Some integrable models in the KPZ universality class

GUILLAUME BARRAQUAND

sous la direction de SANDRINE PÉCHÉ

LPMA
Université Paris Diderot - Paris 7

19 juin 2015

KPZ universality class

KPZ universality class

- 1986: Kardar, Parisi and Zhang study the random growth of rough interfaces. They propose a continuous model: KPZ equation.
- Interface described by a height function $h(t, x)$, which satisfies the SPDE

where \dot{W} is a white noise. [KPZ86] made scaling predictions and claimed universality.
- KPZ equation is ill-posed (Bertini-Giacomin 1997, Hairer 2011).

Another approach of KPZ universality class

- Focus on discrete models \Rightarrow No issues with regularity and ill-posedness.
- Focus on integrable probabilistic systems \Rightarrow Exact formulas \Rightarrow Precise understanding of models \& limit theorems.

Motivations

Real-World

KPZ models

- Front propagation: bacteria colonies, tumoral cells, flame in random media, turbulence in liquid crystals, etc.
- deposition of material: coffee stains, snow...

Mathematical

- Universality to prove.
- Integrability to understand.
- Challenge: Systems are simple to describe but difficult to study. (ex: TASEP, ballistic deposition)

Two types of models in the KPZ class

From interfaces to exclusion processes

Description of the system

- Coordinates $x_{n}(t)$,
- Configuration encodes a height function $h(t, x)$ via Rost's mapping.

Positive temperature analogue

Directed polymers in $1+1$ dim.

Measure Q_{n} on directed lattice paths π.

- Disorder: edge weights w_{e}.
- Energy of a path $H(\pi)=\sum_{e \epsilon \pi} w_{e}$.
- For inverse temperature β

$$
Q_{n}(\pi)=\frac{1}{Z_{n}} \exp (-\beta H(\pi)) .
$$

Apparently different models are related

- When $\beta \rightarrow \infty$ the measure concentrates on the minimal $H(\pi)$: Geodesics in directed last/first passage percolation.
- Height function of exclusion process $=$ Border of percolation cluster in directed last-passage percolation

Focus on exclusion processes

Exclusion processes in the KPZ class

Step initial data $x_{n}(0)=-n$:

Main assumptions

- Local dynamics.
- Translation invariant stationary measures μ_{ρ} are labelled by the average density of particles ρ.
- $j(\rho)$, flux of particles at equilibrium, is such that $j^{\prime \prime}(\rho) \neq 0$.

Macroscopic density profile

$$
\rho(x, \tau):=\lim _{t \rightarrow \infty} \mathbb{P}(\text { There is a particle at site } x t \text { at time } t \tau)
$$

satisfies the conservation equation

$$
\frac{\partial}{\partial t} \rho(x, t)+\frac{\partial}{\partial x} j(\rho(x, t))=0,
$$

with $\rho(x, 0)=\mathbb{1}_{x<0}$ corresponding to step initial condition.

KPZ scaling theory : Heuristics

Tracy-Widom type limit theorem (Open)

For any density ρ, for $n / t=\kappa(\rho)$,

$$
\frac{x_{n}(t)-\pi(\rho) t}{\sigma(\rho) \cdot t^{1 / 3}} \underset{t \rightarrow \infty}{\Longrightarrow} \mathscr{L}_{T W}
$$

where $\mathscr{L}_{T W}$ is the Tracy-Widom law from the fluctuations of the largest eigenvalue of Gaussian Unitary Ensemble.

History

- LLN : hydrodynamic theory.
- KPZ scaling theory (Krug, Meakin, Halpin-Healy 1992) predict the form of $\sigma(\rho)$ and $t^{1 / 3}$.
- $\mathscr{L}_{T W}$ has been expected since Johansson's 2000 landmark work on TASEP.

Johansson's method works only for TASEP.

Universality?

Question

Tracy-Widom limit theorem for general exclusion process?

Partial answers

We will discuss:

- ASEP (Tracy-Widom 2008)
- q-TASEP and Macdonald processes (Borodin-Corwin 2011).
- An exactly solvable long-range exclusion process: The q-Hahn TASEP (Povolotsky 2013 / Corwin 2014).
- q-Hahn asymmetric exclusion process (B.-Corwin 2015)

Sources of integrability

- Integrability of TASEP understood via Schur process. Measures on interlacing arrays with nice properties.

- Integrability of ASEP (as shown by Tracy-Widom 2008) is yet less clear.

Macdonald processes (Borodin-Corwin 2011)

Measures on interlacing arrays in terms of Macdonald symmetric functions. Generalizes Schur process.

The q-TASEP

There exist families of Markov dynamics on interlacing arrays, such that the push-forward of Macdonald process is a Macdonald process with updated parameters.

Definition of q-TASEP

Fix $q \in(0,1)$

Theorem (Borodin-Corwin 2011)

For a certain Macdonald process (q-Whittaker, pure-gamma specialization), we have

$$
\begin{gathered}
\lambda_{n}^{(n)}=x_{n}(t)+n \\
\mathbb{E}\left[q^{k \lambda_{n}^{(n)}}\right]=\frac{(-1)^{k} q^{\frac{k(k-1)}{2}}}{(2 i \pi)^{k}} \oint \ldots \oint \prod_{1 \leqslant A<B \leqslant k} \frac{z_{A}-z_{B}}{z_{A}-q z_{B}} \prod_{j=1}^{k} \frac{g\left(q z_{j}, \gamma\right)}{g\left(z_{j}, \gamma\right)} \frac{\mathrm{d} z_{j}}{z_{j}}
\end{gathered}
$$

where g is an explicit (simple) function.

Asymptotics of the q-TASEP

Translation invariant stationary measures are known (Andjel 1982).
Theorem (Ferrari-Vető 2013, B. 2014)
At any density $\rho \in(0,1)$, for $n / t=\kappa(\rho)$

$$
\frac{x_{n}(t)-\pi(\rho)}{\sigma(\rho) t^{1 / 3}} \underset{t \rightarrow \infty}{\stackrel{(d)}{\Longrightarrow}} \mathscr{L}_{T W}
$$

KPZ scaling theory is verified.
Asymptotic analysis

- The c.d.f. of Tracy-Widom GUE law is a Fredholm determinant.
- Fredholm determinant formula (Borodin-Corwin-Ferrari) for the law of $x_{n}(t)$.
- Saddle-point analysis of a Fredholm determinant. Implies careful study of a particular holomorphic function involving q-digamma functions.

Slow particles : heuristic approach

Question

What happens if some particles are slower? Say, for example, that the first particle jumps at rate β.

Heuristic remarks

- If $\beta \geqslant 1$ nothing happens.
- If $\beta<1$ the first particle have speed β. Hence the next particles have speed at most β.
- In the usual q-TASEP, many particles have speed greater than β.
- Consequence: The particles that are in a region where the density is small will be slowed down by the first particle.

Theorem (B.)

One observes the BBP phase transition.

BBP phase transition

$\mathscr{L}_{B B P}$: extreme eigenvalues statistics of perturbed ensembles of Gaussian hermitian matrices. (Baik-Ben Arous-Péché, 2005). Same result holds true for TASEP.

A long-range exclusion process

The q-Hahn distribution and binomial formula

For $q \in(0,1)$ and $0 \leqslant v \leqslant \mu \leqslant 1, \quad(a ; q)_{k}=(1-\alpha)(1-\alpha q) \ldots\left(1-\alpha q^{k-1}\right)$

$$
\varphi_{q, \mu, v}(j \mid n):=\mu^{j} \frac{(v / \mu ; q)_{j}(\mu ; q)_{n-j}}{(v ; q)_{n}}\left[\begin{array}{l}
n \\
y
\end{array}\right]_{q},
$$

probability distribution on $\{0,1, \ldots, n\}$.
Povolotsky 2013 / Rosengren 2000
If $Y X=\alpha X X+\beta X Y+\gamma Y Y$

$$
(p X+(1-p) Y)^{n}=\sum_{k=0}^{n} \varphi_{q, \mu, v}(j \mid n) X^{k} Y^{n-k} .
$$

Gnedin-Olshanski 2009

Interpretation of $\varphi_{q, \mu, v}(j \mid n)$ as a probability in a q-deformation of Pólya's urn model.
Hence, q-Hahn distribution $=q$-Beta-Binomial.

q-Hahn TASEP

Introduced by Povolotsky 2013. Discrete time process

Exclusion/Zero-range

- Coupling $x_{k}-x_{k+1}-1==y_{k}$

- Here, corresponding process called q-Hahn Boson

Some tools to study these systems

Markov duality

Definition

Two Markov processes $\vec{X}(t) \in \mathscr{X}$ and $\vec{Y}(t) \in \mathscr{Y}$ are said dual w.r.t $H: \mathscr{X} \times \mathscr{Y} \rightarrow \mathbb{R}$ if for any initial data,

$$
\mathbb{E}[H(\vec{X}(t), \vec{Y}(0))]=\mathbb{E}[H(\vec{X}(0), \vec{Y}(t))] \quad \Leftrightarrow L^{X} H(\vec{x}, \vec{y})=L^{Y} H(\vec{x}, \vec{y})
$$

Markov Duality (Corwin 2014 / B. 2014)

The q-Hahn TASEP and the q-Hahn Boson are dual w.r.t.
$H(\vec{x}, \vec{y})=\prod_{i=1}^{N} q^{y_{i}\left(x_{i}+i\right)}$.

$$
\mathbb{E}[H(\vec{x}(t), \vec{y}(0))]=\mathbb{E}[H(\vec{x}(0), \vec{y}(t))] .
$$

It relies on a symmetry of the q-Hahn distribution: If $X \sim q-\operatorname{Hahn}(x, q, \mu, v)$ and $Y \sim q-\operatorname{Hahn}(y, q, \mu, v)$, then

$$
\mathbb{E}\left[q^{y X}\right]=\mathbb{E}\left[q^{x Y}\right] .
$$

Replica trick (rigorous variant)

- Method designed for q-TASEP (Borodin-Corwin-Sasamoto 2012). Works also for discrete q-TASEP (Borodin-Corwin 2013), q-Hahn TASEP (Corwin 2014), and the next processes.
- One wants to compute the law of $x_{n}(t)$. Here, the e_{q}-Laplace transform of $q^{x_{n}(t)}$,

$$
\mathbb{E}\left[e_{q}\left(\zeta q^{x_{n}(t)}\right)\right]:=\mathbb{E}\left[\frac{1}{\left(\zeta q^{x_{n}(t)} ; q\right)_{\infty}}\right]
$$

- Using moments:

1 Find a system of ODEs for $\mathbb{E}\left[\Pi_{i} q^{y_{i} x_{i}(t)}\right]$ with unique solution. Using the duality, one writes Kolmogorov equations for the zero-range with k particles.
2 Solve the system of equations using Bethe ansatz.
3 Formula for $\mathbb{E}\left[q^{k x_{n}(t)}\right]$ for $k \in \mathbb{N}$ which characterize the law of $x_{n}(t)$.
4 Take generating series.

Asymmetric processes

Asymmetric q-Hahn exclusion process

Question

Is it possible to generalize the q-Hahn TASEP allowing jumps in both directions, preserving duality and Bethe ansatz solvability?

Continuous time process: (Corwin-B.)

Rates

Let $R, L \in \mathbb{R}_{+}$be asymmetry parameters, with $R+L=1$. We define

$$
\begin{aligned}
& \phi_{q, v}^{R}(j \mid m):=R \frac{v^{j-1}}{[j]_{q}} \frac{(v ; q)_{m-j}}{(v ; q)_{m}} \frac{(q ; q)_{m}}{(q ; q)_{m-j}} \quad \simeq R \lim _{\mu \rightarrow v} \varphi_{q, \mu, v}(j \mid m) \\
& \phi_{q, v}^{L}(j \mid m) \quad:=L \frac{1}{[j]_{q}} \frac{(v ; q)_{m-j}}{(v ; q)_{m}} \frac{(q ; q)_{m}}{(q ; q)_{m-j}} \quad \simeq L \lim _{\mu \rightarrow v} \varphi_{q^{-1}, \mu^{-1}, v^{-1}(j \mid m)} .
\end{aligned}
$$

Previously mentioned methods still apply

Fredholm determinant

Theorem (B.-Corwin)

Fix $0<q<1$ and $0 \leqslant v<1$. For all $\zeta \in \mathbb{C} \backslash \mathbb{R}_{+}$,

$$
\mathbb{E}\left[\frac{1}{\left(\zeta q^{x_{n}(t)} ; q\right)_{\infty}}\right]=\operatorname{det}\left(I+K_{\zeta}\right)_{\mathbb{L}^{2}(C)},
$$

where $\operatorname{det}\left(I+K_{\zeta}\right)_{\mathbb{L}^{2}(C)}$ is the Fredholm determinant of K_{ζ} defined by its integral kernel

$$
K_{\zeta}\left(w, w^{\prime}\right)=\frac{1}{2 i \pi} \int_{1 / 2+i \mathbb{R}} \frac{\pi}{\sin (\pi s)}\left(-q^{-n} \zeta\right)^{s} \frac{g(w)}{g\left(q^{s} w\right)} \frac{\mathrm{ds}}{q^{s} w-w^{\prime}}
$$

with

$$
g(w)=\left(\frac{(v w ; q)_{\infty}}{(w ; q)_{\infty}}\right)^{n} \exp \left((q-1) t \sum_{k=0}^{\infty} R \frac{w q^{k}}{1-v w q^{k}}-L \frac{w q^{k}}{1-w q^{k}}\right) \frac{1}{(v w ; q)_{\infty}}
$$

and the integration contour C is a small circle around 1 .
A formal saddle-point analysis of above formula is consistent with KPZ scaling theory.

Snapshot of an intermediate moment formula

A moment formula similar with Macdonald processes moment formulas.

$$
\begin{aligned}
\mathbb{E}\left[\prod_{i=1}^{k} q^{x_{n_{i}}(t)+n_{i}}\right] & =\frac{(-1)^{k} q^{\frac{k(k-1)}{2}}}{(2 \pi i)^{k}} \oint_{\gamma_{1}} \cdots \oint_{\gamma_{k}} \underbrace{}_{\text {interaction term }} \prod_{1 \leq A<B \leq k} \frac{z_{A}-z_{B}}{z_{A}-q z_{B}} \\
& \times \prod_{j=1}^{k}\left(\frac{1-v z_{j}}{1-z_{j}}\right)^{n_{j}} \exp \left((q-1) t\left(\frac{R z_{j}}{1-v z_{j}}-\frac{L z_{j}}{1-z_{j}}\right)\right) \frac{d z_{j}}{z_{j}\left(1-v z_{j}\right)},
\end{aligned}
$$

where the integration contours $\gamma_{1}, \ldots, \gamma_{k}$ are nested in order to enclose all poles except 0 and $1 / v$.

First Particle: non-universal behaviour

When $v=q$ the rates become much simpler. $[j]_{q}:=\left(1-q^{j}\right) /(1-q)$

Multi-particle Asymmetric Diffusion Model (Sasamoto-Wadati 1998).

Unusual phenomena

- The macroscopic density profile is discontinuous: antishock at the first particle.
- If $R>L$, particles have a net drift to the right, but because of very long range possible jumps on the left, particles are attracted when far.

Consequence for the first particle

$$
\frac{x_{1}(t)-\pi t}{\sigma t^{1 / 3}} \underset{t \rightarrow \infty}{(d)} \mathscr{L}_{T W}
$$

(Very different than ASEP for which scaling is diffusive!)

Polymer limits

Consider the simple random walk X_{t} on \mathbb{Z}, starting from 0 .

$$
\mathbb{P}\left(X_{t+1}=X_{t}+1\right)=\frac{\alpha}{\alpha+\beta}, \mathbb{P}\left(X_{t+1}=X_{t}-1\right)=\frac{\beta}{\alpha+\beta} .
$$

The Central Limit Theorem says that

$$
\frac{X_{t}-t \frac{\alpha-\beta}{\alpha+\beta}}{\sigma \sqrt{t}} \Longrightarrow \mathscr{N}(0,1) .
$$

Theorem (Cramér)

For $\frac{\alpha-\beta}{\alpha+\beta}<x<1$,

$$
\frac{\log \left(\mathbb{P}\left(X_{t}>x t\right)\right)}{t} \underset{t \rightarrow \infty}{ }-I(x),
$$

where $I(x)$ is the Legendre transform of

$$
\lambda(z):=\log \left(\mathbb{E}\left[e^{z X_{1}}\right]\right)=\log \left(\frac{\alpha e^{z}+\beta e^{-z}}{\alpha+\beta}\right) .
$$

In random environment?

Question

What can we say for a random walk in random environment ?
Consider simple random walk on \mathbb{Z} in space-time i.i.d. environment:

$$
\mathrm{P}\left(X_{t+1}=x+1 \mid X_{t}=x\right)=B_{t, x}, \mathrm{P}\left(X_{t+1}=x-1 \mid X_{t}=x\right)=1-B_{t, x},
$$

where $\left(B_{t, x}\right)_{t, x}$ are i.i.d.

- \mathbb{P}, \mathbb{E} : law of the environment.
- P,E : law of the random walk, conditionally on the environment.

Central limit theorem and large deviation principle are still true, even conditionally on the environment.

Quenched large deviation principle

Theorem (Rassoul-Agha, Seppäläinen and Yilmaz, 2013)

Assume that $\log \left(B_{t, x}\right)$ have a finite third moment. Then, the limiting moment generating function

$$
\lambda(z):=\lim _{t \rightarrow \infty} \frac{1}{t} \log \left(\mathrm{E}\left[e^{z X_{t}}\right]\right)
$$

exists a.s., and

$$
\frac{\log \left(\mathrm{P}\left(X_{t}>x t\right)\right)}{t} \underset{t \rightarrow \infty}{\text { a.s. }}-I(x) .
$$

where $I(x)$ is the Legendre transform of λ.
This result is more general (dimension, environment) and also holds for polymers.

An exactly solvable model: the Beta RWRE

We assume that $\left(B_{t, x}\right)$ follow the $\operatorname{Beta}(\alpha, \beta)$ distribution.

$$
\mathbb{P}(B \in[x, x+\mathrm{d} x])=x^{\alpha-1}(1-x)^{\beta-1} \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} \mathrm{d} x .
$$

- Exactly solvable means that we can exactly compute the law of

$$
\mathrm{P}\left(X_{t}>x t\right)
$$

(and more).

For simplicity, assume $\alpha=\beta=1$. (Uniform case)

Theorem (B.-Corwin)

The LDP rate function is

$$
I(x)=1-\sqrt{1-x^{2}} .
$$

Fluctuations around the almost-sure LDP such that

$$
\frac{\log \left(\mathrm{P}\left(X_{t}>x t\right)\right)+I(x) t}{\sigma(x) \cdot t^{1 / 3}} \xlongequal[t \rightarrow \infty]{(d)} \mathscr{L}_{G U E},
$$

with

$$
\sigma(x)^{3}=\frac{2 I(x)^{2}}{1-I(x)},
$$

under the (technical) hypothesis that $x>4 / 5$.
The theorem should extend to the general parameter case α, β and when x covers the full range of large deviation events (i.e. $x \in(0,1)$).

Fredholm determinant

Theorem (B.- Corwin)

Let $u \in \mathbb{C} \backslash \mathbb{R}_{+}$, and t, x with the same parity. Then for any parameters $\alpha, \beta>0$ one has

$$
\mathbb{E}\left[e^{u \mathrm{P}\left(X_{t}>x\right)}\right]=\operatorname{det}\left(I+K_{u}\right)_{\mathbb{L}^{2}\left(C_{0}\right)}
$$

where C_{0} is a small positively oriented circle containing 0 but not $-\alpha-\beta$ nor -1 , and $K_{u}: \mathbb{L}^{2}\left(C_{0}\right) \rightarrow \mathbb{L}^{2}\left(C_{0}\right)$ is defined by its integral kernel

$$
K_{u}\left(w, w^{\prime}\right)=\frac{1}{2 i \pi} \int_{1 / 2-i \infty}^{1 / 2+i \infty} \frac{\pi}{\sin (\pi s)}(-u)^{s} \frac{g(w)}{g(w+s)} \frac{\mathrm{d} s}{s+w-w^{\prime}}
$$

where

$$
g(w)=\left(\frac{\Gamma(w)}{\Gamma(\alpha+w)}\right)^{(t-x) / 2}\left(\frac{\Gamma(\alpha+\beta+w)}{\Gamma(\alpha+w)}\right)^{(t+x) / 2} \Gamma(w)
$$

Idea of the proof

Origin

- Let $\left(x_{n}(t)\right)$ coordinates of the q-Hahn TASEP.
- Convergence as $q \rightarrow 1$

$$
q^{x_{n}(t)} \stackrel{(d)}{\Longrightarrow} Z(t, n)
$$

where $Z(t, n)$ partition function of a polymer model (or random average process) with Beta-distributed weights.

- $Z(t, n)=\mathrm{P}\left(X_{t}>x\right)$ with $x=t-2 n+2$.

Similar method as for exclusion processes

(1) Write the recurrence relation for $Z(t, n)$.

2 Evolution equation for $t \mapsto \mathbb{E}\left[Z\left(t, n_{1}\right) \ldots Z\left(t, n_{k}\right)\right]$.
(3) Solution via Bethe ansatz.
(4) The moment generating series can be again written as a Fredholm determinant.

Extreme value statistics \& Tracy-Widom

Consider $X_{t}^{(1)}, \ldots, X_{t}^{(N)}$ be random walks drawn independently in the same environment.

Fact

The order of the maximum of N i.i.d. random variables is the quantile or order $1-1 / N$.

Relation LDP / extreme values

Second order corrections to the LDP have an interpretation in terms of second order fluctuations of the maximum of i.i.d. samples.

Corollary (B.-Corwin)

Set $N=e^{c t}$. Then, for $\alpha=\beta=1$,

$$
\frac{\max _{i=1, \ldots, N}\left\{X_{t}^{(i)}\right\}-t \sqrt{1-(1-c)^{2}}}{d(c) \cdot t^{1 / 3}} \Longrightarrow \mathscr{L}_{G U E}
$$

where $d(c)$ is an explicit function (proved under assumption $c>2 / 5$).

Zero temperature limit

First passage-time $T(n, m)$ from $(0,0)$ to
 the half-line $D_{n, m}$ by

$$
T(n, m)=\min _{\pi:(0,0) \rightarrow D_{n, m}} \sum_{e \in \pi} t_{e}
$$

Passage times

For $\left(\xi_{i, j}\right)$ i.i.d. Bernoulli and $\left(E_{e}\right)$ i.i.d. Exponential,

$$
t_{e}= \begin{cases}\xi_{i, j} E_{e} & \text { if } e \text { is horizontal }, \\ \left(1-\xi_{i, j}\right) E_{e} & \text { if } e \text { is vertical. }\end{cases}
$$

Theorem (B.-Corwin)

For any $\kappa>a / b$ and parameters $a, b>0$, there exist constants $\rho(\kappa)$ and $\tau(\kappa)$, s.t.

$$
\frac{T(n, \kappa n)-\tau(\kappa) n}{\rho(\kappa) n^{1 / 3}} \Longrightarrow \mathscr{L}_{G U E} .
$$

Outlook

Directions left for future work

- Asymptotic analysis: cover the whole range of parameters.
- Limits of the q-Hahn asymmetric exclusion process.
- Other types of scaling limits.
- Better understanding of the integrability of Beta RWRE / Bernoulli-Exponential FPP. Determinantal processes?

More general open questions

- Universal fluctuations first particle.
- KPZ theory for RWRE.
- Better understanding Tracy-Widom distribution.

Thank you

Questions

