(1) Let X be a left invariant vector field on a Lie group G, and let $\gamma : I \to G$ be an integral curve of X. Prove that γ is a geodesic with respect to any bi-invariant metric on G. (Hint: see do Carmo page 80, Exercise 3)

(2) Let $F : M \to N$ be a smooth map between smooth manifolds, and define $F_* : \mathcal{X}(M) \to C^\infty(M, F^*TN)$ by
\[
(F_*X)(p) = dF_p(X(p)) \in T_{F(p)}N = (F^*TN)_p
\]
where $X \in \mathcal{X}(M)$ and $p \in M$. Let h be a Riemannian metric on N, let ∇ be an affine connection on (N, h), and let $D = F^*\nabla$ be the pull back connection on F^*TN. Prove the following statements:

(a) Suppose that ∇ is symmetric. Then for all $X, Y \in \mathcal{X}(N)$,
\[
D_X(F_*Y) - D_Y(F_*X) = F_*([X, Y]).
\]

(b) Suppose that ∇ is compatible with the Riemannian metric h. Then for all $X \in \mathcal{X}(M)$ and $V, W \in C^\infty(M, F^*TN)$,
\[
X\langle V, W \rangle = \langle D_XV, W \rangle + \langle V, D_XW \rangle.
\]

(3) (geodesic frame) Let (M, g) be a Riemannian manifold of dimension n and let $p \in M$. Show that there exists an open neighborhood $U \subset M$ of p and n vector fields $E_1, \ldots, E_n \in \mathcal{X}(U)$ such that (i) for all $q \in U$, $\{E_1(q), \ldots, E_n(q)\}$ is an orthonormal basis of T_qM, and (ii) $(\nabla_{E_i}E_j)(p) = 0$.

(4) (normal coordinates) Let (M, g) be a Riemannian manifold of dimension n and let $p \in M$. Show that there exist local coordinates x_1, \ldots, x_n on an open neighborhood $U \subset M$ of p such that $g_{ij}(p) = \delta_{ij}$ and $\Gamma^k_{ij}(p) = 0$ for $i, j, k \in \{1, \ldots, n\}$. (Hint: see do Carmo page 86, Problem 14.)