KPZ scaling theory for integrable exclusion processes

Guillaume Barraquand

LPMA
Université Paris Diderot (Paris 7)

November 20, 2014

Introduction

What is KPZ?
Kardar, Parisi, Zhang, in 1986, study the random growth of rough interfaces. Propose a SPDE to describe the height $h(t, x)$ of the interface

$$
\partial_{t} h=\partial_{x}^{2} h+\left(\partial_{x} h\right)^{2}+\dot{\mathcal{W}},
$$

where $\dot{\mathcal{W}}$ is a white noise. They made scaling predictions and claimed universality.

In this talk

- We focus on exactly solvable discrete random models.
\hookrightarrow more precisely exclusion processes.
- We start from the most simple initial condition and study different dynamics.

Exclusion process

Description of the system

- Coordinates $X_{n}(t)$,
- Current (integrated)

$$
N_{x}(t)=\#\left\{n \mid X_{n}(t) \geqslant x\right\},
$$

- (Height function via Rost's mapping,

$$
\left.h(x, t)=x+2 N_{x}(t) .\right)
$$

Limit theorems: Heuristics

Step initial data $x_{n}(0)=-n$:

Law of large numbers
One expects: for n and t going to infinity with $n / t=\kappa$,

$$
\frac{X_{n}(t)}{t} \xrightarrow[t \rightarrow \infty]{\text { a.s. }} \pi(\kappa)
$$

Tracy-Widom Central limit theorem

For models in the KPZ universality class, one expects

$$
\frac{X_{n}(t)-\pi(\kappa) t}{\sigma(\kappa) \cdot t^{1 / 3}} \underset{t \rightarrow \infty}{\Longrightarrow} \mathcal{L}_{T W}
$$

where $\mathcal{L}_{T W}$ is the Tracy-Widom law from the fluctuations of the largest eigenvalue of Gaussian Unitary Ensemble.

KPZ scaling theory : Heuristics

KPZ scaling theory (Krug, Meakin, Halpin-Healy 1992) constitutes an educated guess to predict the value of the constants $\pi(\kappa)$ and $\sigma(\kappa)$ arising in the limit theorems.

Assumptions

- Dynamics are local and space homogeneous.
- Translation invariant stationary measures μ_{ρ} are labelled by the average density of particles $\rho=\lim _{a \rightarrow \infty} \frac{\# \text { part. between }-a \text { and } a}{2 a+1}$.
- The function $j(\rho):=\mathbb{E}^{\mu_{\rho}}\left[\frac{\mathrm{d}}{\mathrm{dt}} N_{0}(t)\right]$ is such that $j^{\prime \prime}(\rho) \neq 0$.

Macroscopic density profile

Let $\rho(x, \tau)=\lim _{t \rightarrow \infty} \mathbb{P}$ (There is a particle at site $x t$ at time $t \tau$) be the macroscopic density profile. It satisfies the conservation equation

$$
\frac{\partial}{\partial t} \rho(x, t)+\frac{\partial}{\partial x} j(\rho(x, t))=0
$$

with $\rho(x, 0)=\mathbb{1}_{x<0}$ for step initial condition.

We choose $n / t=\kappa(\rho)$ such that $X_{n}(t)$ has a local environment given by μ_{ρ}. We expect $\frac{X_{n}(t)}{t} \longrightarrow \pi(\rho)$. If $\bar{\rho}(x, t)$ solves the conservation PDE, then $\bar{\rho}(\pi(\rho), 1)=\rho$.

$$
\pi(\rho)=\frac{\partial j(\rho)}{\partial \rho}
$$

The function $\kappa(\rho)$ can then be calculated by integrating the density, and one finds for step initial condition

$$
\kappa(\rho)=-\rho \frac{\partial j(\rho)}{\partial \rho}+j(\rho)
$$

Magnitude of fluctuations

Let $\lambda=-j^{\prime \prime}(\rho)$ and $A=\sum_{j \in \mathbb{Z}} \operatorname{Cov}_{\mu_{\rho}}\left(\eta_{0}, \eta_{j}\right)$ where $\eta_{0}, \eta_{j} \in\{0,1\}$ are occupation variables at sites 0 and j. Then

$$
\sigma(\rho)=\left(\frac{-\lambda A^{2}}{2 \rho^{3}}\right)^{1 / 3}
$$

Integrated covariance A

Consider $X_{i}, i \in \mathbb{Z}$ a stationary sequence of mean zero r.v. Under some assumptions, S_{n} / \sqrt{n} converges to a Gaussian of variance σ^{2} where

$$
\begin{aligned}
\sigma^{2}=\lim _{N \rightarrow \infty} \mathbb{E}\left[\frac{S_{N}^{2}}{N}\right] & =\lim _{N \rightarrow \infty} \mathbb{E}\left[\frac{\left(\sum_{i=1}^{N} X_{i}\right)\left(\sum_{i=1}^{N} X_{i}\right)}{N}\right] \\
& =\mathbb{E}\left[\sum_{i \in \mathbb{Z}} X_{0} X_{i}\right]=\sum_{i \in \mathbb{Z}} \operatorname{Cov}\left(X_{0}, X_{i}\right) .
\end{aligned}
$$

Product form invariant measures If $\mu_{\alpha}(g a p=k) \propto \alpha^{k} /(g(1) \ldots g(k))$ for some positive increasing function g, then

$$
A=-\alpha \rho \frac{\mathrm{d} \rho}{\mathrm{~d} \alpha}
$$

where $\rho(\alpha)$ is the density of particles under law μ_{α}.

Example: TASEP

Description of the dynamics

Properties

One finds that the invariant measures are such that each site is occupied independently with probability ρ.
This yields $j(\rho)=\rho(1-\rho), \pi(\rho)=1-2 \rho$ and $\kappa(\rho)=\rho^{2}$, so that $\pi=1-2 \sqrt{\kappa}$. One finds $\sigma(\rho)=\left(\frac{(1-\rho)^{2}}{\rho}\right)^{1 / 3}$.

Theorem (Johansson 2000)
For $n / t=\kappa \in(0,1)$,

$$
\frac{X_{n}(t)-(1-2 \sqrt{\kappa}) t}{\sigma(\rho) t^{1 / 3}} \xlongequal[t \rightarrow \infty]{(d)} \mathcal{L}_{T W}
$$

A brief introduction to q-analogues I

Newton binomial formula:

$$
(X+Y)^{n}=\sum_{k=0}^{n}\binom{n}{k} X^{k} Y^{n-k}
$$

If $Y X=q X Y$, one can a priori write

$$
(X+Y)^{n}=\sum_{k=0}^{n} C_{n}^{k}(q) X^{k} Y^{n-k}
$$

Definitions

- q-deformed integer $[n]_{q}:=1+q+\cdots+q^{n-1}$.
- q-deformed factorial $n!_{q}:=[n]_{q}[n-1]_{q} \ldots[1]_{q}$.
- q-Pochhammer symbol: $(a ; q)_{n}:=(1-a)(1-a q) \ldots\left(1-a q^{n-1}\right)$.

Then the q-binomial coefficients are defined by

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}=\frac{n!_{q}}{k!_{q}(n-k)!_{q}}=\frac{(q ; q)_{n}}{(q ; q)_{k}(q ; q)_{n-k}}=C_{n}^{k}(q)
$$

A brief introduction to q-analogues II

Fix $0<q<1$ for the rest of the talk.
Definition
The q-exponential is defined by

$$
e_{q}(x)=\sum_{k=0}^{\infty} \frac{x^{k}}{k_{q}!}
$$

Then we have the identity

$$
e_{q}(x)=\sum_{k=0}^{\infty} \frac{(x(1-q))^{k}}{(q ; q)_{k}}=\frac{1}{(x(1-q) ; q)_{\infty}}
$$

The q-Laplace transform of a random variable X is

$$
\mathbb{E}\left[\frac{1}{(\zeta(1-q) X ; q)_{\infty}}\right]
$$

Definition of the q-TASEP

Introduced by Borodin and Corwin in the context of Macdonald processes (2011). Set $q \in(0,1)$.

Stationary measures

Translation invariant stationary measures are such that gaps are distributed according to q-geometric random variables:

$$
\mathbb{P}\left(X_{n}-X_{n+1}-1=k\right)=\frac{\alpha^{k}}{(q ; q)_{k}}(\alpha ; q)_{\infty},
$$

for $\alpha \in(0,1)$.

Main result

- For the system at equilibrium given by the stationary measure $\mu_{\alpha}(k)=\frac{\alpha^{k}}{(q ; q)_{k}}(\alpha ; q)_{\infty}$, the average density is given by

$$
\rho_{\alpha}=\frac{1}{1+\mathbb{E}[g a p]}=\frac{1}{1+\sum_{k=0}^{\infty} \frac{\alpha q^{k}}{1-\alpha q^{k}}}
$$

- The speed of a particle is $\mathbb{E}^{\mu_{\alpha}}\left[1-q^{g a p}\right]=\alpha$.
- This implies that $j\left(\rho_{\alpha}\right)=\alpha \rho_{\alpha}$.
- This yields formulas for $\kappa\left(\rho_{\alpha}\right), \pi\left(\rho_{\alpha}\right)$ and $\sigma\left(\rho_{\alpha}\right)$ given by KPZ scaling theory. (involves q-deformed special functions)

Theorem (Ferrari-Vető, 2013 / B. 2014)
 For $\alpha \in(0,1), n / t=\kappa(\alpha)$ ranges in $(0,1)$ and

$$
\frac{X_{n}(t)-\pi(\alpha) t}{\sigma(\alpha) \cdot t^{1 / 3}} \underset{t \rightarrow \infty}{(d)} \mathcal{L}_{T W}
$$

Exclusion process vs Zero Range

- Coupling $x_{k}-x_{k+1}-1 \sim y_{k}$
- Exclusion processes \leftrightarrow Zero range processes
- here, q-totally asymmetric zero range process, also called q-Boson
 model.
Definition
Two Markov processes $\vec{X}(t) \in \mathcal{X}$ and $\vec{Y}(t) \in \mathcal{Y}$ are said dual w.r.t $H: \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R}$ if for any initial data,
$\mathbb{E}[H(\vec{X}(t), \vec{Y}(0))]=\mathbb{E}[H(\vec{X}(0), \vec{Y}(t))] \quad \Leftrightarrow \quad L^{X} H(\vec{x}, \vec{y})=L^{Y} H(\vec{x}, \vec{y})$

Proposition (Borodin-Corwin-Sasamoto, 2012)
A direct calculation shows that for $H(\vec{x}, \vec{y})=\prod_{i=0}^{N} q^{\left(x_{i}+i\right) y_{i}}$,

$$
L^{q-\mathrm{TASEP}} H=L^{q-\operatorname{Boson}} H
$$

Remark

The duality is useful if H characterizes enough the law of the process. Here $\mathbb{E}[H(\vec{X}(t), \vec{y})]$ are mixed moments of the variables $q^{X_{i}(t)}$

What one can do with duality?

We compute the probability distribution function of $X_{n}(t)$ (cf Borodin-Corwin-Sasmoto 2012).
(1) Find a closed system of ODEs for $\mathbb{E}\left[\prod_{i} q^{y_{i} X_{i}(t)}\right]$. Using the duality, one writes Kolmogorov equations for a q-Boson with k particles.
(2) Solve the system of equations using Bethe ansatz.
(3) It yields formulas for $\mathbb{E}\left[q^{k X_{n}(t)}\right]$ for $k \in \mathbb{N}$ which characterize the law of $X_{n}(t)$.
(4) Take generating function to express the q-Laplace transform $\mathbb{E}\left[\frac{1}{\left(\zeta q^{X_{n}(t)} ; q\right)_{\infty}} \cdot\right]$.
(5) Can be inverted to find the probability distribution function.

Fredholm determinant representation

Theorem (Borodin-Corwin, 2011)
Fix $0<q<1$. For all $\zeta \in \mathbb{C} \backslash \mathbb{R}_{+}$, if $X_{n}(t)$ are coordinates of particles of the q-TASEP with step initial data,

$$
\mathbb{E}\left[\frac{1}{\left(\zeta q^{X_{n}(t)} ; q\right)_{\infty}}\right]=\operatorname{det}\left(I+K_{\zeta}\right)_{\mathbb{L}^{2}(C)},
$$

where $\operatorname{det}\left(I+K_{\zeta}\right)_{\mathbb{L}^{2}(C)}$ is the Fredholm determinant of K_{ζ} defined by its integral kernel

$$
K_{\zeta}\left(w, w^{\prime}\right)=\frac{1}{2 i \pi} \int_{1 / 2+i \mathbb{R}} \frac{\pi}{\sin (\pi s)}(-\zeta)^{s} \frac{g(w)}{g\left(q^{s} w\right)} \frac{\mathrm{ds}}{q^{s} w-w^{\prime}}
$$

with

$$
g(w)=\left(\frac{w}{(w ; q)_{\infty}}\right)^{n} e^{-t w}
$$

and the integration contour C is a small circle around 1.

Asymptotic analysis I

- One expects $X_{n}(t) \sim \pi(\alpha) t+t^{1 / 3} \sigma(\alpha) \chi_{T W}$ where $\chi_{T W}$ is a Tracy-Widom distributed random variable.
- The function $x \mapsto 1 /\left(-q^{x} ; q\right)_{\infty}$ have limits 0 in $-\infty$ and 1 in $+\infty$. If one sets $\zeta=-q^{-\pi(\alpha) t-t^{1 / 3} \sigma(\alpha) x}$ for $x \in \mathbb{R}$,

$$
\lim _{t \rightarrow \infty} \mathbb{E}\left[\frac{1}{\left(\zeta q^{X_{n}(t)} ; q\right)_{\infty}}\right]=\lim _{t \rightarrow \infty} \mathbb{P}\left(\frac{X_{n}(t)-\pi(\alpha) t}{\sigma(\alpha) t^{1 / 3}} \leqslant x\right)
$$

- One needs to prove that

$$
\lim _{t \rightarrow \infty} \operatorname{det}\left(I+K_{\zeta}\right)=F_{\mathrm{TW}}(x)
$$

where F_{TW} is the distribution function of a Tracy-Widom r.v.

Asymptotic analysis II

Fredholm Determinant

$\operatorname{det}(I+K)_{\mathbb{L}^{2}(C)}=1+\sum_{n=1}^{\infty} \frac{1}{n!} \int_{C} \ldots \int_{C} \operatorname{det}\left(K\left(w_{i}, w_{j}\right)\right)_{1 \leqslant i, j \leqslant n} \mathrm{~d} w_{1} \ldots \mathrm{~d} w_{j}$.

Fredholm determinant representation of $F_{\text {TW }}(x)$
$F_{\mathrm{TW}}(x)=\operatorname{det}\left(I+K_{\mathrm{Ai}^{2}}\right)_{\mathbb{L}^{2}(\Gamma)}$ where

$$
K_{\mathrm{Ai}}\left(w, w^{\prime}\right)=\frac{1}{2 i \pi} \int_{\Xi} \mathrm{d} z \frac{e^{z^{3} / 3-z x}}{e^{w^{3} / 3-w x}} \frac{1}{z-w} \frac{1}{z-w^{\prime}},
$$

where Γ and Ξ are some flexible contours.
Idea of the proof
One applies Laplace's method (saddle point analysis) on each n-fold integral in the Fredholm determinant series expansion.

Question

Can we prove a Tracy-Widom central limit theorem for the most general exclusion process?

Partial answers

- CLT for ASEP (Asymmetric simple exclusion process) (Tracy-Widom 2008).
- Discrete time version of (q)-TASEP. (Borodin-Corwin 2013).
- Many other partial answers in the literature, namely proving fluctuation exponents under hypotheses.
- Exactly solvable long-range exclusion process: The q-Hahn TASEP (Povolotsky 2013 / Corwin 2014).

The q-Hahn process

q-Hahn Boson process
Discrete-time Markov chain. Particles live on N sites. From a site occupied by y particles, $j \leqslant y$ particles move to the left with probability $\varphi(j \mid y)$.

Introduced by Povolotsky 2013
q-Hahn distribution
For $0<q<1$ and $0 \leqslant \nu \leqslant \mu \leqslant 1$,

$$
\varphi_{q, \mu, \nu}(j \mid y):=\mu^{j} \frac{(\nu / \mu ; q)_{j}(\mu ; q)_{y-j}}{(\nu ; q)_{y}}\left[\begin{array}{l}
y \\
j
\end{array}\right]_{q}
$$

defines a probability distribution on $\{0,1, \ldots, y\}$. (This is also the weight function for the q-Hahn orthogonal polynomials)

Duality with q-Hahn TASEP

The q-Hahn process can be described by an exclusion process:

Markov Duality (Corwin 2014, B. 2014)
The q-Hahn TASEP and the q-Hahn Boson are dual w.r.t. $H(\vec{x}, \vec{y})=\prod_{i=1}^{N} q^{y_{i}\left(x_{i}+i\right)}$.

$$
\mathbb{E}[H(\vec{X}(t), \vec{Y}(0))]=\mathbb{E}[H(\vec{X}(0), \vec{Y}(t))] .
$$

It relies on a symmetry of the q-Hahn distribution:

$$
\sum_{j=0}^{m} \varphi_{q, \mu, \nu}(j \mid m) q^{j y}=\sum_{j=0}^{y} \varphi_{q, \mu, \nu}(j \mid y) q^{j m}
$$

Almost the same Fredholm determinant

Theorem (Corwin 2014)
Fix $0<q<1$ and $0 \leqslant \nu \leqslant \mu \leqslant 1$. For all $\zeta \in \mathbb{C} \backslash \mathbb{R}_{+}$,

$$
\mathbb{E}\left[\frac{1}{\left(\zeta q^{X_{n}(t)} ; q\right)_{\infty}}\right]=\operatorname{det}\left(I+K_{\zeta}\right)_{\mathbb{L}^{2}(C)},
$$

where $\operatorname{det}\left(I+K_{\zeta}\right)_{\mathbb{L}^{2}(C)}$ is the Fredholm determinant of K_{ζ} defined by its integral kernel

$$
K_{\zeta}\left(w, w^{\prime}\right)=\frac{1}{2 i \pi} \int_{1 / 2+i \mathbb{R}} \frac{\pi}{\sin (\pi s)}\left(-q^{-n} \zeta\right)^{s} \frac{g(w)}{g\left(q^{s} w\right)} \frac{\mathrm{ds}}{q^{s} w-w^{\prime}}
$$

with

$$
g(w)=\left(\frac{(\nu w ; q)_{\infty}}{(w ; q)_{\infty}}\right)^{n}\left(\frac{(\mu w ; q)_{\infty}}{(\nu w ; q)_{\infty}}\right)^{t} \frac{1}{(\nu w ; q)_{\infty}}
$$

and the integration contour C is a small circle around 1 .

Degenerations

- $\nu=0$: Corresponds to a discrete-time q-TASEP : Geometric q-TASEP.
- If $\nu=0$ and scaling $\mu=(1-q) \epsilon$ and rescaling time by $\tau=\epsilon^{-1} t$, one recovers the q-TASEP.
- Many other degenerations

Translation invariant stationary measures

$$
\mu_{\alpha}(\operatorname{gap}=k)=\alpha^{k} \frac{(\nu ; q)_{k}}{(q ; q)_{k}} \frac{(\alpha ; q)_{\infty}}{(\alpha \nu ; q)_{\infty}}
$$

Theorem (Vető (2014))
Under some restrictions on the range of parameters q, μ and ν, and for $\alpha>2 q /(1+q)$,

$$
\frac{X_{n}(t)-\pi(\alpha) t}{\sigma(\alpha) \cdot t^{1 / 3}} \underset{t \rightarrow \infty}{(d)} \mathcal{L}_{T W}
$$

Two sided q-Hahn process

Question

Is it possible to generalize the processes allowing jumps in both directions, preserving duality and Bethe ansatz solvability?
Continuous time process:

Rates

Let $R, L \in \mathbb{R}_{+}$be asymmetry parameters, with $R+L=1$. We define

$$
\begin{aligned}
& \phi_{q, \nu}^{R}(j \mid m) \quad:=R \frac{\nu^{j-1}}{[j]_{q}} \frac{(\nu ; q)_{m-j}}{(\nu ; q)_{m}} \frac{(q ; q)_{m}}{(q ; q)_{m-j}} \simeq R \lim _{\mu \rightarrow \nu} \varphi_{q, \mu, \nu}(j \mid m) \\
& \phi_{q, \nu}^{L}(j \mid m) \quad:=L \frac{1}{[j]_{q}} \frac{(\nu ; q)_{m-j}}{(\nu ; q)_{m}} \frac{(q ; q)_{m}}{(q ; q)_{m-j}} \simeq L \lim _{\mu \rightarrow \nu} \varphi_{q^{-1}, \mu^{-1}, \nu-1}(j \mid m) .
\end{aligned}
$$

Duality

Two-sided q-Hahn Boson

- Sites indexed by \mathbb{N}.
- For each $j, j^{\prime} \leqslant y_{i}, j$ particles move to site $i-1$ with rate $\phi_{q, \nu}^{R}\left(j \mid y_{i}\right)$ and j^{\prime} particles move to site $i+1$ with rate $\phi_{q, \nu}^{L}\left(j^{\prime} \mid y_{i}\right)$.

Duality

For any initial conditions $\vec{X}(0)$ being a finite perturbation of the step, and $\vec{Y}(0)$ with a finite number of particles,

$$
\mathbb{E}\left[\prod_{i=1}^{\infty} q^{Y_{i}(0)\left(X_{i}(t)+i\right)}\right]=\mathbb{E}\left[\prod_{i=1}^{\infty} q^{Y_{i}(t)\left(X_{i}(0)+i\right)}\right] .
$$

Fredholm determinant

Theorem (B.-Corwin (in prep.))
Fix $0<q<1$ and $0 \leqslant \nu<1$. For all $\zeta \in \mathbb{C} \backslash \mathbb{R}_{+}$,

$$
\mathbb{E}\left[\frac{1}{\left(\zeta q^{X_{n}(t)} ; q\right)_{\infty}}\right]=\operatorname{det}\left(I+K_{\zeta}\right)_{\mathbb{L}^{2}(C)},
$$

where $\operatorname{det}\left(I+K_{\zeta}\right)_{\mathbb{L}^{2}(C)}$ is the Fredholm determinant of K_{ζ} defined by its integral kernel

$$
K_{\zeta}\left(w, w^{\prime}\right)=\frac{1}{2 i \pi} \int_{1 / 2+i \mathbb{R}} \frac{\pi}{\sin (\pi s)}\left(-q^{-n} \zeta\right)^{s} \frac{g(w)}{g\left(q^{s} w\right)} \frac{\mathrm{ds}}{q^{s} w-w^{\prime}}
$$

with

$$
g(w)=\left(\frac{(\nu w ; q)_{\infty}}{(w ; q)_{\infty}}\right)^{n} \exp \left((q-1) t \sum_{k=0}^{\infty} R \frac{w q^{k}}{1-\nu w q^{k}}-L \frac{w q^{k}}{1-w q^{k}}\right) \frac{1}{(\nu w ; q)_{\infty}}
$$

and the integration contour C is a small circle around 1.

Scaling theory

Translation invariant stationary measures

$$
\mu_{\alpha}(\operatorname{gap}=k)=\alpha^{k} \frac{(\nu ; q)_{k}}{(q ; q)_{k}} \frac{(\alpha ; q)_{\infty}}{(\alpha \nu ; q)_{\infty}}
$$

same as for q-Hahn TASEP.

Model dependent constants

One can still find expressions for ρ as a function of α, and then $\kappa(\alpha)$, $\pi(\alpha)$ and $\sigma(\alpha)$. (involves q-deformed special functions).

Tracy-Widom Central limit theorem
Fix $0<q, \nu<1$ and $R>L$. For all meaningful α, keeping $n / t=\kappa(\alpha)$ we expect

$$
\frac{X_{n}(t)-\pi(\alpha) t}{\sigma(\alpha) \cdot t^{1 / 3}} \underset{t \rightarrow \infty}{\stackrel{(d)}{\Longrightarrow}} \mathcal{L}_{T W}
$$

Multi-particle Asymmetric Diffusion Model

When $\nu=q$ the rates no longer depend on the gap and become $R /[j]_{q^{-1}}$ and $L /[j]_{q}$.

- Introduced by Sasamoto and Wadati 1998, in the Boson formulation.
- Translation invariant stationary measures are products of i.i.d. Bernoulli.

Simulations

One can check the predictions of KPZ scaling theory (here only the LLN) with simulations:

Figure : $N_{x t}(t) / t$ in function of x for $t=1500$. Left: $R=0.8$, Right: $R=1$. $L=1-R$

Result

Theorem (B.-Corwin, in preparation)
Fix $0<q<1$ and $R>L$. For $\alpha \geqslant 2 q /(1+q)$, keeping $n / t=\kappa(\alpha)$ we have

$$
\frac{X_{n}(t)-\pi(\alpha) t}{\sigma(\alpha) \cdot t^{1 / 3}} \underset{t \rightarrow \infty}{(d)} \mathcal{L}_{T W}
$$

The saddle point analysis is computationally difficult for $\alpha<2 q /(1+q)$.
Surprising phenomena

- The density profile has a discontinuity at the first particles.
- Because of long range jumps on the left, the position of the first particle does not satisfy a classical CLT but a Tracy-Widom CLT. (It is not the case for ASEP)

Conclusion

We have seen

- General expression of model-dependent constant for the renormalization theory of models in the KPZ universality class, in the context of exclusion processes.
- Exactly solvable examples : TASEP and the q deformed exclusion processes: q-TASEP and q-Hahn TASEP.
- Exact solvability of the q-Hahn process extends to two-sided jumps. Some degenerations were already known to be integrable.

Thank you for your attention

