Instructions:

- Please write your UNI on every page.
- Unless stated otherwise, your intermediate computations and reasoning must be readable and will be graded.
- Please write neatly, and put your final answer in a box.
- Books, notes, calculators, smartphones or any other electronic devices are not allowed.
Exercise 1

Determine whether the following statements are true (T) or false (F). You do not need to justify your answer for this question.

(a) (2 points) T The image of a 3×4 matrix is a subspace of \mathbb{R}^4.

(b) (2 points) T If $\text{ker } A = \{0\}$, then the columns of A are linearly independent.

(c) (2 points) T The linear transformation $T(f) = f + f''$ is an isomorphism of the space of smooth functions defined on \mathbb{R} (think about the kernel of T).

(d) (2 points) F Any four dimensional space has infinitely many linear subspaces of dimension three.

(e) (2 points) T If A and B are symmetric $n \times n$ matrices, then AB must be symmetric as well.

(f) (4 points) T There exists a 2×2 matrix such that $A^2 \neq 0$ but $A^3 = 0$.
Exercise 2 ... 6 points

For which value of the constant k do the vectors below form a basis of \mathbb{R}^4?

\[
\begin{pmatrix}
1 \\
0 \\
0 \\
2
\end{pmatrix}, \quad \begin{pmatrix}
0 \\
1 \\
0 \\
3
\end{pmatrix}, \quad \begin{pmatrix}
0 \\
0 \\
1 \\
4
\end{pmatrix}, \quad \begin{pmatrix}
2 \\
3 \\
4 \\
k
\end{pmatrix}.
\]
Exercise 3

Let V be the space of all upper triangular 2×2 matrices. Consider the linear transformation

$$T \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} = aI_2 + bQ + cQ^2,$$

where I_2 is the identity matrix and

$$Q = \begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix}.$$

(a) (2 points) Find the matrix A of the transformation T with respect to the basis

$$B = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}.$$

(b) (2 points) Find a base of the image of T.
(c) (2 points) What is the rank of T?

(d) (2 points) Find a base of the kernel of T.

Exercise 4

We consider in this exercise the space $\mathbb{R}_n[X]$ of all polynomials with degree at most n.

(a) (1 point) What is the dimension of $\mathbb{R}_n[X]$?

(b) (2 points) Is the transformation $P(X) \mapsto P'(X)$ invertible?

(c) (2 points) Consider the basis $\{1, X, X^2, etc.\}$. Write the matrix M of the linear transformation

$$P(X) \mapsto P(X) - P'(X)$$

in this basis.
(d) (3 points) Compute the inverse of M, if it exist.
Exercise 5

Consider the set \mathbb{H} of all matrices M of size 4×4 of the form

$$M = \begin{pmatrix} A & -B^T \\ B & A^T \end{pmatrix}$$

where A and B are 2×2 matrices representing a rotation combined with a scaling, which means that there exist real numbers p, q, r, s such that

$$A = \begin{pmatrix} p & -q \\ q & p \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} r & -s \\ s & r \end{pmatrix}.$$

(a) (1 point) Is \mathbb{H} a linear space?
- \bigcirc yes \quad \bigcirc no

(b) (1 point) What is the dimension of \mathbb{H}?

(c) (2 points) A matrix in the set \mathbb{H} is
- \bigcirc symmetric \quad \bigcirc skew-symmetric \quad \bigcirc neither symmetric or antisymmetric

(d) (2 points) If M and N are in \mathbb{H} is MN in \mathbb{H} as well?
- \bigcirc yes \quad \bigcirc no

(e) (3 points) Which matrices in \mathbb{H} are invertible?
(f) (3 points) For a matrix M in \mathbb{H}, write the inverse of M when it exists.
(g) (2 points) Under which conditions on p, q, r, s the matrix

\[
\begin{pmatrix}
p & -q & -r & -s \\
q & p & s & -r \\
r & -s & p & q \\
s & r & -q & p \\
\end{pmatrix}
\]

is orthogonal?
Extra space.