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Consider the solution Z(7,x) to the multiplicative SHE,
1 .
0.Z = éaxe+Z W, wherexeR,7>0,

with delta initial condition Z(0,-) = 8o, where # is a Gaussian space
time white noise. Then H(7,x) = log(Z(7,x)) is a solution to the KPZ
equation

0.H = axxH+( H?+¥.

One point distribution of the solution is characterized by the identity,
for u € C with Re(u) >0,
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where {aGUE} ., are the limiting eigenvalues of the GUE scaled at the

edge [Amlr Corwin- Quastel, Calabrese-Le Doussal-Rosso, Dotsenko,
Sasamoto-Spohn 2011, see also Borodin-Gorin 2016].



Half-space analogue?

Consider now the solution Z(7,x) to the multiplicative SHE in a
half-space,

1 .
0.7 = §6xe+Z W, wherexeRsg,7>0,

with delta initial condition Z(0,-) = §¢ for some boundary condition at

x =0 (Neumann, Dirichlet, mixed...).

What is the law of the solution? Can one find a function f;, and a matrix
ensemble G?E such that

E[o0) - 2

i:Hl '3 ( aiGr?E)

In order to investigate this, one needs an exactly solvable
regularization of the multiplicative SHE.




Let R > L =0, and consider the asymmetric simple exclusion process
(ASEP) on the positive integers with open boundary condition:
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One can characterize the system by the function
N, (1) = #{particles on the right of site x at time 7}.

In a certain weakly asymmetric scaling (R — L — 0), [Corwin-Shen 2016]
showed that N,(¢) converges to the KPZ equation on the positive reals
with Neumann boundary condition,

0.-H=10H+1(0.H)+¥
0.H(rw)| =acR
x=

It corresponds to mixed Robin boundary condition for Z,
0.2(1,7)| = Z,0).
x=



ASEP is also interesting for itself:

reservoir
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> (KPZ) universality. We expect that large scale statistics of the
current of interacting particles travelling between reservoirs at
different densities are universal under mild conditions. ASEP is a
toy model to probe these statistics. Large time statistics of ASEP
without reservoirs are well understood [Tracy-Widom 2008]. What
is the influence of the boundary?

» The fluctuations of TASEP (L = 0) in a half-space (equivalently
last-passage percolation in a half-quadrant) are known. Are those
of ASEP similar?



Plan of the talk

1 The totally asymmetric case is equivalent to Last Passage
Percolation in a half-quadrant, which is the simplest benchmark
model for understanding KPZ growth or exclusion processes in a
half space.

2 Results on half-line ASEP: Tracy-Widom GOE asymptotics of the
current at the origin.

3 KPZ equation on Rs.

4 Ideas of the proof using 3 ingredients:

> Stochastic six-vertex model in a half-quadrant.

» Half-space Macdonald processes and Littlewood identities for
Macdonald symmetric functions.

» Pfaffian point processes techniques.



Last Passage Percolation in a half quadrant

Let w;; a family of i.i.d. exponential random variables with rate 1 when
i>jand a when i =j.

Consider directed paths 7 from the box (1,1) to (n,m) in the half
quadrant. We define the last passage percolation time H(n,m) by

H(n,m)=max Z wij.
@i j)en



Passage-times on the boundary

Theorem (Baik-Rains 2001 / Baik-B.-Corwin-Suidan 2016)
» When a>1/2,
H(n,n)—4n

oG48, 18— ZGSE;

» When a=1/2,
H(n,n)—4n

Q13,18 LGOE;

» When a <1/2,

H(n,n)—cn
oniz
In particular, if N,(7) is the current in half-line TASEP (right jump rate
1, insertion of particles at rate @ = 1/2, no particle moving to the left),
starting from the empty initial condition,

No(m) -
1
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Understanding the phase transition

» The fact that H(n,n) ~ 4n shows that the weights along the
optimal path have size 2 in average. Thus, the disorder on the
boundary becomes competitive when it has average at least 2,
hence the transition at a = 1/2.

» Algebraic considerations show that for any a, one can exchange
the weights w;; ~ Exp(a) on the boundary with the weights
w;1 ~ Exp(1) on the first row without changing the law of H(n,n).
This makes the previous argument rigorous.

» In the critical case, we expect that geodesics take G(n%3) weights
on the diagonal. Where?



Passage times away from the boundary

Theorem (Sasamoto-Imamura 2005/Baik-B.-Corwin-Suidan
2016)
For x€(0,1) and a > Vx/(1+ x),

H(n,xn)—(1+vx)%n

= £GUE.
onl3

» We recover the exact same fluctuations as for LPP in a full
quadrant. The boundary has no influence as long as the boundary
weights are not too large.

» BBP transition arises at a = vx/(1 + v/x).



Crossover

Consider two parameters @ € R,n > 0.

Theorem (Baik-B.-Corwin-Suidan 2016)

When the boundary parameter scales as

1 __ -
w=5+2 43 13,

and one consider passage times at distance n n?® from the boundary,

H(n + 22/3nn2/3’n _ 22/3nn2/3) —4n+ n1/324/3n2

Hn(n’@):: 24/3]’[,1/3 >

The (multipoint) limiting distribution of H,(n,®) is a two-parametric
distribution that interpolates between GUE, GOE and GSE
Tracy-Widom distributions, characterized by a correlation kernel
Koo, it is not TWp.



Random matrix interpretations

» When o — +oo, K{7"" becomes the correlation kernel of a point
configuration corresponding to the limiting eigenvalues of a
Hermitian complex matrix X;, for 1 € (0, +oo) with density
proportional to

—Tr((X,;—e"X0)?
exp (%) ;

where Xj is a GSE matrix [Forrester-Nagao-Honner 1999,
Sasamoto-Imamura 2004].

» When w =0, Kg’gss"”er has an analogous interpretation with X,
being a GOE matrix.

» The largest eigenvalue of a rank 1 perturbation of the GSE has
Tracy-Widom GOE fluctuations in the critical scaling [Wang], so
that one expects that in general, K“f)”‘,’fs"”er corresponds to the
eigenvalues of

GSE + DBM(n) + rank 1 perturbation(w).



Back to the asymmetric case
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Notations

» Without loss of generality, one can assume R = 1.
» We denote the parameter L by ¢ € [0, 1).
» Denote time by 7.

» Recall
N, (1) = #{particles on the right of x at time 1},

at large times 7.
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Previous results
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> [Liggett 1975] classified the stationary measures when

a+l=1.
t

Then «a is the average density enforced at the boundary. There is a
phase transition at a = 1/2 between product-form Bernoulli
measure and spatially correlated stationary measures (which can
be expressed using Matrix Product Ansatz
[Derrida-Evans-Hakim-Pasquier 1993)]).

> [Tracy-Widom 2013] used coordinate Bethe ansatz to find
formulas for the transition probabilities, but these do not seem
amenable for asymptotic analysis.

» We analyze half-line ASEP through a half space version of the
stochastic six-vertex model, that will be defined later.
(analogously as in the full-space [Borodin-Corwin-Gorin 2014,
Aggarwal-Borodin 2016, Aggarwal 2016, Borodin-Olshanski 2016])



We assume
1 Ligget’s condition.

2 The boundary enforces a density of particles a = 1/2 at the origin.

1 t 1 t 1
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Theorem (B.-Borodin-Corwin-Wheeler 2017)

For any t €[0,1), starting from the empty initial condition,

No(i)- %
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Recall No(7) is the number of particles in the system at time T.

» Based on the prediction that ASEP fluctuations are the same as
TASEP modulo a rescaling by the asymmetry, one expects diffusive
scaling in the low density phase a < 1/2 and GSE fluctuations in
the high density phase a > 1/2.



KPZ equation in a half-space

Consider .
0:Z = 30 Z +ZW

(SHE) {OxZ(x,T)‘ = Z@,0)

on R, with delta initial data at the origin, in the mild sense
[Corwin-Shen 2016]:

Z(x,7) = p%(x,0) + f f oop‘;_s(x,y)Z(y,s)dWs(dY)
0J0

where the last integral is the It6 integral with respect to Wiener process
W, and p? is the heat kernel satisfying the Robin boundary condition

005, )|,_o=a p30,y)  (V1>0,y>0).

One can show that a.s. Z(x,7) > 0 and we define the solution of the KPZ
equation

1 2 | i
0rh = 50 h + [axh) +W

(KPZ)
{axh(x, T)‘xzo =a.

in the Cole-Hopf sense, i.e. as h =1log(Z). (see [Gerencsér-Hairer 2017]
about the meaning of the boundary condition)



Weakly asymmetric scaling of ASEP

Theorem (B.-Borodin-Corwin-Wheeler 2017)
Under the scalings

the random variable

4exp[-eN(zr)—2¢72%)]

Zg(f) = 1_ t2

weakly converges as € — 0 to a positive random variable Z (). For any
z>0,

[E[exp(_fZ(r))] —E

+00 1
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GOE}oo

where {a; 2, forms the GOE point process (i.e. the sequence of
rescaled eigenvalues of a large Gaussian real symmetric matrix).



Interpretation

» Using results from [Corwin-Shen 2016], log Z () — 7/24 is expected
to have the law of the solution to KPZ equation A(0,7) with
boundary parameter a = —1/2 (though [Corwin-Shen] work with
a=0).

» The result should be compared with the analogous full-space
result (JAmir-Corwin-Quastel, Calabrese-Le Doussal-Rosso,
Dotsenko, Sasamoto-Spohn 2011, Borodin-Gorin 2016]) where
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(half —space) [E [exp (_ZZZ(T))] =E

>

> In the cases a = +oo [Le Doussal-Gueudre 2012] anda =0
[Borodin-Bufetov-Corwin 2015] there exist non rigorous results
about the law of log(Z (7)), though only when 7 — co.



Proof sketch

1 We access ASEP through the stochastic six-vertex model in a
half-quadrant.

2 The latter is a marginal of Half-space Macdonald processes. A
variant of Borodin-Corwin’s Macdonald processes.

3 Exploit properties of Macdonald symmetric functions to compute
observables.

4 Asymptotic analysis of Fredholm Pfaffians in the two asymptotic
regimes (ASEP height function at large times, weakly asymmetric
regime)



Stochastic six vertex model in a half space

Let ai,a9,---€(0,1).
6 vertex configurations:
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We use the boundary weights:

P(l) :p(_,?) -1, p(J) :p() - 0.



Limit to ASEP on a half quadrant
A T Atime
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Same configuration afte
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If the parameters are scaled such thata, =1— %,

R

and paths will almost always zig-zag and do something else at rates 1
and .



Half-space Macdonald measures

» An integer partition A is a sequences of integers 1; =12 =--- = 0.
Symmetric Macdonald polynomials P;,®, are symmetric
polynomials in many variables whose coefficients are rational
functions in two parameters q,t € (0,1). They degenerate to Schur
functions s; when g =+¢.

» For a set of variables a1,...,a,, define the Half-space Macdonald
measure as

1
PPY(A) = o aoFrana b vrevens
yeretn

where 1’ even means A1 = Ag,13 = A4, and ®(a) is an explicit
normalization constant.

» It is a variant of the Macdonald measure [Borodin-Corwin 2011]
which is a (g,t)-generalization of the Schur measure [Okounkov
2001]. As in the full-space case, one can define more general

half-space Macdonald processes. Half-space Macdonald
processes degenerate when g =¢ to Pfaffian Schur processes.



Stochastic six vertex model in a half space
and Hall-Littlewood functions

A A A A
7 > > » Let h(x,y) be the number of
R R 7 outgoing vertical arrows
6> 6 from the vertices on the left
5> A of (x,y).
4 > > o » Let (1) be the number of
- o4 nonzero components in a
e 3 partition A following the
2> — A Half-space Hall-Littlewood
1> 2 measure (i.e. Macdonald
1 measure when g = 0).

Theorem (B.-Borodin-Corwin-Wheeler 2017)

hn,n) L o).

Similar results exist for full-space models [Borodin 2016,
Borodin-Bufetov-Wheeler 2016, Bufetov-Matveev 2017].



Laplace transform of ASEP current

source

Recall that No(7) denotes the total number of particles in the system at
time 7.

Theorem (B.-Borodin-Corwin-Wheeler 2017)

For any time 1 >0 and x € R,

1
+f, - KASEP
(—£x+No(@) #2) Pf . 0%(Z9)
where KASEP js 4 certain kernel expressible exactly as contour integrals.

The L.H.S of the equation should be thought of as a deformed Laplace
transform. Half-line ASEP and KPZ equation limit theorems result
from an asymptotic analysis of the above identity.



How to extract information from Macdonald
measures?

» Usual full space Macdonald measures are such that

1
P%*(1)= ——P b1,...,bp).
( ) H(a,b) A(aly 7an)Q/l( 1 ’ n)
» In general, one may act with difference operators diagonalized by

Macdonald symmetric functions in order to compute observables
[Borodin-Corwin 2011, Borodin-Corwin-Gorin-Shakirov 2012].

» In the g =t case, the process is determinantal (Schur process).

» In the Hall-Littlewood (¢ = 0) case, one may use that certain
observables do not depend on ¢ and exploit the determinantal
structure of the g = ¢ case.



Refined Cauchy identity

Proposition ([Warnaar 2008])
ForueC,

1 1
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It implies that
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i=1

F2?

does not depend on ¢! Comparing the ¢ =0 and q =¢ cases yields
identities relating functionals of Schur (¢ = ¢) and Hall-Littlewood
(g =0) random partitions.



Refined Littlewood identity

For half-space Macdonald processes, recall

1
P?H(A) = Dlay e )P)L(al,- ) billl/l’even,
seeetn

Proposition ([Rains 2015], [Betea-Wheeler-Zinn-Justin 2015])

ForueC,

Pf a; —a; a; —a;
1 1anei) vl 1-aja; 1-ta;a;
— Z H 1-uq™t"™"| b Parlay,...,an) =
(a) A even ieven( ) P a; —a;
1—aiaj

It implies that
E?*
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does not depend on ¢! Comparing the ¢ =0 and q =¢ cases yields
identities relating functionals of (half-space) Schur and Hall-Littlewood
random partitions.



Conclusion

We have shown GOE asymptotics for ASEP and KPZ with a specific
Neumann boundary condition at zero.

Further directions in progress
» More general boundary conditions. This requires going higher in
the hierarchy of integrable structures.
» Other interesting models are coming from Half-space Macdonald
processes: Log gamma directed polymer in a half space.

» General approach to extract the distribution of half-space
Macdonald processes.

Ultimately, the Laplace transform of KPZ equation in a half space at
any space point and for general boundary condition should be a
multiplicative functional of a certain point process corresponding to the
two-dimensional crossover kernel obtained in LPP,

E [e—uZ(r,x)]
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Thank you



