Main goal: cook up something close to a quotient space

\[\mathcal{X} \to X \] universal for maps to alg. spaces

Definition 4.1. We say that \(\phi : \mathcal{X} \to Y \) is a **good moduli space** if the following properties are satisfied:

(i) \(\phi \) is cohomologically affine.
(ii) The natural map \(\mathcal{O}_Y \xrightarrow{\sim} \phi_* \mathcal{O}_\mathcal{X} \) is an isomorphism.

Simple looking definition, main properties

Main Properties. If \(\phi : \mathcal{X} \to Y \) is a good moduli space, then:

1. \(\phi \) is surjective and universally closed (in particular, \(Y \) has the quotient topology).
2. Two geometric points \(x_1 \) and \(x_2 \in \mathcal{X}(k) \) are identified in \(Y \) if and only if their closures \(\overline{\{x_1\}} \) and \(\overline{\{x_2\}} \) in \(\mathcal{X} \times_k k \) intersect.
3. If \(Y' \to Y \) is any morphism of algebraic spaces, then \(\phi_{Y'} : \mathcal{X} \times_Y Y' \to Y' \) is a good moduli space.
4. If \(\mathcal{X} \) is locally noetherian, then \(\phi \) is universal for maps to algebraic spaces.
5. If \(\mathcal{X} \) is finite type over an excellent scheme \(S \), then \(Y \) is finite type over \(S \).
6. If \(\mathcal{X} \) is locally noetherian, a vector bundle \(\mathcal{F} \) on \(\mathcal{X} \) is the pullback of a vector bundle on \(Y \) if and only if for every geometric point \(x : \text{Spec } k \to \mathcal{X} \) with closed image, the \(G_x \)-representation \(\mathcal{F} \otimes k \) is trivial.

(Alper '08)

The main example is \(G \) linearly reductive, \(R \) affine

\[\text{Spec}(R)/\mathcal{C} \to \text{Spec}(RG) \]
\[
\text{Spec}(R)/G \rightarrow \text{Spec}(RG)
\]

In fact, this is a local model in great generality.

E.g., quotient stack whose good moduli space is a scheme locally of this form.

Theorem 1.2. Let \(\mathcal{X} \) be a quasi-separated algebraic stack, locally of finite type over an algebraically closed field \(k \), with affine stabilizers. Let \(x \in \mathcal{X}(k) \) be a point and \(H \subseteq G_x \) be a subgroup scheme of the stabilizer such that \(H \) is linearly reductive and \(G_x/H \) is smooth (resp. étale). Then there exists an affine scheme \(\text{Spec} \; A \) with an action of \(H \), a \(k \)-point \(w \in \text{Spec} \; A \) fixed by \(H \), and a smooth (resp. étale) morphism

\[
f : ([\text{Spec} \; A/H], w) \rightarrow (\mathcal{X}, x)
\]

such that \(BH \cong f^{-1}(BG_x) \); in particular, \(f \) induces the given inclusion \(H \to G_x \) on stabilizer group schemes at \(w \). In addition, if \(\mathcal{X} \) has affine diagonal, then the morphism \(f \) can be arranged to be affine.

Theorem 2.9. Let \(\mathcal{X} \) be a locally noetherian algebraic stack over \(k \). Suppose there exists a good moduli space \(X \) such that the moduli map \(\pi : \mathcal{X} \to X \) is of finite type with affine diagonal. If \(x \in \mathcal{X}(k) \) is a closed point, then there exists an affine scheme \(\text{Spec} \; A \) with an action of \(G_x \) and a cartesian diagram

\[
\begin{array}{ccc}
[\text{Spec} \; A/G_x] & \longrightarrow & \mathcal{X} \\
\downarrow & & \downarrow \pi \\
\text{Spec} \; A//G_x & \longrightarrow & X
\end{array}
\]

such that \(\text{Spec} \; A//G_x \to X \) is an étale neighborhood of \(\pi(x) \).
This leads to a strategy for constructing cover by affine quotient stacks!