This is a note prepared for the Harvard Mazur's torsion theorem seminar (see the references listed there). This talk will tie up several loose ends from the previous talks. We will recall the construction of the Eisenstein prime quotient of
and show that the
-torsion of its Neron model is an admissible group scheme. This allows us to run fppf descent and bound the Mordell-Weil rank of the Eisenstein prime quotient. As an immediate consequence, it follows that the number of rational points on
is finite whenever it is not obviously infinite, for
a prime.
Eisenstein quotients
We fix a prime number
throughout this talk. Recall that the Eisenstein ideal
is defined to be the ideal generated by
, and
and we have seen from Cheng-Chiang's talk that
, where
is the numerator of
. So the maximal ideals of
containing
are exactly the Eisenstein primes
,
, with residue fields
.
Our main goal is to prove the following
Let
![$\mathfrak{P}$](./latex/latex2png-EisensteinDescent_248006887_-4.gif)
be an Eisenstein prime and
![$J^{(\mathfrak{P})}$](./latex/latex2png-EisensteinDescent_19771299_-1.gif)
be the Eisenstein prime quotient of
![$J_0(N)$](./latex/latex2png-EisensteinDescent_218864916_-5.gif)
. Then
![$J^{(\mathfrak{P})}$](./latex/latex2png-EisensteinDescent_19771299_-1.gif)
has rank 0, i.e.,
![$J^{(\mathfrak{P})}(\mathbb{Q})$](./latex/latex2png-EisensteinDescent_43702559_-5.gif)
is finite.
As an immediate application, we obtain a "conceptual" proof of the following interesting result.
Let
![$N$](./latex/latex2png-EisensteinDescent_43021330_0.gif)
be a prime,
![$N\ne2,3,5,7,13$](./latex/latex2png-EisensteinDescent_7013166_-4.gif)
. Then
![$X_0(N)(\mathbb{Q})$](./latex/latex2png-EisensteinDescent_252992259_-5.gif)
is finite.
Under the assumption,
![$n>1$](./latex/latex2png-EisensteinDescent_169047060_-1.gif)
, so there exists a nontrivial Eisenstein prime quotient
![$J^{(\mathfrak{P})}$](./latex/latex2png-EisensteinDescent_19771299_-1.gif)
(Remark
2). Since
![$X_0$](./latex/latex2png-EisensteinDescent_31296492_-3.gif)
is an irreducible projective curve, the composite map
![$f: X_0(N)\hookrightarrow J_0(N)\twoheadrightarrow J^{(\mathfrak{P})}$](./latex/latex2png-EisensteinDescent_100415022_-5.gif)
is either constant or a finite morphism onto a curve. Because the image of
![$X_0(N)\hookrightarrow J_0(N)$](./latex/latex2png-EisensteinDescent_161672082_-5.gif)
generates
![$J_0(N)$](./latex/latex2png-EisensteinDescent_218864916_-5.gif)
as a group, the image of
![$f$](./latex/latex2png-EisensteinDescent_41972754_-4.gif)
generates
![$J^{(\mathfrak{P})}$](./latex/latex2png-EisensteinDescent_19771299_-1.gif)
as a group (which has positive dimension) and hence
![$f$](./latex/latex2png-EisensteinDescent_41972754_-4.gif)
cannot be constant. So
![$f: X_0(N)\rightarrow f(X_0(N))\subseteq J^{(\mathfrak{P})}$](./latex/latex2png-EisensteinDescent_228886788_-5.gif)
is a finite morphism of curves. By Theorem
1, we know that
![$f(X_0(N))$](./latex/latex2png-EisensteinDescent_214150604_-5.gif)
has only finite rational points, thus so does
![$X_0(N)$](./latex/latex2png-EisensteinDescent_218865140_-5.gif)
.
¡õ
Eisenstein descent
Recall that a quasi-finite flat separated group scheme
(finite flat over
) is called (
)-admissible if
is killed by a power of
and
admits a filtration by finite flat group schemes such that the successive quotients are either
or
. Bao has explained in his talk that the admissibility can be detected on the associated
-module
and also proved the following easy but crucial estimate.
Let
![$G/_{S}$](./latex/latex2png-EisensteinDescent_143105207_-5.gif)
be an admissible group scheme. Then
![$$h^1(G)-h^0(G)\le\delta(G)-\alpha(G),$$](./latex/latex2png-EisensteinDescent_230155394_.gif)
where
![$h^i(G)=\log_p\# H^i_\mathrm{fppf}(S,G)$](./latex/latex2png-EisensteinDescent_223135150_-8.gif)
,
![$\delta(G)=\log_p\# G/_{S'}-\log_p\# G/_{\mathbb{F}_N}$](./latex/latex2png-EisensteinDescent_246499116_-7.gif)
is the defect and
![$\alpha(G)$](./latex/latex2png-EisensteinDescent_12890923_-5.gif)
is the number of
![$\mathbb{Z}/p$](./latex/latex2png-EisensteinDescent_18526773_-5.gif)
's in the successive quotients of
![$G/_{S'}$](./latex/latex2png-EisensteinDescent_97123942_-5.gif)
.
The proof of Theorem 1 relies on the following admissibility result, which allows one to bound the Mordell-Weil rank of
via Theorem 3 and is the major motivation to introduce the notion of the Eisenstein quotients.
Let
![$J/_{S}$](./latex/latex2png-EisensteinDescent_143105255_-5.gif)
be the Neron model of the Eisenstein prime quotient
![$J^{(\mathfrak{P})}$](./latex/latex2png-EisensteinDescent_19771299_-1.gif)
. Then its
![$p$](./latex/latex2png-EisensteinDescent_42628114_-4.gif)
-torsion
![$J[p]/_{S}$](./latex/latex2png-EisensteinDescent_186085911_-5.gif)
is an admissible group scheme.
Assuming Theorem 4, we can finish the proof of main Theorem 1 using a standard descent argument.
(Proof of Theorem 1)
Let
![$J^0$](./latex/latex2png-EisensteinDescent_267226092_-1.gif)
be the fiberwise connected component of
![$J/_{S}$](./latex/latex2png-EisensteinDescent_143105255_-5.gif)
. We know from George's talk that
![$J_0(N)$](./latex/latex2png-EisensteinDescent_218864916_-5.gif)
has good reduction outside
![$N$](./latex/latex2png-EisensteinDescent_43021330_0.gif)
and toric reduction at
![$N$](./latex/latex2png-EisensteinDescent_43021330_0.gif)
, hence so does
![$J^{(\mathfrak{P})}$](./latex/latex2png-EisensteinDescent_19771299_-1.gif)
. Then
![$[p]:J^0\rightarrow J^0$](./latex/latex2png-EisensteinDescent_200151626_-5.gif)
is a surjective morphism of schemes (which can be checked on geometric points,
Lemma 0487) as there is no unipotent part in
![$J/_{\mathbb{F}_p}$](./latex/latex2png-EisensteinDescent_73967646_-6.gif)
. Since
![$[p]$](./latex/latex2png-EisensteinDescent_2132972_-5.gif)
is also fppf (but not etale since
![$p$](./latex/latex2png-EisensteinDescent_42628114_-4.gif)
is not invertible on
![$S$](./latex/latex2png-EisensteinDescent_43349010_-1.gif)
),
![$J^0\rightarrow J^0$](./latex/latex2png-EisensteinDescent_236045240_-1.gif)
is a surjection as fppf sheaves (
Lemma 05VM, but not as etale sheaves). So we obtain an exact sequence of fppf sheaves
![$$0\rightarrow J^0[p]\rightarrow J^0\rightarrow J^0\rightarrow 0,$$](./latex/latex2png-EisensteinDescent_30014344_.gif)
which induces an exact sequence in fppf cohomology
![$$0\rightarrow J^0(\mathbb{Z})/p J^0(\mathbb{Z})\rightarrow H^1_\mathrm{fppf}(S, J^0[p])\rightarrow H^1_\mathrm{fppf}(S, J^0)[p]\rightarrow 0.$$](./latex/latex2png-EisensteinDescent_124068233_.gif)
The first inclusion implies that
![$$r+h^0=\log_p(\# J^0(\mathbb{Z})/p J^0(\mathbb{Z}))\le h^1,$$](./latex/latex2png-EisensteinDescent_73865230_.gif)
where
![$r$](./latex/latex2png-EisensteinDescent_42759186_0.gif)
is the rank of the abelian group
![$J^0(\mathbb{Z})$](./latex/latex2png-EisensteinDescent_267646972_-5.gif)
.
On the other hand, by Theorem 4,
is also admissible. So Theorem 3 gives
Let
. Using the toric reduction at
, we can compute
. Replacing
by
(notice this does not change the reduction type), we may assume that
is its own Cartier dual, then
. Then we have
hence
. Finally, by then Neron mapping property,
, which has the same rank as
. This completes the proof.
¡õ
Admissibility
It remains to prove the key admissibility result for
(Theorem 4), where
is the Neron model of
. It suffices to check that the finite Galois module
has composition factors
or
. We will utilize the classical theorem of Brauer-Nesbitt.
(Brauer-Nesbitt)
Let
![$k$](./latex/latex2png-EisensteinDescent_42300434_0.gif)
be any field and
![$A$](./latex/latex2png-EisensteinDescent_42169362_0.gif)
be a
![$k$](./latex/latex2png-EisensteinDescent_42300434_0.gif)
-algebra. Let
![$M$](./latex/latex2png-EisensteinDescent_42955794_0.gif)
,
![$N$](./latex/latex2png-EisensteinDescent_43021330_0.gif)
be two
![$A$](./latex/latex2png-EisensteinDescent_42169362_0.gif)
-modules which are finite-dimensional as
![$k$](./latex/latex2png-EisensteinDescent_42300434_0.gif)
-vector spaces. If for all
![$a\in A$](./latex/latex2png-EisensteinDescent_129786878_-1.gif)
, the characteristic polynomials of
![$a$](./latex/latex2png-EisensteinDescent_41645074_0.gif)
on
![$M$](./latex/latex2png-EisensteinDescent_42955794_0.gif)
and
![$N$](./latex/latex2png-EisensteinDescent_43021330_0.gif)
are equal, then
![$M$](./latex/latex2png-EisensteinDescent_42955794_0.gif)
and
![$N$](./latex/latex2png-EisensteinDescent_43021330_0.gif)
have the same composition factors.
![$J[p]\subseteq J_0(N)[\mathfrak{P}^r]$](./latex/latex2png-EisensteinDescent_165600673_-5.gif)
for some
![$r>0$](./latex/latex2png-EisensteinDescent_236090388_-1.gif)
.
Since the action of
![$\mathbb{T}_p$](./latex/latex2png-EisensteinDescent_68858420_-5.gif)
on
![$T_pJ[p]$](./latex/latex2png-EisensteinDescent_1962418_-5.gif)
factors through
![$\mathbb{T}_\mathfrak{P}$](./latex/latex2png-EisensteinDescent_182853326_-5.gif)
(Remark
4), we know that the action of
![$\mathbb{T}_p$](./latex/latex2png-EisensteinDescent_68858420_-5.gif)
on
![$J[p]$](./latex/latex2png-EisensteinDescent_2132934_-5.gif)
factors through
![$\mathbb{T}_\mathfrak{P}/p \mathbb{T}_\mathfrak{P}$](./latex/latex2png-EisensteinDescent_264159687_-5.gif)
, which is a finite
![$\mathbb{F}_p$](./latex/latex2png-EisensteinDescent_68858419_-5.gif)
-vector space, hence is an Artinian local ring and the maximal ideal
![$\mathfrak{P}$](./latex/latex2png-EisensteinDescent_248006887_-4.gif)
is nilpotent in
![$\mathbb{T}_\mathfrak{P}/p \mathbb{T}_\mathfrak{P}$](./latex/latex2png-EisensteinDescent_264159687_-5.gif)
. In other words,
![$\mathfrak{P}^r\subseteq pT_\mathfrak{P}$](./latex/latex2png-EisensteinDescent_142900887_-5.gif)
for some
![$r>0$](./latex/latex2png-EisensteinDescent_236090388_-1.gif)
.
¡õ
So to finish the proof of Theorem 4, it suffices to prove
![$J_0(N)[\mathfrak{P}^r]$](./latex/latex2png-EisensteinDescent_71075367_-5.gif)
is an admissible group scheme for any
![$r>0$](./latex/latex2png-EisensteinDescent_236090388_-1.gif)
.
Consider the filtration
![$$J_0(N)[\mathfrak{P}^r]\supseteq \mathfrak{P}J_0(N)[\mathfrak{P}^r]\supseteq \cdots\supseteq \mathfrak{P}^rJ_0(N)[\mathfrak{P}^r]=0.$$](./latex/latex2png-EisensteinDescent_159400107_.gif)
It suffices to show that
![$V=\mathfrak{P}^iJ_0(N)[\mathfrak{P}^r]/\mathfrak{P}^{i+1} J_0(N)[\mathfrak{P}^r]$](./latex/latex2png-EisensteinDescent_20480940_-5.gif)
is admissible. Let
![$W=V(\overline{\mathbb{Q}})\oplus V^\vee(\overline{\mathbb{Q}})$](./latex/latex2png-EisensteinDescent_140240534_-5.gif)
, then
![$W$](./latex/latex2png-EisensteinDescent_43611154_-1.gif)
is a finite
![$\Gal(\overline{\mathbb{Q}}/\mathbb{Q})$](./latex/latex2png-EisensteinDescent_143885487_-5.gif)
-module and the action of
![$\Gal(\overline{\mathbb{Q}}/\mathbb{Q})$](./latex/latex2png-EisensteinDescent_143885487_-5.gif)
on
![$W$](./latex/latex2png-EisensteinDescent_43611154_-1.gif)
factors through a finite quotient
![$G$](./latex/latex2png-EisensteinDescent_42562578_-1.gif)
, i.e.,
![$W$](./latex/latex2png-EisensteinDescent_43611154_-1.gif)
is a
![$\mathbb{F}_p[G]$](./latex/latex2png-EisensteinDescent_61968467_-5.gif)
-module. For any element
![$\sigma\in G$](./latex/latex2png-EisensteinDescent_113332988_-1.gif)
, we can find some
![$\ell\ne N$](./latex/latex2png-EisensteinDescent_32541874_-4.gif)
such that
![$\Frob_\ell$](./latex/latex2png-EisensteinDescent_194076439_-2.gif)
and
![$\sigma$](./latex/latex2png-EisensteinDescent_208953823_0.gif)
are in the same conjugacy class by Chebotarev. By the Eichler-Shimura relation, we also know that
![$\Frob_\ell^2-T_\ell\Frob_\ell+\ell=0$](./latex/latex2png-EisensteinDescent_96191295_-4.gif)
. Since
kills ![$W$](./latex/latex2png-EisensteinDescent_43611154_-1.gif)
,
![$T_\ell$](./latex/latex2png-EisensteinDescent_25599415_-2.gif)
acts as
![$1+\ell$](./latex/latex2png-EisensteinDescent_25598803_-2.gif)
on
![$W$](./latex/latex2png-EisensteinDescent_43611154_-1.gif)
, hence the eigenvalue of
![$\Frob_\ell$](./latex/latex2png-EisensteinDescent_194076439_-2.gif)
must be either 1 or
![$\ell$](./latex/latex2png-EisensteinDescent_25588796_0.gif)
. Since taking the Cartier dual interchanges the eigenvalues 1 and
![$\ell$](./latex/latex2png-EisensteinDescent_25588796_0.gif)
, we know that the characteristic polynomial of
![$\Frob_\ell$](./latex/latex2png-EisensteinDescent_194076439_-2.gif)
on
![$W$](./latex/latex2png-EisensteinDescent_43611154_-1.gif)
is equal to
![$(X-1)^k(X-\ell)^k$](./latex/latex2png-EisensteinDescent_143764375_-5.gif)
, where
![$2k$](./latex/latex2png-EisensteinDescent_124089362_0.gif)
is the dimension of
![$W$](./latex/latex2png-EisensteinDescent_43611154_-1.gif)
as an
![$\mathbb{F}_p$](./latex/latex2png-EisensteinDescent_68858419_-5.gif)
-vector space. So the characteristic polynomial of
![$\sigma$](./latex/latex2png-EisensteinDescent_208953823_0.gif)
on
![$W$](./latex/latex2png-EisensteinDescent_43611154_-1.gif)
is also
![$(X-1)^k(X-\ell)^k$](./latex/latex2png-EisensteinDescent_143764375_-5.gif)
. On the other hand, the characteristic polynomial of
![$\sigma$](./latex/latex2png-EisensteinDescent_208953823_0.gif)
on the admissible group
![$\mathbb{Z}/p^k\oplus \mu_p^k$](./latex/latex2png-EisensteinDescent_140590052_-7.gif)
(we can always choose
![$\ell\ne p$](./latex/latex2png-EisensteinDescent_32148658_-4.gif)
and enlarge
![$G$](./latex/latex2png-EisensteinDescent_42562578_-1.gif)
such that
![$G$](./latex/latex2png-EisensteinDescent_42562578_-1.gif)
acts on it) is also equal to
![$(X-1)^k(X-\ell)^k$](./latex/latex2png-EisensteinDescent_143764375_-5.gif)
. We now apply Brauer-Nesbitt's Theorem
5 to
![$A=\mathbb{F}_p[G]$](./latex/latex2png-EisensteinDescent_104079443_-5.gif)
and
![$M=W$](./latex/latex2png-EisensteinDescent_248941548_-1.gif)
,
![$N=\mathbb{Z}/p^k\oplus \mu_p^k$](./latex/latex2png-EisensteinDescent_140600541_-7.gif)
to conclude that
![$W$](./latex/latex2png-EisensteinDescent_43611154_-1.gif)
is admissible, and thus
![$V$](./latex/latex2png-EisensteinDescent_43545618_-1.gif)
is admissible as required.
¡õ