ψq(A)−Ψq(Z),

g′′0 (Z) = Ψ ′q(θ)q Z−θ
−Ψ ′q(Z).

We see immediately that g′0(A) = 0, and using the series representation (12) and (13), for A > θ ,

g′′0 (A) = σ = (log q)2
∞

k=0

q A+k


1

(1− qθ+k)2 −
1

(1− q A+k)2


> 0. (34)
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Lemma 6. 1. C A,π/4 is steep-descent for −ℜ[g0] in the sense that the function s → ℜ[g0
(W (s))] is increasing for s > 0, where W (s) is a parametrization of C A,π/4.

2. The function ℜ [g0] is periodic on {A + σ + iR} with period 2π/| log q|. Moreover, t →
ℜ [g0(A + σ + i t)] is decreasing on [0,−π/ log q] and increasing on [π/ log q, 0], for any
σ > 0.

Proof. 1. We assume that α < qθ . Using the parametrization of the contour C A,ϕ W (s) =
logq(α + seiϕ) as before, we have

d
ds

(ℜ [g0(W (s))]) =
∞

k=0


sqk

(1− qθ+k)2

α cos(2ϕ)+ s cos(ϕ)

|α + seiϕ |2
+

×
αqk

(1− αqk)

α cos(ϕ)+ s

|α + seiϕ |2
−

(cos(ϕ)− (α cos(ϕ)+ s)qk)qk

|1− (α + seiϕ)qk |2


.

For ϕ 6 π/4, using the fact that qθ > α, and factoring the summand, we get

d
ds

(ℜ [g0(W (s))])

>

∞
k=0

q2ks2

qks2 cos(ϕ)− (1− 2αqk)s cos(2ϕ)− α(1− αqk) cos(3ϕ)


(1− αqk)2|α + seiϕ |2|1− (α + seiϕ)qk |2

,

which is positive for s > 0 and ϕ = π/4.
2. Let Z(t) = A+σ+i t . Notice that g′0(Z) = − log(q)(g− f )+ f ′0(Z), and d

dt (ℜ [g0(Z(t))]) =
−ℑ


g′0(Z(t))


. By Lemma 1,

d
dt

(ℜ [g0(Z(t))])

= − sin(t log q) log q
∞

k=0

q A+σ+k


1

(1− qθ+k)2 −
1

|1− q A+σ+i t+k |2


has the same sign as sin(t log q), proving the steep-descent property. �

Lemma 7. The kernel Kx (W (s), W ′) has exponential decay, in the sense that there exist N0,
s0 > 0 and c > 0 such that for all s > s0 and N > N0,

|Kx (W (s), W ′)| 6 exp(−cNs).

Proof. This lemma is very similar with [9, Lemma 6.10] and we adapt the proof.
We first estimate the contribution of the integration along the vertical line A + σ + iR. For

any ϕ ∈ (0, π/4],

lim
s→+∞

d
ds

(ℜ [g0(W (s))]) = κ > 0.

Therefore, for s large enough

ℜ


Ng0(W (s))+ N 1/2g1(W (s))


> κs N/2− N 1/2σ 1/2x | logq(|α + s + is|)|/2.

Thus, one can find N0 and s1 > 0 such that for all s > s1 and N > N0, exp(−Ng0(W (s)) −
N 1/2g1(W (s))) < exp(−κ Ns/4). As the vertical line is at a distance at least σ/2 from the poles
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coming from the sine, the factor π
sin(π(Z−W ))

is bounded by Ce−πℑ[Z ] for some constant C > 0.
The remaining factors in the integrand are bounded for W ∈ C A,π/4 and Z ∈ DW .

Now we estimate the contribution of the integration along the small circles E1, . . . , EkW . It
is enough to prove that each residue at the poles in W (s) + 1, . . . , W (s) + kW (s) is at most
exp(−cNs), as the number of poles is only logarithmic in s. Instead of reproducing word-for-
word the proof of Lemma 6.10 in [9], observe that

ℜ [g0(W )]−ℜ [g0(W + j)]

= (ℜ [g0(W )]−ℜ [ f0(W )])+ (ℜ [ f0(W )]−ℜ [ f0(W + j)])

+ (ℜ [ f0(W + j)]−ℜ [g0(W + j)]) . (35)

The sum of the first and third terms is just − log(q)( f − g) j which is positive. And by the
arguments of [9, Lemma 6.10], for W = W (s) with large s, there exists a constant c′ > 0 such
that for s > s2

ℜ [ f0(W )]−ℜ [ f0(W + j)] > c′s.

One concludes that the integrand in (33) behaves like exp(−cNs) which concludes the
proof. �

As in the case α > qθ , we can now formulate the Fredholm determinant on the contour C A,π/4
(instead of C A,ϕ for ϕ ∈ (0, π/4)). As in Section 2.2, a small modification of the contours on a
N−1/2-neighbourhood of A is needed so that the pole for W in A is inside the contour, and the
contour C A,π/4 stays to the left of DW .

Proposition 3. For any fixed δ > 0 and ϵ > 0, there is an N1 such that

| det(I + Kx )L2(C A,π/4)
− det(I + Kx,δ)L2(Cδ

A)| < ϵ

for all N > N1 where Cδ
A = C A,π/4 ∩ {W |W − A| 6 δ}, and

Kx,δ(W, W ′)

=
qW log q

2iπ


Dδ

W

dZ

q Z − qW ′
π

sin(π(Z −W ))

exp(Ng0(Z)+ N 1/2g1(Z))

exp(Ng0(W )+ N 1/2g1(W ))

φ(Z)

φ(W )
(36)

and Dδ
W = DW ∩ {Z |Z − A| 6 δ}.

Proof. Using Lemmas 6 and 7, one can apply exactly the same proof as in Proposition 1. We are
left with proving that the contribution of all small circles in the contour DW goes to zero when
N tends to infinity, which results from the following lemma as in Proposition 1.

Lemma 8. There exists η > 0 such that for any W ∈ C A,π/4, ℜ [g0(W )− g0(W + j)] > η, for
all j = 1, . . . , kW .

Proof. First notice that

ℜ [g0(W )− g0(W + j)] = (− log q) ( f (q, θ)− g(q, θ)) j +ℜ [ f0(W )− f0(W + j)] .

As f (q, θ) − g(q, θ) > 0, it is enough to prove that for any W ∈ C A,π/4, ℜ [ f0(W )−

f0(W + j)] > 0, for all j = 1, . . . , kW . The proof is adapted from Lemma 3 and splits
here into three parts. As before, we prove the result for the residues lying above the real axis.
Let WA be the point where C A,π/4 and Cθ,π/2 intersect (above the real axis). In other words,
WA = logq(qθ

+ i(qθ
− α)) = logq(α + (1+ i)(qθ

− α)).
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Fig. 6. The thick line is the path from W to W + j with j = 3 in the case 2: ℜ

qW+ j


< qθ and ℜ[W + j] 6 ℜ [WA].

Case 1: ℜ

qW+ j


> qθ . This is the case when W + j lies on the left of Cθ,π/2. The fact that

ℜ [ f0(W )− f0(W + j)] > 0 was proved in Lemma 3.
Case 2: ℜ


qW+ j


< qθ and ℜ[W + j] 6 ℜ [WA]. Let W (s) be a parametrization of C A,π/4 and

Ŵ (t) a parametrization of Cθ,π/2. Let t j be such that ℜ

Ŵ (t j )


= ℜ [W + j], and u j

be such that ℑ

W (u j )


= ℑ


Ŵ (t j )


(see Fig. 6). If ℜ [W + j] < ℜ [WA], we consider

the path from W to W (u j ) along C A,π/4, from W (u j ) to Ŵ (t j ) along a horizontal line,
and from Ŵ (t j ) to W + j along a vertical line. The fact that the horizontal segment is
on the left of Cθ,π/2 and the vertical segment is on the right of Cθ,π/2 ensures, by the
same arguments as in Lemma 3, that ℜ [ f0] decays along this path.

Case 3: ℜ [WA] < ℜ [W + j] 6 A. Let s j be such that ℜ

W (s j )


= ℜ [W + j]. We consider

the path from W to W (s j ) along C A,π/4, and from W (s j ) to W + j along a vertical line.
The fact that the vertical segment from W (s j ) to W + j is on the right of Cθ,π/2 ensures
again that ℜ [ f0] decays along this path.

It may also happen that ℜ [W + j] = A + σ ′ for some 0 < σ ′ 6 2σ , but we treat this case
exactly as in the end of the proof of Lemma 3. � �

For simplicity, we modify again the contours, the curves becoming straight lines. By the
Cauchy theorem, this modification is authorized as soon as the endpoints of the contours
coincide. The contour Cδ

A becomes {A + ei(π−γ )sgn(y)
|y|, y ∈ ±[N−1/2, δ]} ∪ {N−1/2ei t , t ∈

[γ − π, π − γ ]} where the angle γ < π/4 is chosen so that the endpoints coincide. We also
consider the corresponding contour C N for the rescaled variables w = N 1/2(W − A).

Similarly, the contour for the variable Z becomes {A+ei(π/2−γ )sgn(y)
|y|, y ∈ ±[N−1/2, δ]}∪

{N−1/2ei t , t ∈ [−π/2+ γ, π/2− γ ]}, and the constant σ used in the definition of DW is chosen
so that the endpoints coincide. We also consider the corresponding contour D N for the rescaled
variable z = N 1/2(Z − A).

Proposition 4. There exist δ′ > 0 such that for δ < δ′,

lim
N→∞

| det(I + Kx,δ)L2(Cδ
A) − det(I + K ′x,N )L2(C N )| = 0

where

K ′x,N (w, w′) =
1

2iπ


D N

dz
(w − z)(z − w′)

exp(σ z2/2− σ 1/2zx)

exp(σw2/2− σ 1/2wx)


w

z

k

. (37)
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Proof. Consider the rescaled kernel

K N
x,δ(w, w′) = N−1/2 Kx,δN 1/2(A + wN−1/2, A + w′N−1/2)

where we use the new contour for Z in the definition of Kx,δN 1/2 , i.e. A + N−1/2 D N . By the
previous discussion on the contours,

det(I + Kx,δ)L2(Cδ
A) = det(I + K N

x,δ)L2(C N ).

We first give an estimate for the exponential factor in the kernel K N
xδ in Eq. (36). By Taylor

approximation, there exists Cg0 such that for |Z − A| < A,g0(Z)− g0(A)−
σ

2
(Z − A)2

 < Cg0 |Z − A|3

and since g′1(A) = −σ 1/2x , there exists Cg1 such that

|g1(Z)− g1(A)+ σ 1/2x(Z − A)| < Cg1 |Z − A|2.

The argument in the exponential in (36) is g(Z , W, N ) := N (g0(Z)− g0(W ))+ N 1/2(g1(Z)−

g1(W )). Let us denote glim(z, w) = σ
2 (z2
− w2) − σ 1/2x(z − w). Using the Taylor expansions

above and using the change of variables Z = A + zN−1/2, and likewise for W and W ′, one hasg(Z , W, N )− glim(z, w)

 < N−1/2


Cg0(|z|
3
+ |w|3)+ Cg1(|z|

2
+ |w|2)


. (38)

For z ∈ D N and w ∈ C N , the last inequality rewritesg(Z , W, N )− glim(z, w)

 < δ


Cg0(|z|
2
+ |w|2)+ Cg1(|z| + |w|)


. (39)

Now we estimate the remaining factors in the integrand in (36). Let us denote

G(Z , W, W ′) :=
N−1/2

q Z − qW ′
π

sin(π(Z −W ))

φ(Z)

φ(W )
,

and the remaining factors in the integrand in (37) as

G lim(z, w,w′) :=
1

z − w′

1
z − w


w

z

k

.

We prove first that for any w, w′ ∈ C N , K N
x,δ(w, w′) − K ′x,N (w, w′) goes to zero when N

goes to infinity. The error can be estimated by

|K N
x,δ(w, w′)− K ′x,N (w, w′)| 6


D N

dz exp(glim)|G(Z , W, W ′)|
exp(g − glim)− 1


+


D N

dz exp(glim)

G − G lim
 , (40)

where we have omitted the arguments of the functions g(Z , W, N ), glim(z, w), G(Z , W, W ′),
G lim(z, w,w′), with Z = A + zN−1/2 as before, and likewise for W, W ′. By (38) and (39) and
the inequality | exp(x)− 1| 6 |x | exp(|x |), we have

| exp(g − glim)− 1| < N−1/2 P(|z|, |w|) exp

δ


Cg0(|z|
2
+ |w|2)+ Cg1(|z| + |w|)


,
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where P is the polynomial P(X, Y ) = Cg0(X3
+Y 3)+Cg1(X2

+Y 2). Hence for δ small enough,
the first integral in (40) has quadratic exponential decay (due to the decay of exp(glim)). Thus, by
dominated convergence, the first integral in (40) goes to zero as N goes to infinity by dominated
convergence. Using estimate (30) in Lemma 5, the second integral in (40) also goes to zero sinceG(A + zN−1/2, A + wN−1/2, A + w′N−1/2)− G lim(z, w,w′)


< N−1/3 Q(|z|, |w|, |w′|)G lim(z, w,w′),

for some polynomial Q.
Moreover, the estimates in right-hand-sides of Eqs. (39) and (30) show that there exists a

constant C > 0 independent of N such that for all w, w′ ∈ C N ,

|K N
x,δ(w, w′)| < C exp


−σ/2w2

+ Cg0δ|w|
2
+ σ 1/2xw + Cg1δ|w|


.

Hence for δ small enough, Hadamard’s bound yieldsdet


K N
x,δ(wi , w j )16i, j6n

 6 nn/2Cn
n

i=1

e−σ/4ℜ

w2

i


.

It follows that the Fredholm determinant expansion,

det(I + K N
x,δ)L2(C N ) =

∞
n=0

1
n!


C N

dw1 . . .


C N

dwn det


K N
x,δ(wi , w j )16i, j6n


,

is absolutely integrable and summable. The conclusion of the proposition follows by dominated
convergence. �

Finally, since the integrand has quadratic exponential decay along the contours C∞ and D∞,
dominated convergence, again, yields

det(I + K ′x,N )L2(C N ) −→
N→∞

det(I + K ′x,∞)L2(C∞).

The third part of Theorem 1 now follows from a reformulation of the Fredholm determinant
achieved in the following proposition.

Proposition 5.

det(I + K ′x,∞)L2(C∞) = Gk(x)

where Gk is defined in Definition 3.

Proof. Using the identity,

1
z − w

=


R+

dλe−λ(z−w),

valid when ℜ[z−w] > 0, the operator K ′x,∞ can be factorized. K ′x,∞(w, w′) = − (AB) (w, w′)

where A : L2(R+) → L2(C∞) and B : L2(C∞) → L2(R+) are Hilbert–Schmidt operators
having kernels

A(w, λ) = e−w2/2+w(x+λ)wk and B(λ, w′) =
1

2iπ


D∞

dz

zk

ez2/2−z(x+λ)

z − w′
.
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We also have

B A(λ, λ′) =
1

2iπ


C∞

dwB(λ, w)A(w, λ′) = Hk(λ+ x, λ′ + x).

Since det(I − AB)L2(C∞) = det(I − B A)L2(R+) = Gk(x), we get the result. �

Acknowledgement

The author would like to thank his thesis advisor Sandrine Péché for her support through this
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