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Introduction

What is KPZ?
Kardar, Parisi, Zhang, in 1986, study the random growth of rough
interfaces. Propose a SPDE to describe the height h(t, x) of the
interface

∂th = ∂2
xh+ (∂xh)2 + Ẇ,

where Ẇ is a white noise. They made scaling predictions and claimed
universality.

In this talk

• We focus on exactly solvable discrete random models.

↪→ more precisely exclusion processes.

• We start from the most simple initial condition and study
different dynamics.



Exclusion process

Xn(t) Xn−1(t)Xn+1(t)

Description of the system

• Coordinates Xn(t),

• Current (integrated)

Nx(t) = #{n | Xn(t) > x},

•
(

Height function via

Rost’s mapping,

h(x, t) = x+ 2Nx(t).
) −6−5−4−3−2−1 0 1 2 3 4 5 6



Limit theorems : Heuristics

Step initial data xn(0) = −n : −4 −3 −2 −1 0 1 2 3 4

Law of large numbers
One expects: for n and t going to infinity with n/t = κ,

Xn(t)

t

a.s.−−−→
t→∞

π(κ).

Tracy-Widom Central limit theorem
For models in the KPZ universality class, one expects

Xn(t)− π(κ)t

σ(κ) · t1/3
===⇒
t→∞

LTW ,

where LTW is the Tracy-Widom law from the fluctuations of the
largest eigenvalue of Gaussian Unitary Ensemble.



KPZ scaling theory : Heuristics
KPZ scaling theory (Krug, Meakin, Halpin-Healy 1992) constitutes an
educated guess to predict the value of the constants π(κ) and σ(κ)
arising in the limit theorems.

Assumptions

• Dynamics are local and space homogeneous.

• Translation invariant stationary measures µρ are labelled by the

average density of particles ρ = lima→∞
# part. between −a and a

2a+1 .

• The function j(ρ) := Eµρ
[

d
dtN0(t)

]
is such that j′′(ρ) 6= 0.

Macroscopic density profile
Let ρ(x, τ) = limt→∞ P (There is a particle at site xt at time tτ) be
the macroscopic density profile. It satisfies the conservation equation

∂

∂t
ρ(x, t) +

∂

∂x
j(ρ(x, t)) = 0,

with ρ(x, 0) = 1x<0 for step initial condition.



We choose n/t = κ(ρ) such that Xn(t) has a local environment given

by µρ. We expect Xn(t)
t −→ π(ρ). If ρ̄(x, t) solves the conservation

PDE, then ρ̄(π(ρ), 1) = ρ.

π(ρ) =
∂j(ρ)

∂ρ
.

The function κ(ρ) can then be calculated by integrating the density,
and one finds for step initial condition

κ(ρ) = −ρ∂j(ρ)

∂ρ
+ j(ρ).

Magnitude of fluctuations
Let λ = −j′′(ρ) and A =

∑
j∈Z Covµρ(η0, ηj) where η0, ηj ∈ {0, 1} are

occupation variables at sites 0 and j. Then

σ(ρ) =

(
−λA2

2ρ3

)1/3

.



Integrated covariance A

Consider Xi, i ∈ Z a stationary sequence of mean zero r.v. Under
some assumptions, Sn/

√
n converges to a Gaussian of variance σ2

where

σ2 = lim
N→∞

E
[
S2
N

N

]
= lim
N→∞

E


(∑N

i=1Xi

)(∑N
i=1Xi

)
N


=E

[∑
i∈Z

X0Xi

]
=
∑
i∈Z

Cov(X0, Xi).

Product form invariant measures
If µα(gap = k) ∝ αk/(g(1) . . . g(k)) for some positive increasing
function g, then

A = −αρ dρ

dα

where ρ(α) is the density of particles under law µα.



Example: TASEP

Description of the dynamics

rate 1 rate 1

Properties
One finds that the invariant measures are such that each site is
occupied independently with probability ρ.
This yields j(ρ) = ρ(1− ρ), π(ρ) = 1− 2ρ and κ(ρ) = ρ2, so that

π = 1− 2
√
κ. One finds σ(ρ) =

(
(1−ρ)2
ρ

)1/3

.

Theorem (Johansson 2000)
For n/t = κ ∈ (0, 1),

Xn(t)− (1− 2
√
κ)t

σ(ρ)t1/3
(d)

===⇒
t→∞

LTW .



A brief introduction to q-analogues I
Newton binomial formula:

(X + Y )n =

n∑
k=0

(
n

k

)
XkY n−k.

If Y X = qXY , one can a priori write

(X + Y )n =

n∑
k=0

Ckn(q)XkY n−k.

Definitions

• q-deformed integer [n]q := 1 + q + · · ·+ qn−1.

• q-deformed factorial n!q := [n]q[n− 1]q . . . [1]q.

• q-Pochhammer symbol: (a; q)n := (1− a)(1− aq) . . . (1− aqn−1).

Then the q-binomial coefficients are defined by[
n
k

]
q

=
n!q

k!q(n− k)!q
=

(q; q)n
(q; q)k(q; q)n−k

= Ckn(q)



A brief introduction to q-analogues II

Fix 0 < q < 1 for the rest of the talk.

Definition
The q-exponential is defined by

eq(x) =

∞∑
k=0

xk

kq!

Then we have the identity

eq(x) =

∞∑
k=0

(x(1− q))k

(q; q)k
=

1

(x(1− q); q)∞
.

The q-Laplace transform of a random variable X is

E
[

1

(ζ(1− q)X; q)∞

]



Definition of the q-TASEP

Introduced by Borodin and Corwin in the context of Macdonald
processes (2011). Set q ∈ (0, 1).

rate 1− qgap

gap = 2Xn(t) Xn−1(t)Xn+1(t)

Stationary measures
Translation invariant stationary measures are such that gaps are
distributed according to q-geometric random variables:

P(Xn −Xn+1 − 1 = k) =
αk

(q; q)k
(α; q)∞,

for α ∈ (0, 1).



Main result

• For the system at equilibrium given by the stationary measure

µα(k) = αk

(q;q)k
(α; q)∞, the average density is given by

ρα =
1

1 + E[gap]
=

1

1 +
∑∞
k=0

αqk

1−αqk
.

• The speed of a particle is Eµα [1− qgap] = α.

• This implies that j(ρα) = αρα.

• This yields formulas for κ(ρα), π(ρα) and σ(ρα) given by KPZ
scaling theory. (involves q-deformed special functions)

Theorem (Ferrari-Vető, 2013 / B. 2014)
For α ∈ (0, 1), n/t = κ(α) ranges in (0, 1) and

Xn(t)− π(α)t

σ(α) · t1/3
(d)

===⇒
t→∞

LTW .



Exclusion process vs Zero Range

• Coupling xk − xk+1 − 1 ∼ yk
• Exclusion processes ↔ Zero range

processes

• here, q-totally asymmetric zero
range process, also called q-Boson
model.

y0 y1 y2 y3 y4 y5 y6

rate 1− qy2

Definition
Two Markov processes ~X(t) ∈ X and ~Y (t) ∈ Y are said dual w.r.t
H : X × Y → R if for any initial data,

E[H( ~X(t), ~Y (0))] = E[H( ~X(0), ~Y (t))] ⇔ LXH(~x, ~y) = LYH(~x, ~y)

Proposition (Borodin-Corwin-Sasamoto, 2012)
A direct calculation shows that for H(~x, ~y) =

∏N
i=0 q

(xi+i)yi ,

Lq−TASEPH = Lq−BosonH.



Remark
The duality is useful if H characterizes enough the law of the process.
Here E[H( ~X(t), ~y)] are mixed moments of the variables qXi(t)

What one can do with duality?
We compute the probability distribution function of Xn(t) (cf
Borodin-Corwin-Sasmoto 2012).

1 Find a closed system of ODEs for E
[∏

i q
yiXi(t)

]
. Using the

duality, one writes Kolmogorov equations for a q-Boson with k
particles.

2 Solve the system of equations using Bethe ansatz.

3 It yields formulas for E
[
qkXn(t)

]
for k ∈ N which characterize the

law of Xn(t).

4 Take generating function to express the q-Laplace transform

E
[

1
(ζqXn(t);q)∞

.
]
.

5 Can be inverted to find the probability distribution function.



Fredholm determinant representation

Theorem (Borodin-Corwin, 2011)
Fix 0 < q < 1. For all ζ ∈ C \ R+, if Xn(t) are coordinates of
particles of the q-TASEP with step initial data,

E
[

1

(ζqXn(t); q)∞

]
= det(I +Kζ)L2(C),

where det(I +Kζ)L2(C) is the Fredholm determinant of Kζ defined by
its integral kernel

Kζ(w,w
′) =

1

2iπ

∫
1/2+iR

π

sin(πs)
(−ζ)s

g(w)

g(qsw)

ds

qsw − w′

with

g(w) =

(
w

(w; q)∞

)n
e−tw,

and the integration contour C is a small circle around 1.



Asymptotic analysis I

• One expects Xn(t) ∼ π(α)t+ t1/3σ(α)χTW where χTW is a
Tracy-Widom distributed random variable.

• The function x 7→ 1/(−qx; q)∞ have limits 0 in −∞ and 1 in

+∞. If one sets ζ = −q−π(α)t−t1/3σ(α)x for x ∈ R,

lim
t→∞

E
[

1

(ζqXn(t); q)∞

]
= lim
t→∞

P
(
Xn(t)− π(α)t

σ(α)t1/3
6 x

)
.

• One needs to prove that

lim
t→∞

det(I +Kζ) = FTW(x),

where FTW is the distribution function of a Tracy-Widom r.v.



Asymptotic analysis II

Fredholm Determinant

det(I+K)L2(C) = 1+

∞∑
n=1

1

n!

∫
C

. . .

∫
C

det (K(wi, wj))16i,j6n dw1 . . . dwj .

Fredholm determinant representation of FTW(x)
FTW(x) = det(I +KAi)L2(Γ) where

KAi(w,w
′) =

1

2iπ

∫
Ξ

dz
ez

3/3−zx

ew3/3−wx
1

z − w
1

z − w′
,

where Γ and Ξ are some flexible contours.

Idea of the proof
One applies Laplace’s method (saddle point analysis) on each n-fold
integral in the Fredholm determinant series expansion.



Xn(t) Xn−1(t)Xn+1(t)

Question
Can we prove a Tracy-Widom central limit theorem for the most
general exclusion process?

Partial answers

• CLT for ASEP (Asymmetric simple exclusion process)
(Tracy-Widom 2008).

• Discrete time version of (q)-TASEP. (Borodin-Corwin 2013).

• Many other partial answers in the literature, namely proving
fluctuation exponents under hypotheses.

• Exactly solvable long-range exclusion process: The q-Hahn
TASEP (Povolotsky 2013 / Corwin 2014).



The q-Hahn process

q-Hahn Boson process
Discrete-time Markov chain. Particles
live on N sites. From a site occupied
by y particles, j 6 y particles move to
the left with probability ϕ(j|y).
Introduced by Povolotsky 2013

y0 y1 y2 y3 y4 y5 y6

Prob. ϕq,µ,ν(2|y4)

q-Hahn distribution
For 0 < q < 1 and 0 6 ν 6 µ 6 1,

ϕq,µ,ν(j|y) := µj
(ν/µ; q)j(µ; q)y−j

(ν; q)y

[
y
j

]
q

,

defines a probability distribution on {0, 1, . . . , y}. (This is also the
weight function for the q-Hahn orthogonal polynomials)



Duality with q-Hahn TASEP

The q-Hahn process can be described by an exclusion process:
Prob. ϕ(2|3)

gap = 3Xn(t) Xn−1(t)Xn+1(t)

Markov Duality (Corwin 2014, B. 2014)
The q-Hahn TASEP and the q-Hahn Boson are dual w.r.t.
H(~x, ~y) =

∏N
i=1 q

yi(xi+i).

E
[
H( ~X(t), ~Y (0))

]
= E

[
H( ~X(0), ~Y (t))

]
.

It relies on a symmetry of the q-Hahn distribution:

m∑
j=0

ϕq,µ,ν(j|m)qjy =

y∑
j=0

ϕq,µ,ν(j|y)qjm.



Almost the same Fredholm determinant

Theorem (Corwin 2014)
Fix 0 < q < 1 and 0 6 ν 6 µ 6 1. For all ζ ∈ C \ R+,

E
[

1

(ζqXn(t); q)∞

]
= det(I +Kζ)L2(C),

where det(I +Kζ)L2(C) is the Fredholm determinant of Kζ defined by
its integral kernel

Kζ(w,w
′) =

1

2iπ

∫
1/2+iR

π

sin(πs)
(−q−nζ)s

g(w)

g(qsw)

ds

qsw − w′

with

g(w) =

(
(νw; q)∞
(w; q)∞

)n(
(µw; q)∞
(νw; q)∞

)t
1

(νw; q)∞
,

and the integration contour C is a small circle around 1.



Degenerations

• ν = 0 : Corresponds to a discrete-time q-TASEP : Geometric
q-TASEP.

• If ν = 0 and scaling µ = (1− q)ε and rescaling time by τ = ε−1t,
one recovers the q-TASEP.

• Many other degenerations

Translation invariant stationary measures

µα(gap = k) = αk
(ν; q)k
(q; q)k

(α; q)∞
(αν; q)∞

.

Theorem (Vető (2014))
Under some restrictions on the range of parameters q, µ and ν, and
for α > 2q/(1 + q),

Xn(t)− π(α)t

σ(α) · t1/3
(d)

===⇒
t→∞

LTW .



Two sided q-Hahn process

Question
Is it possible to generalize the processes allowing jumps in both
directions, preserving duality and Bethe ansatz solvability?

Continuous time process:

φR(2|3)φL(1|2)

gap = 3Xn(t) Xn−1(t)Xn+1(t)

Rates
Let R,L ∈ R+ be asymmetry parameters, with R+ L = 1. We define

φRq,ν(j|m) := R νj−1

[j]q

(ν;q)m−j
(ν;q)m

(q;q)m
(q;q)m−j

' R lim
µ→ν

ϕq,µ,ν(j|m)

φLq,ν(j|m) := L 1
[j]q

(ν;q)m−j
(ν;q)m

(q;q)m
(q;q)m−j

' L lim
µ→ν

ϕq−1,µ−1,ν−1(j|m).



Duality

Two-sided q-Hahn Boson

• Sites indexed by N.

• For each j, j′ 6 yi, j particles
move to site i− 1 with rate
φRq,ν(j|yi) and j′ particles move to

site i+ 1 with rate φLq,ν(j′|yi).
y0 y1 y2 y3 y4 y5 y6 . . .

rate φR(2|y4)
rate φL(3|y4)

Duality
For any initial conditions ~X(0) being a finite perturbation of the step,

and ~Y (0) with a finite number of particles,

E

[ ∞∏
i=1

qYi(0)(Xi(t)+i)

]
= E

[ ∞∏
i=1

qYi(t)(Xi(0)+i)

]
.



Fredholm determinant

Theorem (B.-Corwin (in prep.))
Fix 0 < q < 1 and 0 6 ν < 1. For all ζ ∈ C \ R+,

E
[

1

(ζqXn(t); q)∞

]
= det(I +Kζ)L2(C),

where det(I +Kζ)L2(C) is the Fredholm determinant of Kζ defined by
its integral kernel

Kζ(w,w
′) =

1

2iπ

∫
1/2+iR

π

sin(πs)
(−q−nζ)s

g(w)

g(qsw)

ds

qsw − w′

with

g(w) =

(
(νw; q)∞
(w; q)∞

)n
exp

(
(q − 1)t

∞∑
k=0

R
wqk

1− νwqk
− L wqk

1− wqk

)
1

(νw; q)∞
,

and the integration contour C is a small circle around 1.



Scaling theory

Translation invariant stationary measures

µα(gap = k) = αk
(ν; q)k
(q; q)k

(α; q)∞
(αν; q)∞

,

same as for q-Hahn TASEP.

Model dependent constants
One can still find expressions for ρ as a function of α, and then κ(α),
π(α) and σ(α). (involves q-deformed special functions).

Tracy-Widom Central limit theorem
Fix 0 < q, ν < 1 and R > L. For all meaningful α, keeping n/t = κ(α)
we expect

Xn(t)− π(α)t

σ(α) · t1/3
(d)

===⇒
t→∞

LTW .



Multi-particle Asymmetric Diffusion
Model

When ν = q the rates no longer depend on the gap and become
R/[j]q−1 and L/[j]q.

R/[2]q−1
L/[1]q

xn(t) xn−1(t)xn+1(t)

• Introduced by Sasamoto and Wadati 1998, in the Boson
formulation.

• Translation invariant stationary measures are products of i.i.d.
Bernoulli.



Simulations

One can check the predictions of KPZ scaling theory (here only the
LLN) with simulations:
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0.2
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0.6

0.8

1.0

Figure : Nxt(t)/t in function of x for t = 1500. Left: R = 0.8, Right: R = 1.
L = 1−R



Result

Theorem (B.-Corwin, in preparation)
Fix 0 < q < 1 and R > L. For α > 2q/(1 + q), keeping n/t = κ(α) we
have

Xn(t)− π(α)t

σ(α) · t1/3
(d)

===⇒
t→∞

LTW .

The saddle point analysis is computationally difficult for
α < 2q/(1 + q).

Surprising phenomena

• The density profile has a discontinuity at the first particles.

• Because of long range jumps on the left, the position of the first
particle does not satisfy a classical CLT but a Tracy-Widom
CLT. (It is not the case for ASEP)



Conclusion

We have seen

• General expression of model-dependent constant for the
renormalization theory of models in the KPZ universality class,
in the context of exclusion processes.

• Exactly solvable examples : TASEP and the q deformed
exclusion processes: q-TASEP and q-Hahn TASEP.

• Exact solvability of the q-Hahn process extends to two-sided
jumps. Some degenerations were already known to be integrable.



Thank you for your attention
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