LIPSCHITZ LECTURE 1 ACCOMPANYING EXERCISES

IVAN CORWIN

ABSTRACT. Feel free to come by office hours Wednesday and Thursday 3 - 5 p.m. in room 3-040.

- (1) Recall h_k, e_k, p_k are the homogeneous, elementary and power-sum symmetric functions in variables x_1, x_2, \dots Let $H(z) = \sum_{k=0}^{\infty} h_k z^k$, $E(z) = \sum_{k=0}^{\infty} e_k z^k$ and $P(z) = \sum_{k=1}^{\infty} p_k z^{k-1}$. Prove that these formal power series satisfy
 - (a) $H(z) = \prod_{i = 1}^{i} \frac{1}{1 x_i z}$,
 - (b) $E(z) = \prod_{i} (1 + x_i z),$

 - (c) $P(z) = \frac{d}{dz} \sum_{i} \log\left(\frac{1}{1-x_i z}\right),$ (d) $H(z) = \frac{1}{E(-z)} = \exp\left\{\sum_{k=1}^{\infty} \frac{p_k z^k}{k}\right\}.$
- (2) The monomial symmetric functions m_{λ} and the power-sum symmetric functions p_{λ} = $p_{\lambda_1}p_{\lambda_2}\cdots$ form linear bases of Λ . The space spanned by these bases is Λ which is naturally graded with respect to the degree. Work out the transition matrix between these two linear bases when restricted to symmetric functions of degree ≤ 3 . (Hint: The matrix has block form based on the degree. For example when degree is 2, the block should correspond to the transition matrix between $(m_{(2)}, m_{(1,1)})$ and $p_{(2)}, p_{(1,1)}$.
- (3) The symmetric functions $\{e_k\}_{k\geq 0}$, $\{h_k\}_{k\geq 0}$ and $\{p_k\}_{k\geq 0}$ all constitute algebraically independent sets of generators of Λ . This means that every element in Λ can be written in terms of these generating sets via the $(+, \times)$ operators.
 - (a) Write p_2 in terms of h_k 's.
 - (b) Write e_3 in terms of p_k 's.
 - (c) Write h_3 in terms of e_k 's.