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KPZ universality class
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KPZ universality class
Ï 1986: Kardar, Parisi and Zhang study the random growth of

rough interfaces. They propose a continuous model: KPZ equation.
Ï Interface described by a height function h(t,x), which satisfies the

SPDE

∂th = ∂2
xh︸ ︷︷ ︸

local smoothing mechanism

+
radial growth︷ ︸︸ ︷

(∂xh)2 + Ẇ︸︷︷︸
uncorrelated noise

,

where Ẇ is a white noise. [KPZ86] made scaling predictions and
claimed universality.

Ï KPZ equation is ill-posed (Bertini-Giacomin 1997, Hairer 2011).

Another approach of KPZ universality class
Ï Focus on discrete models ⇒ No issues with regularity and

ill-posedness.

Ï Focus on integrable probabilistic systems ⇒ Exact formulas ⇒
Precise understanding of models & limit theorems.
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Motivations

Real-World
KPZ models

Ï Front propagation: bacteria colonies, tumoral cells, flame in
random media, turbulence in liquid crystals, etc.

Ï deposition of material: coffee stains, snow...

Mathematical
Ï Universality to prove.

Ï Integrability to understand.

Ï Challenge: Systems are simple to describe but difficult to study.
(ex: TASEP, ballistic deposition)
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Two types of models in the KPZ class
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From interfaces to exclusion processes

xn(t) xn−1(t)xn+1(t)

Description of the system
Ï Coordinates xn(t),
Ï Configuration encodes a

height function h(t,x) via
Rost’s mapping. −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6
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Positive temperature analogue

Directed polymers in 1+1 dim.
Measure Qn on directed lattice paths π.

Ï Disorder: edge weights we.

Ï Energy of a path H(π)=∑
e∈πwe.

Ï For inverse temperature β

Qn(π)= 1
Zn

exp
(−βH(π)

)
.

Apparently different models are related
Ï When β→∞ the measure concentrates on the minimal H(π):

Geodesics in directed last/first passage percolation.

Ï Height function of exclusion process = Border of percolation cluster
in directed last-passage percolation
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Focus on exclusion processes

xn(t) xn−1(t)xn+1(t)
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Exclusion processes in the KPZ class
Step initial data xn(0)=−n :

−4 −3 −2 −1 0 1 2 3 4

Main assumptions
Ï Local dynamics.

Ï Translation invariant stationary measures µρ are labelled by the
average density of particles ρ.

Ï j(ρ), flux of particles at equilibrium, is such that j′′(ρ) 6= 0.

Macroscopic density profile

ρ(x,τ) := lim
t→∞P (There is a particle at site xt at time tτ)

satisfies the conservation equation

∂

∂t
ρ(x,t)+ ∂

∂x
j(ρ(x, t))= 0,

with ρ(x,0)=1x<0 corresponding to step initial condition.
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KPZ scaling theory : Heuristics
Tracy-Widom type limit theorem (Open)
For any density ρ, for n/t= κ(ρ),

xn(t)−π(ρ)t
σ(ρ) · t1/3 ===⇒

t→∞ LTW ,

where LTW is the Tracy-Widom law from the fluctuations of the largest
eigenvalue of Gaussian Unitary Ensemble.

History
Ï LLN : hydrodynamic theory.

Ï KPZ scaling theory (Krug, Meakin, Halpin-Healy 1992 ) predict
the form of σ(ρ) and t1/3.

Ï LTW has been expected since Johansson’s 2000 landmark work on
TASEP.

rate 1 rate 1

Johansson’s method works only for TASEP.
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Universality ?

xn(t) xn−1(t)xn+1(t)

Question
Tracy-Widom limit theorem for general exclusion process?

Partial answers
We will discuss:

Ï ASEP (Tracy-Widom 2008)

Ï q-TASEP and Macdonald processes (Borodin-Corwin 2011).

Ï An exactly solvable long-range exclusion process: The q-Hahn
TASEP (Povolotsky 2013 / Corwin 2014).

Ï q-Hahn asymmetric exclusion process (B.-Corwin 2015)
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Sources of integrability

Ï Integrability of TASEP understood via Schur process. Measures on
interlacing arrays with nice properties.
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Ï Integrability of ASEP (as shown by Tracy-Widom 2008) is yet less
clear.

Macdonald processes (Borodin-Corwin 2011)
Measures on interlacing arrays in terms of Macdonald symmetric
functions. Generalizes Schur process.
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The q-TASEP
There exist families of Markov dynamics on interlacing arrays, such
that the push-forward of Macdonald process is a Macdonald process
with updated parameters.

Definition of q-TASEP

Fix q ∈ (0,1)

rate 1−qgap

gap= 2xn(t) xn−1(t)xn+1(t)

Theorem (Borodin-Corwin 2011)
For a certain Macdonald process (q-Whittaker, pure-gamma
specialization), we have

λ(n)
n = xn(t)+n.

E
[
qkλ(n)

n
]
= (−1)kq

k(k−1)
2

(2iπ)k

∮
. . .

∮ ∏
1ÉA<BÉk

zA −zB

zA −qzB

k∏
j=1

g(qzj,γ)
g(zj,γ)

dzj

zj
,

where g is an explicit (simple) function.
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Asymptotics of the q-TASEP
Translation invariant stationary measures are known (Andjel 1982).

Theorem (Ferrari-Vető 2013, B. 2014)
At any density ρ ∈ (0,1), for n/t= κ(ρ)

xn(t)−π(ρ)
σ(ρ) t1/3

(d)===⇒
t→∞ LTW .

KPZ scaling theory is verified.

Asymptotic analysis
Ï The c.d.f. of Tracy-Widom GUE law is a Fredholm determinant.

Ï Fredholm determinant formula (Borodin-Corwin-Ferrari) for the
law of xn(t).

Ï Saddle-point analysis of a Fredholm determinant. Implies careful
study of a particular holomorphic function involving q-digamma
functions.
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Slow particles : heuristic approach

Question
What happens if some particles are slower ? Say, for example, that the
first particle jumps at rate β.

Heuristic remarks
Ï If βÊ 1 nothing happens.

Ï If β< 1 the first particle have speed β. Hence the next particles
have speed at most β.

Ï In the usual q-TASEP, many particles have speed greater than β.

Ï Consequence: The particles that are in a region where the density
is small will be slowed down by the first particle.

Theorem (B.)
One observes the BBP phase transition.
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BBP phase transition

x

ρ(xt,t)

Frozen region
xn(t) = −n

n/t> κ(1)= 1−q

Tracy-Widom fluctuations
xn(t)−π(ρ)t
σ(ρ) t1/3

(d)===⇒
t→∞ LTW

ρ > ρβ

BBP transition
xn(t)−π(ρ)t
σ(ρ) t1/3

(d)===⇒
t→∞ LBBP

ρ = ρβ

Gaussian fluctuations
xn(t)−π̃)t
σ̃ t1/2

(d)===⇒
t→∞ N (0,1)

1−1 q−1 β

ρβ

1

LBBP : extreme eigenvalues statistics of perturbed ensembles of
Gaussian hermitian matrices. (Baik-Ben Arous-Péché, 2005).
Same result holds true for TASEP.
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A long-range exclusion process
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The q-Hahn distribution and binomial formula
For q ∈ (0,1) and 0É νÉµÉ 1, (a;q)k = (1−a)(1−aq) . . . (1−aqk−1)

ϕq,µ,ν(j|n) :=µj (ν/µ;q)j(µ;q)n−j

(ν;q)n

[
n
y

]
q

,

probability distribution on {0,1, . . . ,n}.

Povolotsky 2013 / Rosengren 2000
If YX =αXX +βXY +γYY

(
pX + (1−p)Y

)n =
n∑

k=0
ϕq,µ,ν(j|n)XkYn−k.

Gnedin-Olshanski 2009
Interpretation of ϕq,µ,ν(j|n) as a probability in a q-deformation of
Pólya’s urn model.
Hence, q-Hahn distribution = q-Beta-Binomial.
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q-Hahn TASEP

Introduced by Povolotsky 2013. Discrete time process
Prob. ϕ(2|3)

gap= 3xn(t) xn−1(t)xn+1(t)

Exclusion/Zero-range
Ï Coupling xk −xk+1 −1== yk

Ï Exclusion processes == Zero range
processes

Ï Here, corresponding process called
q-Hahn Boson

y0 y1 y2 y3 y4 y5 y6

Prob. ϕq,µ,ν(2|y4)
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Some tools to study these systems
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Markov duality

Definition
Two Markov processes ~X(t) ∈X and ~Y(t) ∈Y are said dual w.r.t
H : X ×Y →R if for any initial data,

E
[
H(~X(t),~Y(0))

]= E[H(~X(0),~Y(t))
] ⇔ LXH(~x,~y)=LYH(~x,~y)

Markov Duality (Corwin 2014 / B. 2014)
The q-Hahn TASEP and the q-Hahn Boson are dual w.r.t.
H(~x,~y)=∏N

i=1 qyi(xi+i).

E [H(~x(t),~y(0))]= E [H(~x(0),~y(t))] .

It relies on a symmetry of the q-Hahn distribution: If
X ∼ q-Hahn(x,q,µ,ν) and Y ∼ q-Hahn(y,q,µ,ν), then

E
[
qyX]= E[qxY]

.
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Replica trick (rigorous variant)

Ï Method designed for q-TASEP (Borodin-Corwin-Sasamoto 2012).
Works also for discrete q-TASEP (Borodin-Corwin 2013), q-Hahn
TASEP (Corwin 2014), and the next processes.

Ï One wants to compute the law of xn(t). Here, the eq-Laplace
transform of qxn(t),

E
[
eq

(
ζqxn(t))] := E

[
1

(ζqxn(t);q)∞

]
Ï Using moments:

1 Find a system of ODEs for E
[∏

i qyixi(t)
]

with unique solution. Using
the duality, one writes Kolmogorov equations for the zero-range with
k particles.

2 Solve the system of equations using Bethe ansatz.
3 Formula for E

[
qkxn(t)

]
for k ∈N which characterize the law of xn(t).

4 Take generating series.
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Asymmetric processes
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Asymmetric q-Hahn exclusion process
Question
Is it possible to generalize the q-Hahn TASEP allowing jumps in both
directions, preserving duality and Bethe ansatz solvability?

Continuous time process: (Corwin-B.)
φR(2|3)

φL(1|2)

gap= 3xn(t) xn−1(t)xn+1(t)

Rates
Let R,L ∈R+ be asymmetry parameters, with R+L= 1. We define

φR
q,ν(j|m) :=Rνj−1

[j]q
(ν;q)m−j
(ν;q)m

(q;q)m
(q;q)m−j

'R lim
µ→ν

ϕq,µ,ν(j|m)

φL
q,ν(j|m) :=L 1

[j]q
(ν;q)m−j
(ν;q)m

(q;q)m
(q;q)m−j

'L lim
µ→ν

ϕq−1,µ−1,ν−1 (j|m).

Previously mentioned methods still apply
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Fredholm determinant

Theorem (B.-Corwin)
Fix 0< q< 1 and 0É ν< 1. For all ζ ∈C\R+,

E

[
1

(ζqxn(t);q)∞

]
= det(I+Kζ)L2(C),

where det(I+Kζ)L2(C) is the Fredholm determinant of Kζ defined by its
integral kernel

Kζ(w,w′)= 1
2iπ

∫
1/2+iR

π

sin(πs)
(−q−nζ)s

g(w)
g(qsw)

ds
qsw−w′

with

g(w)=
(

(νw;q)∞
(w;q)∞

)n
exp

(
(q−1)t

∞∑
k=0

R
wqk

1−νwqk −L
wqk

1−wqk

)
1

(νw;q)∞
,

and the integration contour C is a small circle around 1.

A formal saddle-point analysis of above formula is consistent with KPZ
scaling theory.
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Snapshot of an intermediate moment formula

A moment formula similar with Macdonald processes moment
formulas.

E

[
k∏

i=1
qxni (t)+ni

]
= (−1)kq

k(k−1)
2

(2πi)k

∮
γ1

· · ·
∮
γk

∏
1≤A<B≤k

zA −zB

zA −qzB︸ ︷︷ ︸
interaction term

×
k∏

j=1

(1−νzj

1−zj

)nj

exp
(
(q−1)t

( Rzj

1−νzj
− Lzj

1−zj

)) dzj

zj(1−νzj)
,

where the integration contours γ1, . . . ,γk are nested in order to enclose
all poles except 0 and 1/ν.
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First Particle: non-universal behaviour
When ν= q the rates become much simpler. [j]q := (1−qj)/(1−q)

R/[2]q−1L/[1]q

xn(t) xn−1(t)xn+1(t)

Multi-particle Asymmetric Diffusion Model (Sasamoto-Wadati 1998).

Unusual phenomena
Ï The macroscopic density profile is discontinuous: antishock at the

first particle.

Ï If R>L, particles have a net drift to the right, but because of very
long range possible jumps on the left, particles are attracted when
far.

Consequence for the �rst particle

x1(t)−π t
σ t1/3

(d)===⇒
t→∞ LTW .

(Very different than ASEP for which scaling is diffusive!)
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Polymer limits
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Consider the simple random walk Xt on Z, starting from 0.

P
(
Xt+1 =Xt +1

)= α

α+β , P
(
Xt+1 =Xt −1

)= β

α+β .

The Central Limit Theorem says that

Xt − tα−β
α+β

σ
p

t
=⇒N (0,1).

Theorem (Cramér)

For α−β
α+β < x< 1,

log
(
P(Xt > xt)

)
t

−−−→
t→∞ −I(x),

where I(x) is the Legendre transform of

λ(z) := log
(
E
[
ezX1

])= log
(
αez +βe−z

α+β
)
.
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In random environment ?

Question
What can we say for a random walk in random environment ?

Consider simple random walk on Z in space-time i.i.d. environment:

P
(
Xt+1 = x+1

∣∣Xt = x
)=Bt,x, P

(
Xt+1 = x−1

∣∣Xt = x
)= 1−Bt,x,

where (Bt,x)t,x are i.i.d.

Ï P,E : law of the environment.

Ï P,E : law of the random walk, conditionally on the environment.

Central limit theorem and large deviation principle are still true,

even conditionally on the environment.
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Quenched large deviation principle

Theorem (Rassoul-Agha, Seppäläinen and Yilmaz, 2013)
Assume that log(Bt,x) have a finite third moment. Then, the limiting
moment generating function

λ(z) := lim
t→∞

1
t

log
(
E
[
ezXt

])
,

exists a.s., and
log

(
P(Xt > xt)

)
t

a.s.−−−→
t→∞ −I(x).

where I(x) is the Legendre transform of λ.

This result is more general (dimension, environment) and also holds for
polymers.
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An exactly solvable model: the Beta RWRE

We assume that (Bt,x) follow the Beta(α,β) distribution.

P
(
B ∈ [x,x+dx]

)= xα−1(1−x)β−1 Γ(α+β)
Γ(α)Γ(β)

dx.

Ï Exactly solvable means
that we can exactly
compute the law of

P(Xt > xt)

(and more).

0

(x, t)
Bx,t

1−Bx,t

t

Xt

x
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For simplicity, assume α=β= 1. (Uniform case)

Theorem (B.-Corwin)
The LDP rate function is

I(x)= 1−
√

1−x2.

Fluctuations around the almost-sure LDP such that

log
(
P

(
Xt > xt

))+ I(x)t

σ(x) · t1/3
(d)===⇒

t→∞ LGUE,

with

σ(x)3 = 2I(x)2

1− I(x)
,

under the (technical) hypothesis that x> 4/5.

The theorem should extend to the general parameter case α,β and
when x covers the full range of large deviation events (i.e. x ∈ (0,1)).
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Fredholm determinant

Theorem (B.- Corwin)
Let u ∈C\R+, and t,x with the same parity. Then for any parameters
α,β> 0 one has

E
[
euP(Xt>x)

]
= det(I+Ku)L2(C0)

where C0 is a small positively oriented circle containing 0 but not −α−β
nor −1, and Ku : L2(C0)→ L2(C0) is defined by its integral kernel

Ku(w,w′)= 1
2iπ

∫ 1/2+i∞

1/2−i∞
π

sin(πs)
(−u)s

g(w)
g(w+s)

ds
s+w−w′

where

g(w)=
(

Γ(w)
Γ(α+w)

)(t−x)/2 (
Γ(α+β+w)
Γ(α+w)

)(t+x)/2
Γ(w).
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Idea of the proof

Origin
Ï Let

(
xn(t)

)
coordinates of the q-Hahn TASEP.

Ï Convergence as q→ 1

qxn(t) (d)=⇒Z(t,n)

where Z(t,n) partition function of a polymer model (or random
average process) with Beta-distributed weights.

Ï Z(t,n)=P(Xt > x) with x= t−2n+2.

Similar method as for exclusion processes
1 Write the recurrence relation for Z(t,n).

2 Evolution equation for t 7→ E [Z(t,n1) . . .Z(t,nk)].

3 Solution via Bethe ansatz.

4 The moment generating series can be again written as a Fredholm
determinant.
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Extreme value statistics & Tracy-Widom
Consider X(1)

t , . . . ,X(N)
t be random walks drawn independently in the

same environment.

Fact
The order of the maximum of N i.i.d. random variables is the quantile
or order 1−1/N.

Relation LDP / extreme values
Second order corrections to the LDP have an interpretation in terms of
second order fluctuations of the maximum of i.i.d. samples.

Corollary (B.-Corwin)
Set N = ect. Then, for α=β= 1,

maxi=1,...,N

{
X(i)

t

}
− t

√
1− (1−c)2

d(c) · t1/3 =⇒LGUE,

where d(c) is an explicit function (proved under assumption c> 2/5).
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Zero temperature limit

n

m

Dn,m

(0,0)

First passage-time T(n,m) from (0,0) to
the half-line Dn,m by

T(n,m)= min
π:(0,0)→Dn,m

∑
e∈π

te

Passage times
For (ξi,j) i.i.d. Bernoulli and (Ee) i.i.d.
Exponential,

te =
{
ξi,jEe if e is horizontal,
(1−ξi,j)Ee if e is vertical.

Theorem (B.-Corwin)
For any κ> a/b and parameters a,b> 0, there exist constants ρ(κ) and
τ(κ), s.t.

T(n,κn)−τ(κ)n
ρ(κ)n1/3 =⇒LGUE.
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Outlook

Directions left for future work
Ï Asymptotic analysis: cover the whole range of parameters.

Ï Limits of the q-Hahn asymmetric exclusion process.

Ï Other types of scaling limits.

Ï Better understanding of the integrability of Beta RWRE /
Bernoulli-Exponential FPP. Determinantal processes ?

More general open questions
Ï Universal fluctuations first particle.

Ï KPZ theory for RWRE.

Ï Better understanding Tracy-Widom distribution.
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Thank you
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Questions
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	Limit Theorem

