(1) Let G_1 and G_2 be Lie groups, and let $e_1 \in G_1$ and $e_2 \in G_2$ be the identity elements. Suppose that $f : G_1 \to G_2$ is a group homomorphism and a smooth map. Prove that $df_{e_1} : T_{e_1}G \to T_{e_2}H$ is a Lie algebra homomorphism.

(2) Let H be a closed Lie subgroup of a Lie group G, and let $G/H = \{aH \mid a \in G\}$ be the set of left cosets of H in G. (In other words, let H act on G by right multiplication and let G/H be the quotient.) G acts on G/H on the left by $G \times G/H \to G/H$, $(a,bH) \mapsto abH$. Let g be a right invariant Riemannian metric on G. By the theorems stated in class, there is a unique Riemannian metric \hat{g} on G/H such that $\pi : (G,g) \to (G/H,\hat{g})$ is a Riemannian submersion. Prove that if g is left invariant then G acts isometrically on $(G/H,\hat{g})$.

(3) Let g_n be the bi-invariant metric on $SO(n)$ defined in Problem 3 of Assignment 6. We have seen in class that there is a diffeomorphism $f : S^n \to SO(n+1)/SO(n)$. Let \tilde{g} be the unique Riemannian metric on $SO(n+1)/SO(n)$ such that

$\pi : (SO(n+1),g_{n+1}) \to (SO(n+1)/SO(n),\hat{g})$

is a Riemannian submersion. Prove that $f^*\tilde{g} = \lambda g_n$ for some $\lambda > 0$, and find λ. (Hint: What is the horizontal space $H_{T_{n+1}} \subset T_{T_{n+1}}SO(n+1)?$)