1 October 20, 2016

1.1 Geometric invariant theory

There is a classic book by Mumford-Fogarty-Kirwan, which we will not follow too closely. We will follow more closely a work by Alper, in which it is noticed that many properties of GIT quotients are consequences of simple axioms involving \(\text{QCoh}(\mathcal{X}) \), which we discuss now.

Lemma 1.1. Let \(\mathcal{X} \) be a geometric stack. Then every \(F \in \text{QCoh}(\mathcal{X}) \) is a union of its coherent subsheaves.

This lemma is a consequence of the fact that a geometric stack has a presentation \(X_\bullet \), where \(X_0 \) and \(X_1 \) are both affine. This comes from the fact that we may chose an affine scheme \(X_0 = \text{Spec}(R) \) and an fppf affine map \(X_0 \to X \), and taking the fiber product \(X_1 = X_0 \times_X X_0 \) is also affine.

Moreover, for a geometric stack \(\mathcal{X} \) we have \(\text{QCoh}(\mathcal{X}) = \text{Ind(}\text{Coh}(\mathcal{X})\text{)} \). This means that

(i) coherent sheaves are finitely presented objects and \(\text{Hom}(S,-) \) commutes with filtered colimits for a coherent sheaf \(S \).

(ii) \(\text{QCoh}(\mathcal{X}) \to \text{Fun(}\text{Coh}(\mathcal{X})^{\text{op}},\text{Ab}) \) is an equivalence of categories.

For any algebraic stack \(\mathcal{X} \), one can show that \(\text{QCoh}(\mathcal{X}) \) is a “Grothendieck abelian category.”

Definition 1.2. Say that a category is a **Grothendieck abelian category** if it has arbitrary direct sums and filtered colimits, filtered colimits are exact, and there is a generating object \(U \), meaning that for all \(M \subset N \), there is a map \(U \to N \) which doesn’t factor through \(M \).

Theorem 1.3. In a Grothendieck abelian category there is enough injective objects, and has enough K-injective complexes. (A K-complex is a special type of complex which plays the role of an injective resolution when forming the unbounded derived category.)

Remark 1.4. There are other definitions of bounded and unbounded derived categories, but they all agree for geometric stacks.

Any map of stacks \(f : \mathcal{X} \to \mathcal{Y} \) can be modeled as a map of groupoids

\[
\begin{array}{ccc}
\mathcal{X} & \to & \mathcal{Y} \\
V_0 & \to & U_0 \\
V_1 & \to & U_1
\end{array}
\]
This implies that there is a pullback functor $f^* : \text{QCoh}(\mathfrak{Y}) \simeq \text{QCoh}(V \cdot) \to \text{QCoh}(U \cdot) \simeq \text{QCoh}(\mathfrak{X})$, which is independent of the choices. One can define a pushforward functor $f_* : \text{QCoh}(\mathfrak{X}) \to \text{QCoh}(\mathfrak{Y})$ as the right adjoint of f^*. We will sometimes think about the derived functor of pushforward Rf_* using injective resolutions or K-injective resolutions.

Example 1.5. Suppose that $f : X/G \to Y$. Let $\tilde{f} : X \to Y$ be a corresponding lift. Given $E \in \text{QCoh}(X/G)$, then $f_*(E|_X) \in \text{QCoh}(Y)$ canonically belongs to $\text{QCoh}(Y \times (-/G))$. The map f factors

$$
\begin{array}{ccc}
X/G & \xrightarrow{p} & Y \times (-/G) \\
\downarrow & & \downarrow q \\
X & \rightarrow & Y
\end{array}
$$

as $q \circ p$. Then $p_*(E)$ arises from $p'_*(E|_X)$ via smooth descent. Moreover q_* is taking invariants under G.

Theorem 1.6. If G is linearly reductive, then $R\Gamma^i(X/G, E) \simeq R\Gamma^i(X, E|_X)$.

1.2 Good moduli spaces

Definition 1.7. Let $q : \mathfrak{X} \to Y$ be a map from an algebraic stack \mathfrak{X} to an algebraic space Y. We say that q is a **good moduli space (GMS)** if

(i) $q_* : \text{QCoh}(\mathfrak{X}) \to \text{QCoh}(Y)$ is exact

(ii) $\mathcal{O}_Y \to q_* \mathcal{O}_\mathfrak{X}$ is an isomorphism.

Example 1.8. Let G be linearly reductive. Let $X = \text{Spec}(R)$. Then the map

$$\text{Spec}(R)/G \to \text{Spec}(R^G)$$

is a GMS.

We study now the main properties of a GMS $q : \mathfrak{X} \to Y$.

(i) q is surjective, universally closed, universally submersive

(ii) If k is algebraically closed and $x_1, x_2 \in \mathfrak{X}(\hat{k})$, then $q(x_1) = q(x_2)$ if and only if $\overline{\{x_1\}} \cap \overline{\{x_2\}} \neq \emptyset$ in $\mathfrak{X} \times_{\text{Spec}(k)} \text{Spec}(k)$.

(iii) The property of being a GMS is stable under base change along $Y' \to Y$ and fppc local on Y.

(iv) If \mathfrak{X} is locally Noetherian, then Y is locally Noetherian. If \mathfrak{X} is finite type over k, then Y is finite type over k.

Example 1.9. Let $\mathbb{C}^2 = \mathbb{C}(1) \oplus \mathbb{C}(-1)$ with the \mathbb{C}^* action indicated by the 1 and -1. We can instead consider the scheme associated to the ring $R = \mathbb{C}[x, y]$ where x has weight one and y has weight -1. The ring of invariants is $R^G = \mathbb{C}[xy]$. There are three types of orbits.

(i) hyperbolas $xy = c \neq 0$ where \mathbb{C}^* acts freely.

(ii) the axes

(iii) the origin

The origin is the intersection of the closures of the axes.

Example 1.10. This is a nonexample. Blow up $\mathbb{C}^2/\mathbb{C}^*$ at the origin. This is isomorphic to the total space of $\mathcal{O}(-1)$ over \mathbb{P}^1 with \mathbb{C}^* acting with weight 2 on \mathbb{P}^1. We have a map to $\text{Spec}(\mathbb{C}[xy])$, but the corresponding pushforward map will not be exact.