
LIPSCHITZ LECTURE 3 ACCOMPANYING EXERCISES

IVAN CORWIN

Abstract. Feel free to come by office hours Wednesday and Thursday 3 - 5 p.m. in room 3-040.

(1) Let us prove the following asymptotics of the Airy function, via steepest descent analysis.
Prove that as s → ∞
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(1 + o(1)).

The idea splits into a few steps. First find an integral expression for the function and
rewrite it integrand in the form eNf(z) where N is the large parameter and f(z) is in-
dependent of N . Then find the critical points of f(z) and determine which one has the
property that the contours of integration can be moved so as to cross the critical point
and always have real part less than the real part of f(z) at the critical point. Then rescale
around the critical point and Taylor expand. Show that the value of the integral away
from the critical point is negligible as compared to the contribution in a suitably scaled
neighborhood of the critical point.
(a) Recall that

Ai(s) =
1

2πi

∫
ez

3/3−szdz.

There is freedom in the choice of contours. The typical choice is that z comes
from ∞e−πi/3 and goes to 0 and then departs towards ∞e−πi/3. However, using the
ample decay of the integrand and Cauchy’s theorem these contours can be varied.
Now make the change of variables z 7→ s1/2z so that

Ai(s) =
1

2πi

∫
es

3/2f(z)s1/2dz,

with f(z) = z3

3 − z.
(b) The function f(z) has a critical point at z = 1. Show it is justified in choosing the

contour for z to be 1+ iy for y ∈ R. Make a change of variables z = 1+ is−3/4y and
observe that by Taylor approximation f(z) = −2

3 − s−3/2y2 +O(s−9/4). This means
that

Ai(s) =
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e−y2+O(s−3/4)dy.

Show that the O(s−3/4) term can be neglected so as to prove the claimed result.
(2) Consider a point process X defined with respect to a single particle state space X = Z.

Consider some finite set I ⊂ X and let ρn(x1, . . . , xn) be the correlation functions and
for convention, assume that if xi = xj for i 6= j, then ρn(x1, . . . , xn) = 0. Prove using
inclusion-exclusion that

P(X ∩ I = ∅) = 1 +
∑
k≥1

(−1)k

k!

∑
x1∈I

· · ·
∑
xk∈I

ρk(x1, . . . , xk).

Note that by the convention adopted above, this sum will terminate as long as I is finite.
Now, using the von-Koch formula, prove that if X is determinantal with correlation kernel
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K : X × X → C, then

P(X ∩ I = ∅) = det(I −KI)L2(X )

where KI = χIKχI and χI is the projection operator on the subspace L2(I).
(3) Consider a Schur measure specified via ρ+0 , ρ

−
1 , ρ

+
1 , . . . , ρ

+
N−1, ρ

−
N .

(a) Prove that the normalization constant for the Schur process is given by∏
i<j

H(ρ+i ; ρ
−
j ).

(b) Prove that marginally, λ(i) (and similarly µ(i)) is distributed as a Schur measure.
Determine what are the specializations for that measure.

(4) In this exercise we will prove that boxed plane partitions distributed according to qvolume

are equivalent to a certain Schur process. Fix a box width L. A boxed plane partition is a
filling of the L×L square grid of boxes labeled by {(i, j) : 1 ≤ i, j ≤ L} with non-negative
integers xi,j such that xi,j ≥ xi+1,j and also xi,j ≥ xi,j+1. This can be represented as a
piling of boxes so that as one increases in i or j, the height of the pile weakly decreases.
For instance on such filling when L = 3 is

1 0 0
2 2 2
4 3 3

Define a probability measure on all such matrices – called boxed plane partitions – via

weighting a given matrix like q
∑

i,j xi,j for q ∈ (0, 1). The sum
∑

i,j xi,j is called the
volume of the boxed plane partition.

It is possible to read a sequence of partition off from this matrix in the following way.
Consider the diagonal line y = x+m for m = −L+1,−L+2, . . . , L−1. For each m define
λ(m) as the partition which lies along the corresponding line. For the above example,

λ(−2) = (3), λ(−1) = (3, 2), λ(0) = (4, 2, 0), λ(1) = (2, 0), λ(2) = (1).

Notice that by definition, for m < 0, λ(m) � λ(m+1) (they interlace) and for m ≥ 0,

λ(m+1) � λ(m) (they interlace in the other order). If µ � λ this is the same as saying that
λ/µ is a horizontal strip.

Prove that the qvol measure pushes forward to a Schur measure on

∅ � λ(−L+1) � · · · � λ(0) � λ(1) � · · · � λ(L−1) � ∅
and determine the corresponding Schur positive specializations. (Hint: One only needs
to consider specializations ρ = (α;β; γ) where α = (c, 0, . . .) for wisely chosen c’s and

β = γ = 0. Recall that for such a specialization sλ/µ = c|λ|−|µ| for λ/µ a horizontal strip,
and otherwise 0.)


