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Consider the solution Z(τ,x) to the multiplicative SHE,

∂τZ= 1
2
∂xxZ+Z Ẇ , where x ∈R,τ> 0,

with delta initial condition Z(0, ·)= δ0, where Ẇ is a Gaussian space
time white noise. Then H(τ,x)= log(Z(τ,x)) is a solution to the KPZ
equation

∂τH = 1
2
∂xxH+ 1

2
(
∂xH

)2 + Ẇ .

One point distribution of the solution is characterized by the identity,
for u ∈C with Re(u)> 0,

E
[
e
−u
4 Z(τ,0) eτ/24

]
= E

[
+∞∏
i=1

1

1+u e(τ/2)1/3aGUE
i

]
,

where
{
aGUE

i
}

iÊ1 are the limiting eigenvalues of the GUE scaled at the
edge [Amir-Corwin-Quastel, Calabrese-Le Doussal-Rosso, Dotsenko,
Sasamoto-Spohn 2011, see also Borodin-Gorin 2016].



Half-space analogue?

Consider now the solution Z(τ,x) to the multiplicative SHE in a
half-space,

∂τZ= 1
2
∂xxZ+Z Ẇ , where x ∈RÊ0,τ> 0,

with delta initial condition Z(0, ·)= δ0 for some boundary condition at
x= 0 (Neumann, Dirichlet, mixed...).
What is the law of the solution? Can one find a function fu and a matrix
ensemble G?E such that

E
[
e−uZ(τ,0)

]
= E

[+∞∏
i=1

fu
(
aG?E

i

)]
?

In order to investigate this, one needs an exactly solvable
regularization of the multiplicative SHE.



Let R>LÊ 0, and consider the asymmetric simple exclusion process
(ASEP) on the positive integers with open boundary condition:

reservoir
1 2 3 4 5 6 7 8 9 10 11 12

R L R RLα

γ

One can characterize the system by the function

Nx(τ)= # {particles on the right of site x at time τ} .

In a certain weakly asymmetric scaling (R−L→ 0), [Corwin-Shen 2016]
showed that Nx(t) converges to the KPZ equation on the positive reals
with Neumann boundary condition,{

∂τH = 1
2∂xxH+ 1

2
(
∂xH

)2 + Ẇ

∂xH(τ,x)
∣∣∣
x=0

= a ∈R.

It corresponds to mixed Robin boundary condition for Z,
∂xZ(τ,x)

∣∣∣
x=0

= a Z(τ,0).



ASEP is also interesting for itself:

flux
reservoir
density α

reservoir
density β

Ï (KPZ) universality. We expect that large scale statistics of the
current of interacting particles travelling between reservoirs at
different densities are universal under mild conditions. ASEP is a
toy model to probe these statistics. Large time statistics of ASEP
without reservoirs are well understood [Tracy-Widom 2008]. What
is the influence of the boundary?

Ï The fluctuations of TASEP (L= 0) in a half-space (equivalently
last-passage percolation in a half-quadrant) are known. Are those
of ASEP similar?



Plan of the talk

1 The totally asymmetric case is equivalent to Last Passage
Percolation in a half-quadrant, which is the simplest benchmark
model for understanding KPZ growth or exclusion processes in a
half space.

2 Results on half-line ASEP: Tracy-Widom GOE asymptotics of the
current at the origin.

3 KPZ equation on R>0.
4 Ideas of the proof using 3 ingredients:

Ï Stochastic six-vertex model in a half-quadrant.
Ï Half-space Macdonald processes and Littlewood identities for

Macdonald symmetric functions.
Ï Pfaffian point processes techniques.



Last Passage Percolation in a half quadrant
Let wij a family of i.i.d. exponential random variables with rate 1 when
i> j and α when i= j.

n
m

w11

w21

w22 w31

Exp(α)

Exp(1)

Half space TASEP

Consider directed paths π from the box (1,1) to (n,m) in the half
quadrant. We define the last passage percolation time H(n,m) by

H(n,m)=max
π

∑
(i,j)∈π

wij.



Passage-times on the boundary

Theorem (Baik-Rains 2001 / Baik-B.-Corwin-Suidan 2016)
Ï When α> 1/2,

H(n,n)−4n
24/3n1/3 =⇒LGSE,

Ï When α= 1/2,
H(n,n)−4n

24/3n1/3 =⇒LGOE,

Ï When α< 1/2,
H(n,n)−cn

c′n1/2 =⇒N ,

In particular, if Nx(τ) is the current in half-line TASEP (right jump rate
1, insertion of particles at rate α= 1/2, no particle moving to the left),
starting from the empty initial condition,

N0 (τ)− τ
4

2−4/3τ1/3 ===⇒
τ→∞ −LGOE.



Understanding the phase transition

Ï The fact that H(n,n)∼ 4n shows that the weights along the
optimal path have size 2 in average. Thus, the disorder on the
boundary becomes competitive when it has average at least 2,
hence the transition at α= 1/2.

Ï Algebraic considerations show that for any α, one can exchange
the weights wii ∼Exp(α) on the boundary with the weights
wi1 ∼Exp(1) on the first row without changing the law of H(n,n).
This makes the previous argument rigorous.

Ï In the critical case, we expect that geodesics take O (n2/3) weights
on the diagonal. Where?



Passage times away from the boundary

Theorem (Sasamoto-Imamura 2005/Baik-B.-Corwin-Suidan
2016)
For κ ∈ (0,1) and α>p

κ/(1+p
κ),

H(n,κn)− (1+p
κ)2n

σn1/3 =⇒LGUE.

Ï We recover the exact same fluctuations as for LPP in a full
quadrant. The boundary has no influence as long as the boundary
weights are not too large.

Ï BBP transition arises at α=p
κ/(1+p

κ).



Crossover

Consider two parameters $ ∈R,η> 0.

Theorem (Baik-B.-Corwin-Suidan 2016)
When the boundary parameter scales as

α= 1
2
+2−4/3$n−1/3,

and one consider passage times at distance η n2/3 from the boundary,

Hn(η,$) := H
(
n+22/3ηn2/3,n−22/3ηn2/3)−4n+n1/324/3η2

24/3n1/3 ,

The (multipoint) limiting distribution of Hn(η,$) is a two-parametric
distribution that interpolates between GUE, GOE and GSE
Tracy-Widom distributions, characterized by a correlation kernel
Kcrossover
ω,η , it is not TWβ.



Random matrix interpretations

Ï When ω→+∞, Kcrossover+∞,η becomes the correlation kernel of a point
configuration corresponding to the limiting eigenvalues of a
Hermitian complex matrix Xη for η ∈ (0,+∞) with density
proportional to

exp
(
−Tr

(
(Xη−e−ηX0)2

)
1−e−2η

)
,

where X0 is a GSE matrix [Forrester-Nagao-Honner 1999,
Sasamoto-Imamura 2004].

Ï When ω= 0, Kcrossover
0,η has an analogous interpretation with X0

being a GOE matrix.

Ï The largest eigenvalue of a rank 1 perturbation of the GSE has
Tracy-Widom GOE fluctuations in the critical scaling [Wang], so
that one expects that in general, Kcrossover

ω,η corresponds to the
eigenvalues of

GSE+DBM(η)+rank 1 perturbation(ω).



Back to the asymmetric case

reservoir
1 2 3 4 5 6 7 8 9 10 11 12

R L R RLα

γ

Notations
Ï Without loss of generality, one can assume R= 1.

Ï We denote the parameter L by t ∈ [0,1).

Ï Denote time by τ.

Ï Recall

Nx(τ)= # {particles on the right of x at time τ} ,

at large times τ.

reservoir
1 2 3 4 5 6 7 8 9 10 11 12

1 t 1 1tα

γ



Previous results

reservoir
1 2 3 4 5 6 7 8 9 10 11 12

1 t 1 1tα

γ

Ï [Liggett 1975] classified the stationary measures when

α+ γ

t
= 1.

Then α is the average density enforced at the boundary. There is a
phase transition at α= 1/2 between product-form Bernoulli
measure and spatially correlated stationary measures (which can
be expressed using Matrix Product Ansatz
[Derrida-Evans-Hakim-Pasquier 1993]).

Ï [Tracy-Widom 2013] used coordinate Bethe ansatz to find
formulas for the transition probabilities, but these do not seem
amenable for asymptotic analysis.

Ï We analyze half-line ASEP through a half space version of the
stochastic six-vertex model, that will be defined later.
(analogously as in the full-space [Borodin-Corwin-Gorin 2014,
Aggarwal-Borodin 2016, Aggarwal 2016, Borodin-Olshanski 2016])



We assume

1 Ligget’s condition.

2 The boundary enforces a density of particles α= 1/2 at the origin.

reservoir
1 2 3 4 5 6 7 8 9 10 11 12

1 t 1 1t1/2

t/2

Theorem (B.-Borodin-Corwin-Wheeler 2017)
For any t ∈ [0,1), starting from the empty initial condition,

N0

(
T

1−t

)
− T

4

2−4/3T1/3 ===⇒
T→∞

−LGOE.

Recall N0(τ) is the number of particles in the system at time τ.

Ï Based on the prediction that ASEP fluctuations are the same as
TASEP modulo a rescaling by the asymmetry, one expects diffusive
scaling in the low density phase α< 1/2 and GSE fluctuations in
the high density phase α> 1/2.



KPZ equation in a half-space
Consider

(SHE)

{
∂τZ= 1

2∂xxZ+ZẆ

∂xZ(x,τ)
∣∣∣
x=0

= a Z(τ,0)

on R+ with delta initial data at the origin, in the mild sense
[Corwin-Shen 2016]:

Z(x,τ)= pa
τ(x,0)+

∫ τ

0

∫ ∞

0
pa
τ−s(x,y)Z(y,s)dWs(dY)

where the last integral is the Itô integral with respect to Wiener process
W, and pa is the heat kernel satisfying the Robin boundary condition

∂xpa
τ(x,y)

∣∣
x=0 = a pa

τ(0,y) (∀τ> 0,y> 0) .

One can show that a.s. Z(x,τ)> 0 and we define the solution of the KPZ
equation

(KPZ)

{
∂τh= 1

2∂xxh+ (
∂xh

)2 +Ẇ

∂xh(x,τ)
∣∣∣
x=0

= a.

in the Cole-Hopf sense, i.e. as h= log(Z). (see [Gerencsér-Hairer 2017]
about the meaning of the boundary condition)



Weakly asymmetric scaling of ASEP

Theorem (B.-Borodin-Corwin-Wheeler 2017)
Under the scalings

t= e−ε, τ≈ 8ε−4τ̂,

the random variable

Zε(τ̃)= 4exp
[−εN(τ)−2ε−2τ̂

)]
1− t2

weakly converges as ε→ 0 to a positive random variable Z (τ̃). For any
z> 0,

E
[
exp

(−z
4

Z (τ)
)]

= E
[+∞∏

i=1

√
1

1+zexp
(
(τ/2)1/3aGOE

i
)]

,

where {aGOE
i }∞i=1 forms the GOE point process (i.e. the sequence of

rescaled eigenvalues of a large Gaussian real symmetric matrix).



Interpretation

Ï Using results from [Corwin-Shen 2016], logZ (τ)−τ/24 is expected
to have the law of the solution to KPZ equation h(0,τ) with
boundary parameter a=−1/2 (though [Corwin-Shen] work with
aÊ 0).

Ï The result should be compared with the analogous full-space
result ([Amir-Corwin-Quastel, Calabrese-Le Doussal-Rosso,
Dotsenko, Sasamoto-Spohn 2011, Borodin-Gorin 2016]) where

(full−space) E
[
exp

(−z
4

Z (τ)
)]

= E
[+∞∏

i=1

1
1+zexp

(
(τ/2)1/3aGUE

i
)]

,

(half −space) E
[
exp

(−z
4

Z (τ)
)]

= E
[+∞∏

i=1

√
1

1+zexp
(
(τ/2)1/3aGOE

i
)]

,

Ï In the cases a=+∞ [Le Doussal-Gueudre 2012] and a= 0
[Borodin-Bufetov-Corwin 2015] there exist non rigorous results
about the law of log(Z (τ)), though only when τ→∞.



Proof sketch

1 We access ASEP through the stochastic six-vertex model in a
half-quadrant.

2 The latter is a marginal of Half-space Macdonald processes. A
variant of Borodin-Corwin’s Macdonald processes.

3 Exploit properties of Macdonald symmetric functions to compute
observables.

4 Asymptotic analysis of Fredholm Pfaffians in the two asymptotic
regimes (ASEP height function at large times, weakly asymmetric
regime)



Stochastic six vertex model in a half space
Let a1,a2, · · · ∈ (0,1).

1
1

2
2

3
3

4
4

5
5

6
6

7
7

6 vertex configurations:

P
( )

= 1,

P
( )

= 1−axay

1− taxay
,

P
( )

= (1− t)axay

1− taxay
,

P
( )

= t(1−axay)
1− taxay

,

P
( )

= 1− t
1− taxay

,

P
( )

= 1.
We use the boundary weights:

P

( )
=P

( )
= 1, P

( )
=P

( )
= 0.



Limit to ASEP on a half quadrant

1

2

3

4

5

6

7

Same configuration after
particle-hole transform

time

1 2 3 4 5

If the parameters are scaled such that ax ≡ 1− (1−t)ε
2 ,

P
( )

≈ tε, P
( )

≈ 1− tε, P
( )

≈ ε, P
( )

≈ 1−ε.

and paths will almost always zig-zag and do something else at rates 1
and t.



Half-space Macdonald measures

Ï An integer partition λ is a sequences of integers λ1 Êλ2 Ê ·· · Ê 0.
Symmetric Macdonald polynomials Pλ,Qλ are symmetric
polynomials in many variables whose coefficients are rational
functions in two parameters q,t ∈ (0,1). They degenerate to Schur
functions sλ when q= t.

Ï For a set of variables a1, . . . ,an, define the Half-space Macdonald
measure as

Pq,t(λ)= 1
Φ(a1, . . . ,an)

Pλ(a1, . . . ,an) bel
λ 1λ′even,

where λ′ even means λ1 =λ2,λ3 =λ4, and Φ(a) is an explicit
normalization constant.

Ï It is a variant of the Macdonald measure [Borodin-Corwin 2011]
which is a (q, t)-generalization of the Schur measure [Okounkov
2001]. As in the full-space case, one can define more general
half-space Macdonald processes. Half-space Macdonald
processes degenerate when q= t to Pfaffian Schur processes.



Stochastic six vertex model in a half space
and Hall-Littlewood functions

1
1

2
2

3
3

4
4

5
5

6
6

7
7 Ï Let h(x,y) be the number of

outgoing vertical arrows
from the vertices on the left
of (x,y).

Ï Let `(λ) be the number of
nonzero components in a
partition λ following the
Half-space Hall-Littlewood
measure (i.e. Macdonald
measure when q= 0).

Theorem (B.-Borodin-Corwin-Wheeler 2017)

h(n,n) (d)= `(λ).

Similar results exist for full-space models [Borodin 2016,
Borodin-Bufetov-Wheeler 2016, Bufetov-Matveev 2017].



Laplace transform of ASEP current

source
1 2 3 4 5 6 7 8 9 10 11 12

1 t 1 1t1/2

t/2

Recall that N0(τ) denotes the total number of particles in the system at
time τ.

Theorem (B.-Borodin-Corwin-Wheeler 2017)
For any time τ> 0 and x ∈R,

E

[
1

(−tx+N0(τ),t2)∞

]
=Pf

[
J+ fx ·KASEP

]
`2(ZÊ0)

where KASEP is a certain kernel expressible exactly as contour integrals.

The L.H.S of the equation should be thought of as a deformed Laplace
transform. Half-line ASEP and KPZ equation limit theorems result
from an asymptotic analysis of the above identity.



How to extract information from Macdonald
measures?

Ï Usual full space Macdonald measures are such that

Pq,t(λ)= 1
Π(a,b)

Pλ(a1, . . . ,an)Qλ(b1, . . . ,bn).

Ï In general, one may act with difference operators diagonalized by
Macdonald symmetric functions in order to compute observables
[Borodin-Corwin 2011, Borodin-Corwin-Gorin-Shakirov 2012].

Ï In the q= t case, the process is determinantal (Schur process).

Ï In the Hall-Littlewood (q= 0) case, one may use that certain
observables do not depend on q and exploit the determinantal
structure of the q= t case.



Refined Cauchy identity

Proposition ([Warnaar 2008])
For u ∈C,

1
Π(a,b)

∑
λ

∏
i

(
1−uqλi tn−i

)
Pλ(a) Qλ(b)=

det
[

1
1−aibj

−u
1

1− taibj

]
det

[
1

1−aibj

] .

It implies that

Eq,t

[
n∏

i=1

(
1−uqλi tn−i

)]
does not depend on q! Comparing the q= 0 and q= t cases yields
identities relating functionals of Schur (q= t) and Hall-Littlewood
(q= 0) random partitions.



Refined Littlewood identity
For half-space Macdonald processes, recall

Pq,t(λ)= 1
Φ(a1, . . . ,an)

Pλ(a1, . . . ,an) bel
λ 1λ′even,

Proposition ([Rains 2015], [Betea-Wheeler-Zinn-Justin 2015])
For u ∈C,

1
Φ(a)

∑
λ′ even

∏
i even

(
1−uqλi tn−i

)
bel
λ Pλ(a1, . . . ,an)=

Pf
[ ai −aj

1−aiaj
−u

ai −aj

1− taiaj

]
Pf

[ ai −aj

1−aiaj

] .

It implies that

Eq,t

[ ∏
i even

(
1−uqλi tn−i

)]
does not depend on q! Comparing the q= 0 and q= t cases yields
identities relating functionals of (half-space) Schur and Hall-Littlewood
random partitions.



Conclusion
We have shown GOE asymptotics for ASEP and KPZ with a specific
Neumann boundary condition at zero.

Further directions in progress
Ï More general boundary conditions. This requires going higher in

the hierarchy of integrable structures.

Ï Other interesting models are coming from Half-space Macdonald
processes: Log gamma directed polymer in a half space.

Ï General approach to extract the distribution of half-space
Macdonald processes.

Ultimately, the Laplace transform of KPZ equation in a half space at
any space point and for general boundary condition should be a
multiplicative functional of a certain point process corresponding to the
two-dimensional crossover kernel obtained in LPP,

E
[
e−uZ (τ,x)

]
= E

[+∞∏
i=1

f x
u

(
acrossover

i
)]

?



Thank you


