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Motivations

We consider continuous-time exclusion processes on Z,

xn(t) xn−1(t)xn+1(t)

starting from the step initial condition

−1 0−2

Under mild hypotheses, we expect that for κ ∈ (0,κ∗),

xbκtc−ct
σt1/3 =⇒−LGUE,

the Tracy-Widom GUE distribution.

Question
Is the behaviour of x1(t) universal as well?



Answer: NO
TASEP:

rate 1 rate 1

By the CLT, we have
x1(t)− tp

t
=⇒N .

The same limit theorem holds for any totally asymmetric exclusion
processes.
ASEP: Let R>L> 0,R+L= 1 be asymmetry parameters

rate L rate R

Theorem (Tracy-Widom 2009)
x1(t)− (R−L)t

σ
p

t
=⇒X ,

where X is not a Gaussian. P(X É x)= det(I−K)L2(x,∞) where

K(x,y)= Rp
2π

e−(R2+L2) x2+y2
4 +RLxy.



MADM
The Multi-particle Asymmetric Diffusion Model (Sasamoto-Wadati
1998) is another exactly solvable partially asymmetric exclusion
process.
Fix a parameter q ∈ (0,1), asymmetry parameters R>L> 0, R+L= 1.
The particle at xn(t) jumps to

Ï xn(t)+ j at rate R
[j]q−1

for any j ∈ {
1, . . . ,xn−1(t)−xn(t)−1

}
,

Ï xn(t)− j at rate L
[j]q

for any j ∈ {
1, . . . ,xn(t)−xn+1(t)−1

}
,

where the q- deformed integer [j]q is given by

[j]q = 1+q+·· ·+qj−1,

[j]q−1 = 1+q−1 +·· ·+q−j+1.

R/(1+q−1 +q−2)

R/(1+q−1)

R

L/(1+q)

L



Limit Theorem

Theorem (B.-Corwin 2014)
There exist constants c,σ,L∗ such that for 0<L<L∗

x1(t)−ct
σt1/3 =⇒−LGUE.

The result should hold with L∗ = 1/2. The first particle behaves as in
the bulk. Indeed, one can prove the one-point asymptotics predicted by
KPZ universality,

Theorem (B.-Corwin 2014)
There exist constants c(κ),σ(κ),L∗,κ∗ such that for 0ÉL<L∗ and
κ ∈ (0,κ∗),

xbκtc(t)−c(κ)t
σ(κ)t1/3 =⇒−LGUE.



Why so different than ASEP?

Let ρ(x) := density of particles around xt at time t as t goes to infinity.
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Universality?

Question
For exclusion processes such that the density around the first particle is
positive, are the t1/3 scaling and GUE distribution universal?

In order to test the universality, one needs at least one other such
process.

Question
When is the density of particles positive around the first particle?

The density profile has a jump discontinuity when the drift (average
speed of a tagged particle) is not decreasing as a function of the local
density.



Hydrodynamic limit

Ï Assume that there exists a family of translation invariant
stationary measures indexed by the average density of particles %.

Ï Define the flux j(%) as the expected (for that measure) number of
particles crossing a given bound per unit of time, counted
algebraically.

Ï Assume that the following limit exists

ρ(x, t) := lim
τ→∞P

(
There is a particle at site xτ at time tτ

)
.

It satisfies the conservation equation

∂

∂t
ρ(x,t)+ ∂

∂x
j(ρ(x,t))= 0.

heuristic result: Let %0 be the density of particles around the first
particle. The density profile is discontinuous at the first particle (i.e.
%0 > 0) when the function j(%)/% is not decreasing. Actually %0 locally
maximizes the drift, j(%)/%.



Heuristic proof

Assume %0 > 0.

(1) On the one hand, the macroscopic position of the first particle is its
drift j(%0)/%0.

(2) On the other hand the characteristics method (applied to the
conservation PDE) yields a function π(%) s.t.

ρ
(
π(%)t,t

)= %. (1)

i.e. π(%) is the macroscopic position where particles have a local
density %. Differentiating (1) yields

π(%)= ∂j(%)
∂%

= j′(%).

Combining (1) and (2), we have that

j′(%0)= j(%0)
%0

=⇒ d
d%

j(%)
%

∣∣∣∣
%=%0

= 0,

which suggests that %0 is a maximizer of j(%)/%.



Facilitated TASEP

Question
For exclusion processes such that the density around the first particle is
positive, are the t1/3 scaling and GUE distribution universal?

We consider the Facilitated TASEP (FTASEP): the particle at xn(t)
moves by +1 at rate 1 provided that

Ï the site xn(t)+1 is empty (exclusion),

Ï the site xn(t)−1 is occupied (facilitation).
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x3 x2 x1

Introduced in physics literature, Basu-Mohanty 2009, and studied
further by Gabel-Krapivsky-Redner 2010. The flux

j(ρ)= (1−ρ)(2ρ−1)
ρ

1ρ>1/2

is such that j(ρ)/ρ has a maximum for ρ = 2/3.



The density profile is given by

ρ(x)= 1p
2+x

for x ∈ (−1,1/4).

1/4−1

1

Theorem (Baik-B.-Corwin-Suidan)
x1(t)− t/4
2−4/3t1/3 =⇒−LGSE,

where LGSE is the Tracy-Widom GSE distribution.

The FTASEP is in the KPZ universality class in the sense that

Theorem (Baik-B.-Corwin-Suidan)
For all r ∈ (0,1), there exist (explicit) constants π(r),σ(r) such that

xbrtc(t)− tπ(r)
σ(r)t1/3 =⇒−LGUE,

as the KPZ scaling theory predicts.



Proofs

Ï MADM: it can be studied via a method initially designed by
Borodin-Corwin-Sasamoto 2012 for the q-TASEP and ASEP, using
Markov duality and Bethe ansatz.

Ï FTASEP: the solvability comes from a coupling with last passage
percolation on a half-quadrant.



FTASEP and OpenTASEP

−10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8

x3(t) x2(t) x1(t)

We use first a coupling between the FTASEP and a TASEP on a
semi-infinite lattice with a source at the origin (we call it the
OpenTASEP)

source
1 2 3 4 5 6 7 8 9 10 11 12

Define the current at site x by

Nx(t)= #
{
iÊ x

∣∣ site i is occupied
}
.



The coupling
Consider the gaps between consecutive particles in the FTASEP

gi(t) := xi(t)−xi+1(t)−1.

For all iÊ 1, the rules of the dynamics implies that gi ∈ {0,1}.

−10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8

110100100. . .gaps

particles

source

The current at site n in the OpenTASEP corresponds to the number of
jumps done by the nth particle in FTASEP, i.e. xn(t)+n.

Proposition
We have the equality in law of the processes

{xn(t)+n}nÊ1,tÊ0 = {Nn(t)}nÊ1,tÊ0.



Let us see how this works dynamically
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000000000. . .gaps

particles

source

Ï gray: particle that cannot move,

Ï black: particle that can move.



Let us see how this works dynamically
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particles

source

Ï gray: particle that cannot move,

Ï black: particle that can move.



Let us see how this works dynamically
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particles

source

Ï gray: particle that cannot move,

Ï black: particle that can move.



Let us see how this works dynamically
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source

Ï gray: particle that cannot move,

Ï black: particle that can move.



Let us see how this works dynamically
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particles
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Ï gray: particle that cannot move,

Ï black: particle that can move.



Let us see how this works dynamically
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011000000. . .gaps

particles

source

Ï gray: particle that cannot move,

Ï black: particle that can move.



Let us see how this works dynamically
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source

Ï gray: particle that cannot move,

Ï black: particle that can move.



Let us see how this works dynamically

−10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8

110100000. . .gaps

particles

source

Ï gray: particle that cannot move,

Ï black: particle that can move.



Let us see how this works dynamically
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source

Ï gray: particle that cannot move,

Ï black: particle that can move.



Let us see how this works dynamically
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source

Ï gray: particle that cannot move,

Ï black: particle that can move.



Let us see how this works dynamically
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Ï gray: particle that cannot move,

Ï black: particle that can move.



Let us see how this works dynamically

−10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8

100101000. . .gaps
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Ï gray: particle that cannot move,

Ï black: particle that can move.



Let us see how this works dynamically
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100100100. . .gaps

particles

source

Ï gray: particle that cannot move,

Ï black: particle that can move.



Let us see how this works dynamically
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010100100. . .gaps

particles

source

Ï gray: particle that cannot move,

Ï black: particle that can move.



Let us see how this works dynamically

−10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8

110100100. . .gaps

particles

source

Ï gray: particle that cannot move,

Ï black: particle that can move.



Last passage percolation

Ï Let wij a family of i.i.d.
exponential random
variables.

Ï Consider up-right paths π
from the box (1,1) to (n,m)
in the half quadrant. We
define the last passage
percolation time H(n,m) by

H(n,m)=max
π

∑
(i,j)∈π

wij.

Lemma
If wij ∼Exp(1),

P
(
Nn(t)É x

)=P(
H(n+x−1,x)Ê t

)

n

m

w11 w21

w22

w31

OpenTASEP

x1(t) in FTASEP corresponds to H(n,n).



Passage-times on the diagonal
LPP in a half-quadrant has first been studied by Baik and Rains (2001)
with Geometric weights. In the model with exponential weights, we
find similar limit theorems.

Theorem (Baik-B.-Corwin-Suidan)
Assume that wij ∼Exp(1) for i> j and wii ∼Exp(α) for some parameter
α> 0.
Ï When α> 1/2,

H(n,n)−4n
24/3n1/3 =⇒LGSE,

(implies the GSE limit theorem for x1(t) in FTASEP, corresponding
to α= 1.)

Ï When α= 1/2,
H(n,n)−4n

24/3n1/3 =⇒LGOE,

Ï When α< 1/2,
H(n,n)−cn

c′n1/2 =⇒N ,

The parameter α corresponds to the rate of the first particle in the
FTASEP.



Away from the diagonal: KPZ typical behaviour

The fluctuations away from the diagonal have first been studied by
Sasamoto-Imamura 2004 – for the discrete PNG model. In the model
with exponential weights, we have

Theorem (Baik-B.-Corwin-Suidan)
For κ ∈ (0,1) and α>p

κ/(1+p
κ),

H(n,κn)− (1+p
κ)2n

σn1/3 =⇒LGUE.

(implies the GUE limit theorem for x(1−κ)t in FTASEP)

Proofs?
(I) LPP in a half-quadrant is a marginal of a Pfa�an Schur process.

(II) By a theorem of Borodin-Rains 2005, it is hence a Pfaffian point
process, with explicit correlation kernel.

(III) Saddle-point analysis of the correlation kernel yields the various
limit theorems (in progress).



Symmetric functions

For integer partitions λ1 Êλ2 Ê . . . , and µ1 Êµ2 Ê . . . , we will consider
skew-Schur functions

sλ/µ = det
[
hλi−µj+j−i

]
i,j,

where hk are complete homogeneous symmetric functions

hk(x)= ∑
i1É···Éik

xi1 . . .xik .

We also define
τλ =

∑
κ′even

sλ/κ =Pf[. . . ]

where κ′ even means that κ1 = κ2 Ê κ3 = κ4 Ê . . . .



Schur process

; ; ;

;
λ(4,4)

λ(4,3)
λ(5,3)

Consider a path γ as on the left

Ï vertex v 7→λv a random
partition,

Ï edge e 7→ ρe a set of variables.
(More generally a
specialization of the symmetric
functions).

The Schur process (Okounkov-Reshetikhin 2003) is a probability
measure on the sequence of partitions λ := (

λv)
v∈γ such that

P(λ)= 1
Z

∏
e∈γ

weight(e) = 1
Z

det[...],

where

weight
(
e= v′←v

)
= s

λv/λv′ (ρe) and weight
(
e=↑v′

v

)
= s

λv′ /λv (ρe).



Pfaffian Schur process

; ; ;

λ◦

λ(4,3)
λ(5,3)

Consider a path γ as on the left

Ï vertex v 7→λv a random partition,

Ï edge e 7→ ρe a set of variables.

Ï Denote ρ◦ and λ◦ the
specialization and the partition on
the diagonal.

The Pfa�an Schur process is a probability measure on the sequence
of partitions λ := (

λv)
v∈γ such that

P(λ)= 1
Z
τλ◦ (ρ◦)

∏
e∈γ

weight(e) = 1
Z

Pf[...],

where the weight of off-diagonal edges are chosen as in the Schur
process.



Geometric last passage percolation
Assume that all ρe =

{pq
}
, and ρ◦ = {c}. Then for 0< n1 É ·· · É nk,

m1 Ê ·· · Êmk, with ni Êmi,(
λ

(n1,m1)
1 , . . . ,λ(nk,mk)

1

)
(d)=

(
G(n1,m1), . . . ,G(nk,mk)

)
where the family of random variables G(n,m) satisfies the recursion{

G(n,m)=max
{
G(n−1,m),G(n,m−1)

}+Geom(q) for n>m
G(n,n)=G(n,n−1)+Geom(cpq).

As the geometric distribution converges to the exponential,

Proposition
If we set c=pq(1+ (α−1)(q−1)), then as q→ 1,{

(1−q)G(ni,mi)
}k

i=1
=⇒

{
H(ni,mi)

}k

i=1

where H(n,m) are the passage times in LPP with exponential weights on
a half quadrant (and parameter α on the diagonal).



Pfaffian Point process

A random configuration X ⊂X (state space) is a Pfa�an point process

if one can write the correlation function as

ρ(Y)=P(Y ⊂X)=Pf
[
K(x,y)

]
x,y∈Y ,

where

K(x,y)=
(
K11(x,y) K12(x,y)
K21(x,y) K22(x,y)

)
is a skew-symmetric matrix indexed by elements in X; called the
correlation kernel.
The gap probabilities are given by Fredholm Pfaffians

P
(
no point in Y

)=Pf
(
J−K

)
L2(Y)

where

Pf
(
J−K

)
L2(Y) := 1+

∞∑
k=1

(−1)k

k!

∫
Y

dx1 . . .
∫

Y
dxkPf

[
K(xi,xj)

]k
i,j=1



The Pfaffian Schur process is Pfaffian

Theorem (Borodin-Rains 2005)
For 0< n1 É ·· · É nk, m1 Ê ·· · Êmk, with ni Êmi, the Pfaffian Schur
process is Pfaffian in the sense that(

1,λ(n1,m1)
i − i

)
iÊ1 ∪·· ·∪ (

k,λ(nk,mk)
i − i

)
iÊ1 ∈X= {1, . . . ,k}×Z

is a Pfaffian point process with an explicit correlation kernel K.

The variables G(ni,mi)
(d)= λ

(ni,mi)
1 are extremal points in the Pfaffian

point process, so that

P
(
G(n1,m1)É h1, . . . ,G(nk,mk)É hk

)
=Pf(J−K)L2(... ).

Finally, sending q→ 1 yields the probability distribution of passage
times in exponential LPP on the half-quadrant.



In the limit, the state space becomes {1, . . . ,k}×R.

Proposition (Baik-B.-Corwin-Suidan)
For 0< n1 < ·· · < nk, m1 > ·· · >mk with ni >mi, h1, . . . ,hk > 0

P
(
H(n1,m1)É h1, . . . ,H(nk,mk)É hk

)
=Pf

(
J−Kexp)

L2
(
∆k(h1,...,hk)

).

where
∆k(h1, . . . ,hk)= {

(i,x) ∈Z×R∣∣x> hi
}
,

and the kernel K is given by

Kexp
11 (i,x; j,y)= 1

(2iπ)2

∫ ∞eiπ/3

∞e−iπ/3
dz

∫ ∞eiπ/3

∞e−iπ/3
dw

z−w
4zw(z+w)

e−xz−yw

(1+2z)ni (1+2w)nj

(1−2z)mi (1−2w)mj
(2z+2α−1)(2w+2α−1),

where the contours pass to the right of 0, and we have formulas of a
similar taste for K12 and K22.

Since the GSE/GOE/GUE distribution functions can be written as a
Fredholm Pfaffian, one concludes by asymptotic analysis of the above
formula.



Summary

We have seen that

Ï The fluctuations of the first particle in exclusion processes are not
universal.

Ï For the FTASEP, we find the GSE Tracy-Widom distribution.

Ï This is proved via a coupling with Last Passage Percolation in a
half-quadrant.

Ï Which can be studied exhaustively via Pfa�an Schur Processes,
when the weights are geometric or exponential.



Outlook

Further directions
Ï One can play with parameters in LPP, proving phase transitions

and studying crossover distributions.

Ï There are other marginals of the Pfaffian Schur process (other
particle dynamics, symmetric plane partitions...).

Ï Pfaffian Schur processes can be leveraged to Pfaffian Macdonald
processes, leading to positive temperature models.

Questions
Ï In presence of a jump discontinuity, can one prove the t1/3

behaviour in general?

Ï Can one understand the geometric behaviour of the geodesic in
LPP ? give a probabilistic interpretation of the phase transition ?
Compare to the slow bond problem.



Thank you





Proofs for MADM



MADM

R/(1+q−1 +q−2)

R/(1+q−1)

R

L/(1+q)

L

The limit theorem follows from

Ï A Markov duality between the MADM exclusion process and a
zero range analogue, so that for~n= n1 Ê n2 Ê ·· · Ê nk, the function

(t,~n) 7→ E
[ k∏

i=1
qxni (t)

]
,

satisfies a closed system of differential equations (Kolmogorov
equation for the dual system).

Ï This system of ODEs is solvable via Bethe ansatz. It leads to
contour integral formulas for the moments of qxn(t).



E

[
k∏

i=1
qxni (t)+ni

]
= (−1)kq

k(k−1)
2

(2πi)k

∮
γ1

· · ·
∮
γk

∏
1≤A<B≤k

zA −zB

zA −qzB

×
k∏

j=1

(1−qzj

1−zj

)nj

exp
(
(q−1)t

( Rzj

1−qzj
− Lzj

1−zj

)) dzj

zj(1−qzj)
,

where the integration contours γ1, . . . ,γk are nested in order to enclose
all poles except 0 and 1/q.

Ï The moments do characterize the distribution of xn(t). One can
take the moment generating function and form the (q-deformed)
Laplace transform of qxn(t).

Ï Rearranging terms as in a Fredholm determinant expansion, a
saddle-point asymptotic analysis yields the GUE limit theorem.



Dynamics on the Pfaffian Schur Process



We define dynamics preserving the Pfaffian Schur processes that
correspond to LPP in a half quadrant. We make a path γ grow as
follows

λ(0,0) =; ; ;

λ(1,1)

; ; ;

λ(1,1)

; ;

λ(1,1)λ(2,1)

; ;

λ(2,2)

λ(2,1)

; ; ;

λ(2,2)

λ(2,1)

; ;

λ(2,2)

λ(2,1)
λ(3,1)

; ;

λ(2,2)λ(3,2)

λ(3,1)

At each stage we consider a Pfaffian Schur process indexed by the path.
We update the partitions where the path has changed according to
Markov transition kernels.



When the path grows by one box from a corner formed by partitions κ,µ
and ν, we update according to some transition kernel

ν

µ κ

ρ1

ρ2

π
ρ2

ρ1
U x
ρ1,ρ2

ν π

κ

ρ2

ρ1
µ

ρ1

ρ2

where we need that∑
µ

sκ/µ(ρ2)sν/µ(ρ1)U x
ρ1,ρ2

(π|ν,µ,κ)= const. sπ/κ(ρ1)sπ/ν(ρ2)

so that the Pfaffian Schur structure is preserved. const is a
normalization constant depending only on the specializations ρ1,ρ2.
We choose

U x
ρ1,ρ2

(π|ν,µ,κ)=U x
ρ1,ρ2

(π|ν,κ)= sπ/ν(ρ2)sπ/κ(ρ1)∑
λ sλ/ν(ρ2)sλ/κ(ρ1)

.

This corresponds to so-called "push-block" dynamics in the usual
(determinantal) Schur process.



Similarly, when the path grows by a half-box along the diagonal, we
update according to

µ κ

ρ◦
ρ1

π

ρ1

U∠
ρ◦,ρ1

π

κρ◦

ρ1

ρ1

where we need that∑
µ

sκ/µ(ρ1)τµ(ρ◦)U∠
ρ◦,ρ1

(π|κ,µ)= const. sπ/κ(ρ1)τπ(ρ◦)

so that the Pfaffian Schur structure is preserved.
We choose

U∠
ρ◦,ρ1

(π|κ,µ)=U∠
ρ◦,ρ1

(π|κ)= const
τπ(ρ◦)sπ/κ(ρ1)
τκ(ρ◦,ρ1)

.



First coordinate marginal

Assume that all ρe are specializations into a single variable ρe =pq,
and ρ◦ = c. Then we have that

sλ/µ(ρe)=1µ≺λ
(p

q
)∑λi−

∑
µi .

where
µ≺λ ⇐⇒ λ1 Êµ1 Êλ2 ÊÊµ2 Ê . . . ,

and
τλ(ρ◦)= cλ1−λ2+λ3−λ4+....

Ï Under the transition operator U x(π|ν,κ),

π1 =max{ν1,κ1}+Geom(q).

Ï Under the transition operator U∠(π|κ),

π1 = κ1 +Geom(q).



Geometric last passage percolation

It implies that for 0< n1 É ·· · É nk, m1 Ê ·· · Êmk, with ni Êmi,(
λ

(n1,m1)
1 , . . . ,λ(nk,mk)

1

)
(d)=

(
G(n1,m1), . . . ,G(nk,mk)

)
where the family of random variables G(n,m) satisfies the recursion{

G(n,m)=max
{
G(n−1,m),G(n,m−1)

}+Geom(q) for n>m
G(n,n)=G(n,n−1)+Geom(q).

As the geometric distribution converges to the exponential,

Proposition
If we set ρ◦ = c=pq(1+ (α−1)(q−1)), then as q→ 1,{

(1−q)G(ni,mi)
}k

i=1
=⇒

{
H(ni,mi)

}k

i=1

where H(n,m) are the passage times in LPP with exponential weights on
a half quadrant (and parameter α on the diagonal).


