An open interval in \mathbb{R} is of the form (a, b), where $-\infty \leq a < b \leq +\infty$.

1. Let X, Y, Z be the vector fields defined on \mathbb{R}^3 by

 \[X = z \frac{\partial}{\partial y} - y \frac{\partial}{\partial z}, \quad Y = x \frac{\partial}{\partial z} - z \frac{\partial}{\partial x}, \quad Z = y \frac{\partial}{\partial x} - x \frac{\partial}{\partial y}. \]

 Compute the flow of the vector field $aX + bY + cZ$ where $a, b, c \in \mathbb{R}$.

2. Let X, Y, Z be smooth vector fields on a smooth manifold. Verify the Jacobi identity:
 \[[X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0. \]

3. Let X be a smooth vector field on a smooth manifold M, and let $\gamma : I \to M$ be a nonconstant integral curve of X, where I is an open interval in \mathbb{R}. Prove the following statements.
 (a) γ is an immersion.
 (b) If γ is not injective, then there exists a smooth embedding $i : S^1 \to M$ such that $i(S^1) = \gamma(I)$.

4. Let X be the vector field on \mathbb{R} defined by $X(x) = x^2 \frac{\partial}{\partial x}$. Given $x \in \mathbb{R}$, let $\phi_x : I_x \to \mathbb{R}$ be the unique integral curve of X such that $\phi_x(0) = x$, where I_x is an open interval containing 0, and ϕ_x cannot be extended to a larger open interval containing I_x. Find ϕ_x and I_x for all $x \in \mathbb{R}$.