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Math W4045 - Algebraic Curves
Prof. A. J. de Jong
Spring 2010
Rough Lecture Notes by Alexander Moll

19 January

Introduction

Book: Algebraic Curves by William Fulton (Michigan). Also - a pile of other books
- visit his office hours! We won’t just work out of this book.

Organization:

1.

attend lectures

2. visit webpage

3.
4.

weekly homework

final exam.

Mathematical Content:

Little of algebraic varieties over C (can do all this over F' = F). What is a
curve? Morphisms of curves?

Singularities of curves.
Resolving singularities - ”desingularize curves”

Complex manifolds and curves: associate to a nonsingular curve a complex
manifold of dimension 1.

Nonsingular projective curves to their function fields.
Riemann-Roch and

Applications of Riemann Roch (e.g. Hurwitz formula and linear systems on
curves plus embeddings in projective space).!

"'While we did not get to these last two topics in the course, we gave a much richer story on the
resolution of singularities.



1.2 Today: “polynomials and points”

Let’s calibrate how we talk about things. We often work with C|xy, ..., z,] the ring of
polynomials in the variables x1, ..., x, with coefficients in C. It’s a C-algebra, since
C — Clzy,...,x,] aring map. A typical element f € C[zy,...,x,] is a finite sum

E crxy -

I=(i1,...,in)

with ¢; € C and ¢; = 0 for all but finitely many of these indices. Given any vector a =
(a1,...,a,) € C", can evaluate f at a, for f : C" — C, f(a) = ., cra} ---ai» € C.
Note that for f, g € Clz1,...,2,], c € C, (f+g)(a) = f(a)+g(a), (fg)(a) = f(a)g(a),
(cf)(a) = cf(a), and 1(a) = 1 where 1 is the constant polynomial. This means that
evaluation at a is a C-algebra map from Clzy,...,z,] to C, call it ev, : f — f(a)
(it’s a ring map that is also C-linear). We're used to thinking of polynomials as
functions, but no: we can think of them as elements in this abstract ring. NB: all
of our rings are commutative with unit and ring maps are unital. Obviously ev, is
surjective, so ker(ev,) is a maximal ideal in C[zy,...,z,]. [Recall the definition of
an ideal I C R, a prime ideal p C R whose quotient gives integral domain, and a
maximal ideal m C R whose quotient gives a field. Also note that the quotient R/
is also a ring by (a + I)(b+ I) = ab+ I.] NB: {0} ring has a 1: it is the only ring
where 1 = 0 - it’s to add this to the category of rings, but this is not a field. We know
ker ev, must be maximal since it surjects onto a field, and any ring map ¢ : Ry — R»
surjective satisfies Ry = Imy = R/ ker . What are some elements of ker ev,? Well,
r1 —ay,..., T, — a, are all in there. Also x1x9 — ajas € kerev,. Question: is this
a linear combination of (x; — ay) and (22 — a9)? E.g., xa(x1 — a1) + a1(x2 — as).

Procedure: highest monomial x, take %, etc: ordering on monomials.?

Proposition 1 The ideal ker ev,, is generated by x; — a; for 1 <i<n

Notation: if fi,...,f; € R, then (fi,..., f;) denotes the ideal in R generated by
fi,..., fy whichis {f € R: f=)>¢ifi,9; € R}. Exercise: prove the proposition.

Question: is every maximal ideal of C[xzy,...,z,] of the form (x; — ay,...,z, — a,),
that is, the kernel of ev, for some a € C? Answer: True! This gives a bijection
between points of C" and maximal ideals of C[x,...,x,] - what algebraic geometry
is. Suppose m C Clzy,...,x,] is a maximal ideal. This gives the following diagram:

Clzy, ..., xy) Clzy, ... zp)/m=F

S~

C

where F' is some field. Since a non-zero map of fields is automatically injective,
we have a field extension C C F'. Indeed, this map is non-zero, since if C C m where
we view C < Cl[xy,...,x,], then 1 € m forces m = Clxy, ..., x,| which cannot be so.

2@Grobner bases?...



Now, we will use the fact that C is uncountable to give C = F' a bijection. This may
be a dirty trick, but that too is what algebraic geometry is.

Lemma 1 dim¢ F' is a cardinal number independent of the choice of basis, so
dimC(C[:vl, c. ,I‘n]) = NO

Okay, so any basis is countable and also infinite: for proof, just exhibit one basis -
i.e., the monomials! [J

Lemma 2 if C C F' is a field extension, then either C = F or dim¢ F' is uncountable.

Proof: suppose C # F| so we can choose f € F'\ C. We claim that all elements ﬁ
for ¢ € C are C-linearly independent. If this is true, we're done. Namely, suppose

n

> a0

=1

with ¢;,a; € C, ¢1, ..., ¢, pairwise distinct. Multiplying by (t —¢1) -+ - (t — ¢,,) you get

n
~

Y ait—cr)-(t—c)(t—cy) =0

=1

in F. The LHS is a polynomial p(t) in ¢. Since C = C, the element ¢ is transcendental,
not algebraic, over C. This means p(t) = 0 as a polynomial, so also as a function, so
we may substitute ¢t = ¢; to get 0 also, hence

~

a;-(c;—c1)-(ci—c¢) - (c;—cy) =0

implies a; = 0, so are all linearly independent. [J

1
t—c;
Recall this transcendental business: if K C L is a field extension, and o € L, then we
get a dichotomy: either 3 a non-zero p € K|[z] such that p(a) = 0. In this case, « is
called algebraic over K, and there exists a minimal degree polynomial irreducible over
K with leading coefficient 1 (monic) that annihilates «.. Let’s call this minimal poly-
nomial p,(z) € K[z]. On the other hand, we may have o € L such that Vp € K|[z],
p(a) # 0: this is « transcendental over K.

Let’s return to the proof of the proposition: our Clxy, ..., z,|/m will have dim <
over C as C[xy,...,x,)] since it is a quotient. Indeed, Clzy,...,z,] = (X) where X,,
is the collection of monomials, so Clxy,...,z,]/m is generated by 7(X,,) where 7 is
the quotient map. The combination of Lemmas 1 and 2 prove that F' = C. If we set a;
equal to the unique element of C which maps to z; mod min Clxy, ..., z,|/m = F (it’s
unique because the map C — F' is injective), then z; — a; € m, so (x1 — aq,..., 2, —
a,) = m. Conclusion: yes, the maximal ideals of C[zy,...,z,] all take the form of
ker ev, for some a € C. NB: the same thing works VF = F, but Fulton’s proof is
harder than the way we used C uncountable (won’t work for Q or F,).
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2.1 Algebraic Sets

Definition 1 An algebraic set is a subset X C C" such that there exists a set /
collection of polynomials S C Clxy, ..., xz,] such that

X=V(S):={aeC: f(a)=0Vfe S}

V is for “variety,” but these are not quite varieties. S might be , or infinite... first
here are some special cases.

If S={f1,..., f} is finite, write V' (fi,..., f.) instead of V({f1,..., f+}).
If S={f}and f # 0, then V(f) is called a hypersurface.?

A hypersurface in C? is called an affine plane curve.

These of course are hard to draw (too many dimensions), but can look at R x R C
C? as we're used to. Draw V(zy) = V(z) UV (y), V(22 — y*) a cusp.

Proposition 2 The collection of algebraic sets of C" forms the closed subsets of a
topology on C" called the Zariski topology

Have to show (), C" are algebraic sets, that Z;, Z, algebraic sets = Z; U Z, are
algebraic sets, and Z;,i € I algebraic sets = (1),.; Z; is an algebraic set. Well of

course ) = V (1), C" = V(0) = V(0). Easily (., V(S:) = V(Uie[ Si>, thus it
remains to prove V(S;) UV (Sy) = V(S; - S3), where

S1-Sy={f €Clry,...,m,]: f= fi- fofor some f, € 51, f> € Sa}.

Well “C” is easy, since for a € C", a € V(S)), ten if f = f1 - fo € S; - S, then
fla) = fi(a)fa(a) = 0 fo(a) = 0 and same for V(S), hence both are in V(S; - S5).
For “O” suppose a € V(S1)UV(S,), then 3f; € S, Ify € Sy such that f = fifo #0
at a,so a ¢ V(S;-52). O

2.2 Properties of the Zariski topology

Think of C' as usual 2-dimensional topology thing: what do algebraic sets look like
in the usual topology?

Remark 1: The Zariski topology is not Hausdorff because any two nonempty open
subsets have a nonempty intersection. Indeed, the intersection of () # U; = C" \V(5})
and () # Uy = C"\V(Sy) is

Ui N0 = C\(V(S1) UV(S:)) = C\V(S; - 5,) # 0.

3My aside: just as we saw maximal ideals of C[z1,...,x,] corresponded to points in C", we see
that “points” of C[z1,...,z,] \ {0} correspond to hypersurfaces in C".
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NB: V is inclusion reversing (contravariant functor): S C S' = V(S) D V(5’). Now
for V(Sl) C V(fl), V(SQ) C V(fg), then

UpNUs=C"\V(S1) \ V(S2) D C*"\V(f1)) \ V(f2) = C*"\V(f1f2)
and since f1, fo # 0, 3 a point a where (f1f2)(a) # 0, so C*\V(f1 - f2) # 0. 0.

Remark 2: a Zariski-open (resp. closed) is a usual open (resp. closed); the rea-
son is that if f € Clxy,...,z,] then f : C" — C and is continuous in the usual
sense. So V(f) = f~1({0}) is the inverse image of a closed set under a continuous
map so its closed. In the general case, note that V(S) = (V.4 V(f) (see proof of the
proposition). [

Remark 3: Hypersurfaces have measure zero. Proof: exercise. Actually, if Z C C",
Z is Zariski closed, and Z # C", then Z has Lesbegue measure 0. NB: Zariski closed
subsets of Zariski closed sets are usually relatively measure zero, except in V(zy)
example: will return to this when we talk about irreducibility.

Many sets give rise to the same set: V(f, f2) = V(f) ... so want nice choices
of S for a given X C C".

Lemma 3 If S C Clxy,...,x,] is a subset, and I C Clxy,...,x,)] is the ideal gener-
ated by S, then V(S) = V(I).

Proof: Since S C I, we have V(I) C V(S5). Conversely, if a € V(S) and f € I, we
want to show f(a) =0. Well f € I = (S),so0 f = Zle gifi for some g; € Clxy, ..., z,)
and some f; € S, then f(a) = > gi(a)fi(a) => gi(a)-0=0s0a € V(I). O

Thus, it suffices to just look at ideals of C[xy,. .., x,].

Lemma 4 Via the correspondence C" < mazximal ideals m, we have V(I) < {m :
I C m}.

Proof:
aeV() & (fe]:f(a):0>
= (fe[:>f€kereva>
< I Ckerey, O

Lemma 5 If R is any ring, I C R an ideal, I # R, then 3 a maximal ideal m C R
with I Cm

Proof given on the homework (use Zorn’s Lemma). The only benefit of negating the
axiom of choice, by the way, is that every set is measurable.

Corollary 1 (Weak Nullstellensatz) If I C Clay, ..., x,] is an ideal, then V(I) = ()
iff I =Claxy, ..., x|, which is the case iff 1 € I.

5



Proof: follows immediately from previous two results.

Definition 2 Let I C R be an ideal of a ring R. The radical of I is Rad(I) = /T :=
{fER:3n>0st frel}. Anideal is called radical if /T = 1.

Remark: /T is an ideal: it’s obviously closed under multiplication, under addition,
that's f,.g € VI, f* € I,g" € I, so (f + g)"™™ € I by looking at the binomial
formula.
Remark: /T is a radical ideal: ﬁ — /T because of the product of exponents.
Remark: Any prime ideal is a radical ideal (think: f-ge I = fe€lor g€ I).

Lemma 6 If I C Clzy,...,2,] is an ideal, then V(I) = V(V/I), so every algebraic
set is defined by a radical ideal.

Proof: this is clear, for I C /T implies V(I) D V(v/I), but v/ has functions that
are roots of functions in I, so they vanish at the same points. [
All of this material will culminate next lecture in Hilbert’s Nullstellensatz.

3 26 January
Theorem 1 (Hilbert’s Nullstellensatz): The map I — V(1) of
{I CClay,...,xn): [=VI} - {X CC": X closed }

defines an inclusion reversing bigection between radical ideals and algebraic sets,
where the inverse is given by

Z—1(Z)={f€Clry,...,x,] : f(a)=0Va € Z}.

Remark: can define [(Z) for any subset Z C C", and it is always a radical ideal, for
frel(Z),n>0= f € I(Z). Then the theorem says that I(V(/)) D I and has =
exactly when I is a radical ideal. Also V(I(Z)) D Z and equality holds iff Z is an
algebraic set.

Proof of HN: Let I = (S) and V(S) = V(v/I). We have already seen that
the map is surjective, thus have to show it is injective. Two distinct radical ide-
als give two distinct algebraic sets: if I # I’ are radical ideals of Clzy,...,z,],
then V() # V(I'). To prove this, WLOG after switching them, 3f € I'\ I. It
suffices to show V(I) ¢ V(f), i.e., 3 a point in V(I) where f does not vanish.
To get a contradiction, assume V(I) C V(f) (*). Trick: add an additional vari-
able. Let J C Clxy,..., 2Ty, Tpy1] be the ideal generated by all elements in [ and
the element x, 1 f — 1 (by Clxy,...,2,] C Clzy,..., 2y, xys1] of course). Then if
a=(ay,...,an,a,41) € V(J), we see that h(ay,...,a,) = 0 Vh € I, which implies
(a1,...,a,) € V(I), but by (*) f(ai,...,an) =0 = apy1f(a,...,a,) —1 = —1a



contradiction, but it’s supposed to be 0. Since it’s in V(J), we can conclude that
V(J) =0, so by the weak Nullstellensatz, 1 € J. Then

t
1= Zgihi + g¢+1(i€n+1f - 1)

=1

in Clzy,...,2,41] for some g; € Clxy,...,T,41] and some h; € I. Then substitute
T+l = i

1 : 1 1 f(wla"'a'xn)
— Zgi(xl, ey Ty ;)hi(xl, ey Tp) F g (T, gy, —) [ ——————2 — 1
i=1

Y Y

and then multiplying by a huge power of y to eliminate all ¥ in denominators we get

t

1 - 1
= Z (yNgi(l’b ey Ty ;)) chi YN g (T, T, 5) (f —v).

i=1

By taking N large enough, y¥g; and y¥ =g, is a polynomial in z1,...,2,,y. Sub-
stitute y = f: since f is a polynomial in x4, ..., z,, we get

t
N =Y i wn) - hi+0
=1

for some polynomials ¢;(z1,...,z,) from the g;s from before. Thien this says f €
VI =T a contradiction. [J

Just a quick note on this formal trickery: the substitutions above are well de-
fined ring maps from say Clzy, 5] — Clz, y, %] with say ©1 — x, 19 — i Also, this
doesn’t explain why it has the inverse map we've stated. If Z = V(I), then always
I C I(Z) =1(V(I)). If C, then by bijectivity, we would get V(1) 2 V(I(Z)) but
D Z is a contradiction.

3.1 n=1:

Zariski topology on C'. Note that a hypersurface is V(f) = {a € C: f(a) =0, f €
Clz] \ {0}} is a finite set. Given any finite set {ax}y_, C C, f(z) = [[,—,(z — ax)
gives V(f) = {ar}. The closed sets of C are finite, C, or ). NB: A topological space
underlying an algebraic curve is exactly this, so topology won’t tell us anything about
it. Though not every planar curve C C C? are parametrizable, the induced Zariski
topology is always this one.




3.2 Hypersurfaces:
Algebraic Fact 1 Clz,y|,...,Clzy,...,2,] are UFDs.
To prove this, use C(x1, ..., 2z, 1)[x,], where C(xy,...,z,_1) is the field of ratioanl

functions on n — 1 variables, and note that for a field K, K[z]| is a UFD by the
Euclidean algorithm. Then use Gauss’ Lemma:

Lemma 7 (Gauss) Given f € Clzy, ..., x,], if f factors non-trivially in C(z1, ..., x,_1)[T,],

then it factors non-trivially in Clxy, ..., x,)].

Indeed, both factors have to have positive degree or neither one is a unit for this to
be a “non-trivial” factorization. The same argument shows that if R is a UFD, then
Rx] is a UFD, since 3 a Gauss Lemma for UFDs: R[z] C K|[z] for K the fraction
field of R...

We can have an irreducible element in a Noetherian domain that’s not prime.
For f is irreducible iff f = ab = either a or b is a unit, and f is prime iff (f) is
a prime ideal. Always have prime = irreducible, but we have < in UFD (unique
factorization into irreducibles up to permutation and association (up to units)).

Back to hypersurfaces: f € Clxy,...,z,], f # 0, then write cf* --- f;* its factor-
ization into primes. Then

V() =V({f)u---UV(f)

is a factorization into irreducible hyperplanes. Later, will look at irreducible compo-
nents of an algebraic set.

Corollary 2 Any hypersurface in C" is a union of a finite number of irreducible
hypersurfaces

From before, we also know that f irreducible = f prime = (f) a prime ideal = (f)
a radical ideal = the 1 — 1 correspondence with I(V(f)) = (f) is the radical ideal
corresponding to V(f). What is I(V(f))? If f is not irreducible, i.e. f = cfi* - - f7,
a general # 0 polynomial, then V(f) =V (fi)U---UV(f;), so

t

1v() =1(UVUe) = NIV = () = (i £

= k=1

the square-free part of f, which is the ged since all are irreducible aka primes [taking
the radical takes the square-free part].



3.3 n=2..

What are all the closed sets in C*? Problem: given f,g € C[z,y], what can V(f, g)
look like? Hint:

V(f,9) = V()N V(g) = (V) U= uV()) 0 (Vig) U+ UV(g,)
= U (f)NV(g))

Now silly things: the units in (C[xl, ..., Zy,] are the nonzero constants C*, and if f;
and g; are associates, then V(f;) = V(g;) so just a hypersurface. The problem is to
solve say the system of equations

y—2°=0 v 4y —3x =0.

Next time, we’ll use resultants to solve the general case, the question of how many
points do you get (can you get) on V(f;) NV (g;) if they're not associates? Turns out
that the answer is only finitely many. For example, V(zy?,z +y+ 1) = (V(z) U
V)NV (z+y+1)) = (V(@)V (z4y+1))U(V(y)NV (z+y+1)) = {(0,-1), (=1,0)}.
We'll also take a look at Bezout’s Theorem...

4 28 January

Lemma 8 if f, g € Clz,y| irreducible and not associates, then V(f,g) is finite.

Before we use resultants to prove this, we have

Corollary 3 FEvery algebraic set X C C*, X # C? has the form

where n,m >0, f; € Clz,y] irreducible, and p; € C*.

Proof of Lemma = corollary Although this proof is clumsy, next lecture’s material
on Noetherian topological spaces will make this easier. Say X = V(I), X # C?
pick f € I, f # 0. Factor f as f = c- fi'--- ff*. Then last time we saw X C
V(f) = V(fi)U---UV(f). But these are not yet the pieces in the corollary, be
careful! Question: how do we figure out which of these pieces appear fully in X7 If
the corresponding irreducible f; divides everyone in I. Define

J={je{l,...,t}: filg Vg e I}

and say J = {j1,...,Jn}. We see now that V(f;,)U---UV(f;,) C X CV(fi)U---U
V(fi) because every g € I vanishes on V(f;,) Vj, € J. Now want to try to say apart
from this, there are only finitely many points. If you have j € {1,...,t}, j € J, then
dg; € I such that f; fg;, which means g; = ¢h{" --- h% and f; are not associates with
any h;. This means X NV (f;) is contained in V(g;) NV (f;) = Ui—, V(¢:) NV (f;), and
Lemma says each V' (g;) N V(f;) is finite, so X N V(f;) is finite, hence a finite union
of finite sets is finite. [ (While this doesn’t give us the “trailing” points, the finite
set is 1 X NV(f5))

JEJIE[t]



4.1 Resultants

Suppose you have two polynomials P(z) = agz® + - - - + ag, Q(x) = bga® + - + by,
a;,b; € C. Although we allow the leading coefficients to be 0, we never do this in
practice. Question: when do P and () have a root in common? Want an expression
that is algebraic in the coefficients (algebraic function for us is a polynomial). We
can answer this question by a formula:

_ad Ag—1 aop 0 07
0 ay agq -+ a 0 - 0
0 e DRI O ad ad*l CI/O
Res,(P,Q) =det [by -+ by 0 O 0
0 by - by O - 0
0 0 by -+ by 0 0
(0 0 -+ - 0 by -+ by

where this (d 4+ d') x (d + d’) matrix is called sometimes the Sylvester matriz. Four
triangular blocks here. For example, P(x) = 2x + 1, Q(z) = 3z* + 4z + 5, then

Res, (P, Q) = det = 15.

w O N
=N
ot — O

Facts: (A) If ag # 0 or by # 0, then P, Q) have common root < Res,(P,Q) = 0.
(B) C is algebraically closed, so if P = aq(x — ay) -+ (x — ag), then

d
Res, (P, Q) = af [ Q(w).
=1

(C) If also Q = by (x — B1)--- (x — Bu), then

Res, (P, Q) = aj b4 | [ (e — 8;).

12
(D) Res,(Q, P) = (—1)% Res, (P, Q).
(E) Think of P and @ as elements of Clayg, . .., ag, by, - .., bg], then Res, (P, Q) is also
in this ring.

Let’s prove a strengthening of (A) above.

(A’): Let R be a UFD or a field, and suppose we have P, () as above with a;,b; € R
such that ag # 0 or by # 0. Then we can compute

Res,(P,Q) =0 < P, (@ have a non-constant common factor in R[z].

10



In our use of this strengthening, we’ll have R = Cly]. Given two curves, want to know
that as y varies, when we fix y and look at the fibers above y under 7 : (z,y) — y,
how many solutions do we get (aka, the size of the fibers). Remember, sharing a root
over our algebraically closed C really means sharing the linear factor (z; — ay).

Proof of strengthening: By Gauss’ lemma, we know that P, () have a non-constant
common factor in R[z] iff they have one in k[x] where k is the fraction field of R.
Look at the linear map

(O k[$]<d’ S k[$]<d - k[x]<d+d/

by (u,v) — (Pu+ Qu) where k[z]<,, = {f € k[z] : deg f < m}. What’s the matrix
of this linear map? Well, we have a basis {1,z,...,2% 1',...,2%}. THen the matrix
of 1 is actually that which when we take the determinant we get Res, (P, Q). This is
because (27, 0) — 27 P and (1,0) — ag + a1x + - - - + agz? gives columns. If P = HP’
and Q = HQ' for some H of degree > 0, then P’ and )" have degree < d, < d’
respectively and

W@, —P)=PQ - QP =HP'Q - HQ'P' =0.

So kervy # 0 so Res,(P,Q) = 0. Conversely, if Res,(P,Q) = 0 then kert # 0 so
(U, V) € keryp so PU = —QV. Now because k[z] is a UFD, factorizing you conclude
P and @) have a common factor, since deg P > deg V', some degree must come from
A (but using UFD of k[z]). O

Proof of Lemma: Let f,g € Clz,y| be irreducible and not associates. The case
when only x or y occurs in f or g is easy - because one of them V(f), V(g) is then
a line, so assume that both z and y occur in both f and ¢g. Gauss’ Lemma implies
that f,g € C(x)[y] are irreducible and not associates. This means that

r = Res,(f,g) # 0.
Well, r € C(z) \ {0}. Write
f = ad@yt e g = balaly 4

and then since r is a non-zero polynomial it is clear that #{a € C: r(a) = 0} < 0.
This implies that

{a € C : aq(a) #0 or by(a) # 0 and r(a) =0} < 0o
and this implies
{a € C: ag(a) #0or by(a) #0and 35 € C st f(o,5) = g(a, B) =0} < o0,

Now removing this condition about not both leading coefficients degenerating can
only add at worst finitely many points (finitely many roots of ag4 or by), then we know

{aeC: I €C st f(a, ) = g(a, 5) =0} < 0.

11



This allows you to conclude that V'(f, g) is finite and same for 3, o switched, because
V(f,g) is in the product of finite sets. [J

Remark: if these polynomials had more variables, f(x1,...,%,), g(x1,...,z,)
irreducible and not associates, then also Res,, (f,g) € Clxy,...,x,_1] is not 0. Then
the image of V(f,g) C C" under my...,—1) projection is contained in a hypersurface.
This is proved using the exact same argument. [Elimination Theory|. Towards a big
old useful theorem in algebraic geometry: images of algebraic sets under polynomial
maps aren’t always algebraic sets (not closed maps).

5 2 February

Definition 3 A ring R is Noetherian if every ideal is finitely generated. Equivalently,
R has the ascending chain condition for ideals: any chain Iy C Iy C --- stabilizes
(erNStIk:IkJrl:"').

Rings that have both ACC and DCC are called Artinian rings.

Lemma 9 R Noetherian = any quotient R/I is Noetherian.

Proof: Hint: ideals in I are in bijection with ideals J in R containing [.
Theorem 2 (R Noetherian) = (R|x] Noetherian).

Corollary 4 The rings Clxy, ..., x,| are Noetherian since fields are Noetherian.

For example, C[z,y] D Clz,x,y, zy? zy>,...] where the rhs is the smallest subring
containing all zy™ - subrings of Noetherian rings aren’t necessarily Noetherian. Ask
ourselves: under what operations are the properties retained? In HNS, bijection be-
tween radical ideals and algebraic sets tells us that C" is Noetherian (will see this
definition later).

Proof of Thm: Let I C R[x] be an ideal; for d > 0 set
Jy={a€ R:3f €I with f =az?+ Lot}

where lLo.t. stands for “lower-order terms” of course. Easy to check that (a) Vd,
Jg C R is itself an ideal and (b) Jy C J; C Jo C. Since R is Noetherian, J stabilizes.

There is some n € N where J, = J,.1 = ---: fix it! Further, each Jy,...,J, is
finitely generated. Pick for each d = 0,...,n elements fq,,..., fa,, € I such that
deg(fq,) = d and leading coefficients aq4, of f;, generate J;. Hence J; = (aq,, . . . ,admd)

is the ideal of leading coefficients of f € I of degree d. We claim:
I = (an"'7f0m07f1a"'7f1m17"'7fn7"'afnmn)'

This would prove that every ideal is finitely generated, hence completing the proof.
Proof of claim: The inclusion D is clear. To show C, suppose f € I. Let d = deg f;
proof by induction on degree of f.

12



e d=0: fo, = ap, because there are no l.o.t. — this is clear (convince yourself).

e 0 <d<n: Writing f = az?+ l.o.t., then a € Jy, so a = Z;”:dl cjaq, for some

c¢; € R. Hence
mq
F=> cifq,
=1

cancels off the leading coefficients, hence this has degree < d because the dif-
ference in I and fy, € I implies f € I.

m

e d>n:ay = Jy=J, by stabilization, so we can write ag = Zj:l

¢j € R, hence f— > cjxd*"fnj has degree < d. [J

Cjay; for some

5.1 Noetherian topological spaces

Flrst, C[z1, ..., x,] Noetherian implies A.C.C. for ideals of Clx, . .., z,| which implies
A.C.C. for radical ideals of C[z1,...,z,]. Then by HNS this implies the D.C.C. for
Zariski closed subsets of C". This is definitely not like the standard topology on C"

([-1,1] > [-3,3] D --+). Now, some topology for a while.

Definition 4 A topological space X is called Noetherian iff we have D.C.C. for closed
subsets of X.

Corollary 5 Zariski topology on C" is Noetherian.

Lemma 10 Let X be a Noetherian topological space.
(1) Any subset of X is a Noetherian topological space with the induced topology.
(2) X is quasi-compact.

Proof of (1) Let Y C X be a subset, then Z C Y is closed iff Z =Y NT for some
T C X closed. Then Z = Y N Z where Z where Z is the closure of Z in X, so if

you have Z; D Z3 D --- closed in Y, since taking closures preserves inclusions, then
1 D4y D in_X, but X Noetherian implies Z,, = Z,,1 = --- which implies by
remark Z; =Y NZ; that Z, = 2,4, =---. U

Proof of (2) Note that “quasi-compact means compact as we know it: every open
cover has a finite sub-covering (many people use compact to mean quasi-compact
and Hausdorff). Combining (1) and (2) tells us that every subset is quasi-compact!
Suppose that the open covering X = Ui6 ; Ui has no finite subcovering. Then in-
ductively choose i; € I with U;; # 0, then iy € I with U, ¢ U,,, then iz € I with
Ui, ¢ (U;,UU,,), and so on. Set V;, = Ule Ui., so Zy = X'\ Vj is an infinite decreasing
chain of closed subsets, a contradiction. [

R

Noetherian is much stronger than quasi-compact.

13



Definition 5 A topological space X is called irreducible if X # 0 and X = Z; U Zy
with Z; closed, Z; # X for i = 1,2, then either X = Z, or X = Zy. A subset of
a topological space is irreducible if it is wrreducible space with it’s induced topology.
Finally, S C X is an irreducible component of X if S is an irreducible subset of X
maximal wrt inclusion.

In R in the usual topology, only points are irreducible. [Compare all of this to con-
nectedness].

Facts: Let X be a topological space.
e (a) Y C X is irreducible = Y C X irreducible.
e (b) irreducible components of X are closed.
e (c) any point of X is contained in an irreducible component.

The proof of (c) uses Zorn’s lemma, much like every ring has a maximal ideal. Ex-
amples: C" with the usual topology is definitely not irreducible (can separate any
pair of points by a hyperplane). Irreducible components are the singletons here; say
reducible = not irreducible. On the other hand, C" with the Zariski topology is
irreducible. If C" = Z; U Z5 and neither Z;, Zo = C", then

(C\Z) N (C\Z) = 0

is a contradiction, since in a Noetherian topological space any two non-empty opens
have a non-empty intersection. [See the Stacks project topology chapter].

Lemma 11 In the Zariski topology on C", for algebraic sets X =V (I) where I is a
radical ideal, we have X irreducible if and only if I is a prime ideal.

Proof: say V(I) is not irreducible. The only way V(1) = ) is when I is the unit ideal
(weak HNS), so it’s not prime. If V(I) # 0, then by contradiction assume we can
decompose it into V(1) = V(I;)UV (I2) where neither V' (1;) = V(I) fori = 1,2. Then
we also know V(1) UV (ly) = V(I113) so this means I D I11,. Can’t say C because
the product of radical ideals is not necessarily radical. Then if I were prime, either
Iy C I or I, C I. [Algebraic fact: if p, I, J ideals, p prime, thenp D1 -J=p DI
or p D J.] So then V(I) C V(I;) or V(I) C V(I3), which is a contradiction! On
the other hand, suppose V(I) is irreducible. We want to show [ is prime. Then say
f,g € Iwith f,g € Clzy,...,x,]. Then V(1) C V(fg) =V (f)UV(g) but this implies

v = (viynven)u (v nvi))
which implies (i) that V(I) = V(f) or V(g) hence f € I or g € I since I is radical.[].

Preview of what’s going to happen: V(zy(z — 1),zy(y — 1)) = X has irreducible
components z-axis, y-axis, and the point (1,1)... unique decomposition?

14



6 4 February

Theorem 3 Any Noetherian topological space has finitely many irreducible compo-
nents X = Zy U --- U Z, with each Z; closed, irreducible and Z; ¢ \J,; Z;; further,
up to permutation, this decomposition is unique.

JF

Note that for the anti-containment condition, it suffices to check Z; ¢ Z; Vj # 1.
Remark: since Z; ¢ | ;i Z; by irreducibilty, therefore

z\zin (Uz) =x\Uz

J#i JF

While this is an easy inequality, LHS is non-empty and RHS is open, hence every
irreducible component of a Noetherian space X contains a non-empty open of X (SO
not true in R"). [Interesting finite topological spaces: all of them are Noetherian.|

Proof of Theorem: we proceed by “Noetherian induction” . Well, we have the DCC
for closeds in Noetherian topological spaces. It turns out that “any nonempty col-
lection of closed subsets of X has a minimal element” is equivalent to this DCC for
closeds. Let’s begin the proof. Let

Z ={Z C X closed st Z has ooly many irreducible components}.

We want to show Z = (). By contradiction, take Z # (), it has a minimal element, say
Z € Z. Then Z is not irreducible, otherwise if it were the ! irreducible component,
it would contradict membership in Z. Hence, decompose Z = Zy U Zy, 71 # Z,
Zy # Z, 80 Zy,Zy ¢ Z since Z was minimal. Then Z; = Z;; U--- U Z;, and
Zy = L1 U -+ U Zy,,. But then the next lemma will furnish the contradiction
(think). [Formal Zorn’s Lemma thing says any p is in an irreducible component.|*

Lemma 12 X top. space, Z, 72y, ..., Z, closed, Zi, ..., Z, irreducible and Z = Z; U
-+ U Z,, then any irreducible component of Z is one of the Zy, ..., Z,.

Proof: T C Z an irreducible component, 7" C |J;_, Z; then since T is irreducible
T C Z; for some ¢. Hence, by definition of an irreducible component, 7" is a maximal
irreducible subset, so Z; irreducible means T' = Z;. Exercise: prove uniqueness up to
permutation. [J.

Remark: actually it follows that you obtain the irreducible components of Z =
Z1U---UZ, as in the Lemma by discarding any Z; if it is contained in Z; for some
j#i.

4As an alternate proof, once we have Z; U Zy = Z, can we say by pigeonhole principle that

if Z has ooly many irreducible components then so must one of the Z; for i = 1,2, contradicting
minimality of Z7
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6.1 Application to Algebraic Sets

Our (C", Zariski) is Noetherian topological space because C[z1, . .., x,] is Noetherian.
For all algebraic sets X = V(1) C C", we have a | decomposition (up to permutation)
X =V({) = V(p1)U---UV(py) with p;, C C[zy,...,z,] prime ideals and not
redundant (no inclusions V(p;) C V(p;) if @ # j). If I is radical, then we conclude
[ =I(X)=I(V(I)), but this is

IX) = 1I(V(p1) U---UV(pm) = I(V(p1)) N --- O LV (pm)) = P10 - N

since p; prime ideals are radical. This implies that radical ideal in C[zy, ..., x,] is the
intersection of finitely many prime ideals; this is unique if we have eliminated redun-
dancies. NB: essential to have p; N --- N p,, and not p; - - - p,,, multiplied (something
about Dedekind domains).

Example: if f € Clzy,...,x,] is non-zero then it factors f = cff*--- f* and
then V(f) = V(fi) U---UV(f;) IS the decomposition into irreducible components.
We can also write this as V(f) = V((f1))U---UV((fr)) where the V((f;)) are prime
ideals since the f; are irreducible.

Corollary 6 I[rreducible components of hypersurfaces are also hypersurfaces.

This corresponds to the prime factors of the defining equation. Prime decomposition
of ideal (radical) is harder than factoring polynomials. Singletons are irreducible,
so closed subsets of C? Zariski, we remember that we can uniquely decompose up
to permutation our algebraic sets into finitely many points and hyperplanes, and we
showed these were irreducible, so we're done - we can conclude C" is Noetherian.

6.2 Algebraic Facts

Definition 6 An affine variety is an irreducible algebraic set X C C"

We’ll do something with these soon — these are the objects; will find out the morphisms
later [skip Fulton’s polynomial maps. Now some algebra. Let ¢ : R — S be a ring
map.

Definition 7 We say o is of finite type or that S is a finitely-generated R-algebra if
and only if 3s1,...,8, € S which generate S as an R-algebra.

That is, Vs € S, 3{a;} C R almost all 0 such that
s= ) ela)si sy

Definition 8 s € S is called integral over R if 3 a monic polynomial p(x) = ¢ +
ag_1247 + -+ ag € R[z] such that f(s) =0, i.e.,

s*+ plag—1)s 4+ -+ ¢(ag) =0
mn S.
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Definition 9 We say S is integral over R iff every s € S is integral over R.

Definition 10 ¢ : R — S is called finite iff S is finitely generated as an R-module.
That is, ds1,...,sy € S such that Vs € S, we can write
s = @(ar)s1 + -+ plan)sy

for some ay,...,ay € R. Compared to (1), here we only take linear combinations of
the s;.

Facts:
e (a) (R — S finite) & (R — S is integral and of finite type)

e (b) Given ¢ : R — S, the set S" = {s € S : sis integral over R} is an R-
subalgebra of S. This is called the integral closure of R in S.

e (c)Ifp:R— S, s1,...,s, € S given, each s; is integral over R, and sq,..., s,
generate S as an R-algebra, then S is finite over R.

e (d) Compositions of integral ring maps are integral.
e (e) Compositions of finite ring maps are finites.

See exercises in the Algebra chapter in the Stacks project. For example,
S =Clz,yl/(z* +5,9" +y)

with R = C is generated by s; = T and s; = 7 as an R-algebra but by 1,7,7%, s1s as
an R-module. They key implications in all of this we’ll do in the homework.

How are “finite’ and “integral” related to the topology of algebraic sets? Tune in
next time! Or scroll down.

7 9 February

Proposition 3 X C C"™ an algebraic set, © : X — C" the projection. Assume
V1 < j < m there is some

fj = (l'nJrj)dj + Z C(ji (.Z'l, Ce 7$n)$31+j
i<d]'

in the ideal 1(X). Then (a) all the fibres of m are finite and (b) m : X — C" is a
proper continuous map in the usual topology.
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Proof of (a): prescribing x1,...,x, at a fibre, so 3 finitely many solutions; at most
dj — [substitute (a,...,a,) EC*; 7w a)={2€ X :21=a1,...,2, = ay} 80

7 a) € {(ar,- - @n,br o b) €CTT L (0) Y iyl an)bl = 0}

i<dj

Now, the left hand side is finite since the right hand side is, because Vj, b; € C
satisfies a monic equation of degree d, so there are at most d; - - - d,,, solutions. (?)

Proof of (b): In C", subsets are compact iff they are closed and bounded. K C C" is
compact implies 3C} > 1 such that Ya = (ay,...,a,) € K we have |a;| < C;. This
implies 3C5 > 0 such that Va = (a1,...,a,) € K, |oyj(aq,...,a,)| < Cy. This means
that if 2 = (ay,...,dn,b1,...,by) € 7 H(K) then

‘b;l]‘ S ZCQ‘Z)]‘Z S degmaX{\bj\dfl, 1} S deQC{lil S Cg

i<dj

so 7 1(K) is bounded. Now, 7 is continuous so 7~ *(K) is closed in X; since X is
closed in C"*™, we have transitively 7—!(K) closed in C"*™, hence plus bounded
means compact [].

Remark: the converse of the proposition is also true:

(a) if X C C" is an algebraic set, and bounded, then it’s compact in the usual
topology. (b) if X € C"*™ and 7 : X — C" the projection is proper, then such f;
as in the proposition do exist (the proof of this is too hard). We can do (a) after
some dimension theory. Also, a remark unrelated to above: if X C C" is al algebraic
set, X # C", then X is nowhere dense in the usual topology (this is weaker than
measure-zero comment)...

7.1 Criterion for Finiteness in “our” case

Proposition 4 Suppose we have a C-algebra map ¢ : Clyy, ..., ys] — Clry, ..., x°
and suppose we have an ideal I C Clxy,...,z4|. Then the ring map Clyy, ..., ys| —
Clxy, ...,z /1 is finite if and only if 3 monic polynomials

fi=T%+> g7, g5 €Clyr,...,yd]

Jj<d;
such that fi(z;) = 2% + S ¢(gi;)xl € I for 1 <i <t.

Recall that R — S is finite iff dgy, ..., g, € S which generates S as an R-module. NB:
this says the hypothesis preceding is equivalent to Clxy, ..., z,| — Clzy, ..., Tpim]/]
being finite. Recall: criterion last time: generators of target are finitely generated;

Swe just have to specify ¥(y;) V1 < j < s to give a map, since 1 +— 1.
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each one satisfying a monic equations; finite implies int...

Proof: R = Cly,...,ys] = S = Clxy,...,24]/I. Then S is generated by Z7,...,7;
over C, so a fortiori over R. The existence of the polynomials f; implies Z; is integral
over R, so by the algebraic fact (¢) from last time, S is finite over R. Conversely, if
R — S is finite, it’s integral, and so each 7; satisfies a monic equation, which exactly
translates into the existence of the f;. Note that the proof doesn’t use I = I(X) is
radical. [J

7.2 Noether Normalization

Theorem 4 Noether Normalization Let I C Clxy,...,x,] be an ideal. Then there
ezists a linear change of coordinates y1 = Y a1;%i, ..., Yo = Y GniTi, @ Matric (a;]
invertible for this change of coordinates, and 0 < d < n such that

C[yl,...,yd]\ }71/11]@[-%17,1%]
P
Clxy, ..., zp)/1

such that v is finite and injective.

What does this mean for algebraic sets? X C C" an algebraic set, then 3 a projection
C" — C? onto the first d coordinates (after a linear change of coordinates) such that
7 is proper. For 1 being a finite ring map implies 7 is proper; injective will later
turn out that in this situation, v injective also guarantees i surjective. X gives a
covering of C?, maybe with ramification®. First, an example: zy = 1 is unbounded
in B(0,e) C C; we have the change of coordinates © = u + v, y = u — v, then
(u+v)(u—v) =u*—v? =1 then 7 to the u axis works (because complex); because
u? —v? = 1 is monic in V. Basically, the following Lemma is needed first:

Lemma 13 Let f € Clxy,...,x,]| be nonzero. There exists a linear change of coor-
dinates yi, . .., Yn such that f is monic in y, over Cly, ..., yn_1].

Proof: Let f; be the part of f which is homogeneous of maximal total degree. Con-
sider 1 = y1 + AM¥n, ---, Tn = A\pYn. This change is invertible as long as A, # 0.
Then fy(x1,...,2n) = fa(A1, ..., A\)yd +Lo.t. in g, since we picked f; # 0 — can find
some fiy, ..., i, in C with p, # 0 such that fy(py, ..., p,) # 0, then set \; = tp; with
t € C\{0} such that t?fy(uy,. .., pu,) = 1 which is equal to fz(A1,...,\,) because f
is homogenous of degree d. Since f = fo+ f1 + -+ f4, highest degree occurrence of
yn happens in fy, so we win! [J

With this Lemma, it’s easy to prove Noether Normalization.

6What is this?
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Proof given Clzy,...,2z,] D I, induct on n. If n = 1, then either I = (0), which
means 1 = yi, d = 1 works, since Cly;| < C[xzy]/I is finite, or I # 0 - then pick
fel,f#0, and rescale to make it monic. Then C — Cl[z4]/I works.

For n > 1, if I = (0), then d = n, y; = x; works. If I # 0, pick f € I\ {0}.

By the Lemma, there exists y1,...,y, a linear change of coordinates so that f is
monic in y, over Clyi,...,y,—1]. This means Clyi,...,yn—1] — Cly1,...,yn)/I is
finite by the criterion above. It’s not injective, however, so J C Clyy,...,y,—1] the

kernel; apply induction to this; J = I N Clyr,...,yn—1] = {g € Cly1, ..., yn-1] :
map to 0 in Clyy,...,yn]/I} then o : Clzy,...,2,-1]/J — Clyi, ..., ys)/I the same
criterion applies to maps like this, when LHS isn’t necessarily a polynomial ring.
By Induction hypothesis, we can find a linear change of coordinates zq,...,2,_1 of
Y1,--->Yn_1 and dy € Z such that

B:Clz1,...,2a]l = Clzy, ..oy 2]/ =Clay, .. x,]/J

is injective and finite. Then o B : Clzy, ..., 2z4] — Cly1,...,y,)/I is a composition
of injective and finite maps and hence is injective and finite. [

In fact, d ends up being the dimension of the algebraic set; hence, we can al-
ways find n — d polynomials that cut it out. Given a d X n matrix, of ful rank, add
n —d vectors for the rest of coordinates (take z, = y,); over F,,, doesn’t always work...

8 11 February

Definition 11 Let X C C" be an algebraic set. The coordinate ring of X is the ring
N(X) :=Clxy,...,z,)/I(X).

Fulton only makes this definition when X is an affine variety (aka when I(X) is a
prime ideal).

Lemma 14 If X C C"™ is an algebraic set such that the map
Clzy, ...z = Clzy, ..o T — T(X)

is finite, then the map m : X — C" by (21,..., 2Zn4m) — (21,...,2,) maps Zariski
closed sets to Zariski closed sets (7 is a closed map in the Zariski topology).

Remark: proper maps between locally compact spaces are always closed in the usual
topology. Zariski closed is better. In particular, 7(X) C C" is closed. This doesn’t
work for arbitrary projections.

e Examples to see that the associated ring map isn’t finite for an arbitrary pro-
jection. COnsider X = V(zy — 1), X — C the projection by (z,y) — z. Then
I'(X) = Clz,y]/(zy — 1), and C[z] — I'(X) is not finite as a ring map. Think
of Clz,y]/(xy — 1) as C[z, X]. This is saying that Clz, 1] is not finite as a Clz]-
module. Why? For fi,..., f; € Clz, %], can write f; = 4 for some g; € Cla],

1

then ——m7r € Cla, %] is not in the C[z]-module generated by fi,..., f;.
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Proof of Lemma: Let Y C X be Zariski closed. Then I'( X)) — I'(Y)) is surjective, be-
cause I(Y) D I(X) and a surjective map is finite, so the composition Clzy, ..., z,| —
['(Y) is a composition of finite ring maps, hence finite. Thus, we just have to prove
for X. We want to show that 7(X) C C" is Zariski closed. Show that the comple-
ment is open. Choose a € C"\7(X). By the weak Hilbert Nullstellensatz, we know
(x1a1,...,2, —ay,) + I(X) = Clxy,...,Tnim], and note that we are seeing the left
most ideal as generated in the ring Clxy, ..., Zpm|. This means that

n

> (#i—a)D(X) =T (X)

i=1

a decomposition of modules in both Clxy, ..., Tpim| and Clzy, ..., x,]. Note that this
is not . By Nakayama’s Lemma, which we will prove later, which uses the fact that
['(X) is finite over Clxy,...,z,], we know 3f € Clxy,...,z,] of degree only up to n

with
f= 1+Zfz‘($i—az‘)

with f; € Clzy,...,x,] such that f-['(X) = 0. This implies f € I(X). Now, we
have an equation for X that depends only on the first n variables, and f(a) = 1,
f € Clzy,...,x,]. This implies 7(X) C V(f) and a ¢ V(f) because if zinX,
z = (21, Znym), then f(z1,..., 2p4em) = 0 but the f is really f(z1,...,2,) = 0.
This means C" \V(f) is an open region of a not meeting 7(X).

Lemma 15 (Nakayama’s Lemma, first form): Let R be a ring, I C R an ideal, M
an R-module; assume M is finite over R and [ - M = M. Then 3f € R, f =1+ x,
x €1, such that f - M =0, i.e., fm=0Vm e M.

Note that we applied this when R = C[zy,...,z,), the ideal is ({x; — a;},); and f
is an annihilator of the module.

Proof: M finite over R implies Imy,...,m, € M such that M = (my,...,m,),
M = Rmy+---+ Rm,. Note, we use regular “+” not & because it is not a decompo-
sition; there might be relations among the m;. The condition /M = M means that
every m € M is a sum m = Y x;n; for x; € I, n; € M. [In our case, I was finitely
generated]. but these n; are themselves linear combos of the m;, so we can write any
m € M as a linear combo

m = Z:anj = ij(Zrﬂml) = ; (Z(ijjz)>ml = Zylml

for some y; € I. This is true Vm € M, so in particular, m;! [ — j just change dummy
variable in what follows:
m; = Z Yijm;
J
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with y;; € I. Let f = det[Al,x, — (yij)] = p(1). Observe that f =1+ x for some
r € I; moding out by the ideal gives the identity matrix! Also, f -1 = T°UT,
where T' is the matrix above and the adjoint is a matrix with coefficients in R. We
want to show f - M = 0. Prove first for generators: tricky — convince yourself.

mq mq mq
f= o = fLuxn | =TT | — T . T = () since
my m,. m,
m1 — Yuamy — Yi2Ma -+ -+ — Y1,:My
T= :
Y1y — - = Y My + my

is the zero column vector. This is true for all 1 <7 < r, so Vm € M, fm = 0 because
m is a linear combination of the generators m;. [

Lemma 16 If X C C"'™ is an algebraic set, Clzy,...,xz,] — [(X) finite and
injective, then m : X — C" is surjective.

Proof: by the previous lemma, 7(X) C C" is Zariski closed. If 7(X) # C", then
n(X) C V(f) for some f # 0, f € C[zy,...,2,). Then f € Ker(Clzy,...,z,]) —
I'(X)) but that means — 0 in I'(X), a contradiction. [J

Lemma 17 If X C C" is Zariski closed and bounded, then #X < oo.

Proof: Pick a linear map C" — C? such that the associated map m : X — C¢ satisfies
the conclusions of Noether Normalization, i.e., Clz1,...,zq4 — I'(X) is injective and
finite. Then 7 is surjective (by the Lemma above) and has finite fibers (previous
proposition 2/9). We're done because C? is bounded iff d = 0 (equivalent to a ring
map being finite). Next time: transcendence degree of field extensions, then relate to
d.

9 16 February

9.1 Transcendence Degree of Field Extensions

Definition 12 Let K C L be a field extension. Note that ring maps of fields are
always injective.

e (a) we say K C L is a finitely-generated field extension iff 3 finitely many
t1,...,ty, € L such that any x € L is of the form x = H with P, Q) €
Klzy,...,x,] and Q(t1,...,t,) # 0. Think subfields generated by tq,. .., t,.

e (b) Giventy,... t. € L, we say thatty, ..., t. are algebraically independent over
K if VP € K[xy,...,x,] we have P(ty,...,t,) =0= P =0 as a polynomial.
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e (c) A transcendence basis for L/K s ty,...,t. € L which are algebraically
independent over K, and such that any t € L is algebraic over K(ti,...,t,), in
other words, ty,...,t.,t are not algebraically independent.

e (d) The transcendence degree of L/ K is the cardinality of a transcendence basis.

Facts (not proved in course):

TD is well defined.

® (A

)
e (b) If L can be generated as a field over K by r elements, then tr deg, L < r.

(

(
e (c)if K C L C M then trdegy (M) = trdeg (L) + trdeg, (M).
e (d) if L/K is finitely generated and ty,...,t, is a trans basis, then
K C K(ty,...,t,) C L

is a chain of first a purely transcendental field extension and then secondly a
finite extension; this means that K (¢y,...,t,) is the quotient field of a polyno-
mial ring over K; no relations among t,,...,t,.” Compare to finite extension
case: if K C L C M are finite field extensions, then [M : K| =[M : L]-[L : K]
is multiplication. Recall: K C L a finite field extension iff K C L is a field
extension and K — L is finite as a ring map. Also, the example Q C @ is
infinite extension with transcendence degree zero! infinitely many ,/p prime;
think ALGEBRAIC closure.

Definition 13 If X C C" is an affine variety, then its function field, or its field of
rational functions, is C(X) the quotient field of I'(X) the coordinate ring, which is a
domain since I(X) is prime, so we can do this quotient construction.

Lemma 18 C(X) is a finitely generated field extension of C.

Proof: we have I'(X) = Clzy, ..., x,]/I(X), so the images t; = x; mod I(X) generate
['(X) as a C-algebra. Then of course tq,...,t, generate C(X) the f.f. of I'(X).
Additionally, tr dege C(X) <n. O

Definition 14 the dimension of an affine variety X is trdege. C(X). We say X is a
curve or surface or threefold etc if dim X =1,2,3....

An algebraic curve is an affine variety of dimension 1.

Definition 15 Dimension of an algebraic set X C C" is the maximum of dim X;
when X; are the irreducible pieces of X = X; U --- U X;.

Examples:

"Algebraic Geometry Question: can you make the second C an =? How low can you make the
finite part?
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o dimC" =n.

e dim of an affine plane curve is 1. This means C' = V(f) C C? where f € C[z, ]
is irreducible which means I'(C') = Clz,y]/(f). Without loss of generality
assume y € (f). Then we show that the transcendence degree is 1 over C. Then
the map Clz| — Clz,y]|/(f) is injective. If g(z) € ker, then g(z) = f - h, but ¢
is purely a polynomial in x and so the f contributes a y that h cannot possibly
undue. OTher way: use f € Cl[z,y| irreducible then Gauss’ lemma to show
f € C(x)[y] still irreducible (7). This implies x is algebraically independent over
Cin C(C). So we get an injective map of fraction fields (induced): C(z) — C(C)
a map of fields so its injective. This field is generated as a field over C by x and
y so its generated over C(x) by just y. Moreover, y is algebraic over C(z) by
assumption because f(z,y) = 0, so this is a finite extension [C(C) : C(z)] < oc.
So trdege C(C) = trdegg C(x) + trdegg,) C(C) =1+0 = 1.

e Example: a hypersurface in C" has dimension n — 1. We’ve seen that a hy-
persurface is a union of irreducible hypersurfaces, and if f € Clzy,...,z,] is
irreducible, then trdege(f.f. Clz1, ..., 2,]/(f)) = n—1- same as before: WLOG
x, occurs in (f), then C — C(z1,...,z,-1) — C(V(f)). If g(z1,...,2,) € (f),
then g(z1,...,2,-1) = f - h, then a product of elements imposes one relation
on Ty, ...,T,.

The link: let X C C" be an algebraic set. Let 7 : X — C¢ be the one projection you
get from Noether normalization. Then d = dim X. Proof: let X = X; U---U X, be
the irreducible components. Then

e ¢:Clxy,...,x4] — ['(X) is injective and finite
e ['(X) — I'(X;) is onto, and each I'(X;) is a domain
e ['(X) = T'(Xy) x--- x I'(X,).

Let p; = ker(Clzy,...,z4] — I(X;)) then we see that Clzy,...,z4)/p; — T(X;) is
finite. Now, algebraic fact: if the following diagram commutes

A ? B
N
AT

then ¢ is finite iff ¢ is finite. Surjections are finite, v finite, conclude what we
want. Hence, by last condition, p; N---Np, = (0); but Clzy, ..., x,] a domain implies
that for some ¢ we have p; = (0). This implies f.f. (Clxy,... ,xd}/pi) Ctinite C(X3),
and since the transcendence degree of this is less than or equal to d, we conclude
trdege < d and for some i, trdeg = d since p; = (0). O Advice: look at Mumford’s
Red Book for good stuff though hard about dimension.

Lemma 19 IfY C X C C" are varieties, Y # X, then dimY < dim X.

24



Proof: set d = dim(X). Consider I'(X) — I'(Y). If the Lemma is false, then
3fi,..., fs in I(Y) which are algebraically independent over C (exercise). Pick
f; € I'(X) mapping to f; in I'(Y). Also pick a non-zero f € ker(I'(X) — I'(Y)).
By assumption, fi,..., fq4, f are algebraically dependent over C, so choose an irre-
ducible polynomial p € C[T3,...,Ty.1] such that p(fi,..., fs, f) =0 in ['(X). Then
0=P(fi,....[fs, /) in(Y), 50 0= P(f1,..., fs,0) in ['(Y) then P(Ty,...,Ty,0) is
identically zero since fi, ..., fy are alg. ind. This means that Ty.1 divides P, which
means P = ¢- Ty, for some ¢ € C\{0}, which implies cf = 0 a contradiction. Next,
resolving singularities, then projective curves (gluing together...)

10 February 18

10.1 wrapping up dimension
We won'’t prove this theorem:

Theorem 5 If X C C" is a variety, then

(a) for Y C X a subvariety we have dim(Y') = dim(X) — 1 < A a variety Z such
that Y C Z C X and

(b)if f € Clzy,...,2,) is not 0 on X, then any irreducible component of X NV (f)
has dimension dim(X) — 1.

Remark:
(a) It’s not hard to show that (2) = (1) above
(b) the proof of (2) is a bit harder (see Mumford)
(c) using this we can redefine dim X as

max{n : 33Xy C X; € --- € X,, with X; irreducible subvarities and closed in Zariski top}.

The RHS can be used to define Krull dimension (sometimes called combinatorial
dimension) of any topological space. There is also an algebraic version of this for
rings: consider chains of prime ideals; works well for Noetherian local® rings; impor-
tant invariant. The assuring thing is that this is well defined, and can also define
codimension: for Y C X, dim(X) = dim(Y) + codim(Y, X). There are many more
results about dimension of varities: e.g., dimensions of fibres of polynomial maps of
varieties...

10.2 Morphisms

If M and N are differentiable manifolds, then f : M — N is differentiable < for
all locally differentiable ¢ : N — R, the composition ¢ o f is diff. Later, we’ll say
that a map f: X — Y of (quasi affine or quasi projective) varieties is a morphism iff
it’s continuous and it pulls back regular functions to regular functions (also locally).
Regular will mean given by polynomials. Motivating examples to come, but first give
a name to an open subset of an affine variety:

8local rings := have exactly one maximal ideal
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Definition 16 a quasi-affine variety X is an open subset of an affine variety. In
other words, X C C" is an irreducible Zariski locally closed subset.

Note that the closure of something locally closed means that thing is open in that
closure; this means you are defined by polynomial equalities and “not”-equalities (no
ordered ones), plus you're irreducible.

o ex: X; = {(x,y) € C*: 2y # 0} C C? is quasi-affine
e ex: Xy = {(w,y) € C* :sin(x +y) # 0} C C? is not quasi-affine
o ex: Xz = {(v,y) € C*: 2%+ 43 =1,2#0} C C* is quasi-affine

e ex: Xy = {(v,y) €C*: 2y =0,(x+y) # 0} C C?is not irreducible so not a
quasi-affine variety.

What is a regular function on one of these ¢ — A sets? Motivation: examples of
regular functions. Take X; above, and consider the functions (z,y) — = +y € C, or
— l e C, or %;f&}ll € C. But (z,y) — L does not make sense. This suggests
we allow if () is never 0 on X. But what about this example:

X = {(ay,as,as,a4) € C*: ajay = azay and (ay # 0 or ay # 0)}.

Consider f : X — C by (aq,az,as,aq) — o if ag # 0 or o if ay # 0. This is well
defined on the overlaps!!! It’s a patched up function on 2 Zariski opens; maybe we
should thus only require locally g.

Definition 17 Let X C C" be a g-affine variety. A function f: X — C is a regular
function iff Va € X 3P, Q € Clzy, ..., x,] with Q(a) # 0 such that f(b) = Wb; is true
Vb in some open neighborhood of a € X (Zariski topology throughout). Denote O(X)

to be the set of reqular functions on X.

9

Lemma 20 O(X) is a C-algebra.

WellngO()=>f—|—gfg€O()GivenaEXf g'nUCXofaand
=7 HinV C X of a, take UNV, and define f + g; now since Q(a)L(a) # 0, we have

PQ'+QP’ PP’
f+9— og —and fg=gg U

Well what do you think is O(C?)? It’s I'(C) the coordinate ring C[zy, 25]. The
map C> — C by (z,y) — xm—zy where zy # 0 and 1 elsewhere can’t be a regular

function.

Lemma 21 (Regular functions and topology) Let X C C" be ¢-A and fi,..., [, €
O(X). Then the map X — C" by a — (fi(a),..., fr(a)) is continuous in both the
usual and Zariski topology.

9“Things you call regular functions aren’t functions in Scheme theory to come
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Proof: it suffices to find Vp € X a neighborhood U, C X where the map restricted to
it is continuous (local formulation of continuity). If we can find an open neighborhood
U of any point of X such that f ‘U : U — C" is continuous, then were done. Open U

are always quasi-affine. Assuming f; = %, s e = g and

XCcY:i={aeC":(Q,...,Q)(a) #0}

and every point 3 neighborhood where f looks like a quotient of 2 polynomials. Now

fi‘U- = %; replace X by Uy N --- N U,. Since X has the induced topology from
Y, it suffices to show that f : ¥ — C" by a — (511((‘;)), e ,S:((‘;))) is continuous

in either topology. In the usual topology we’re done — polys are continuous, the
denominator is never 0 on X. We have to show now that it’s continuous in the
Zariski topology; remember this is defined on C" \ a hypersurface from @, - - - @, = 0.
Take the hypersurface V/(h) C C", h € Clxy, ..., z,], then we know

Pi(a)  Ba)
Qi(a)” " Qx(a)

clear denominators and get a polynomial equation

FHV () ={aeY :h( )}

Pl Pr
aeY (a1 -a)Vh(=—, -, == ] a) =0}.
ee s [l (G )@ =0}
We can clear denominators since Q1 ---@Q, # 0, and if N is larger than the total
degree of h, then this is a polynomial in X, ..., X, so it’s Zariski closed. Now, since

every Zariski closed set is an intersection of hypersurfaces, we're done (check). O

Going to show next time that X an affine variety implies I'(X) = O(X). (We
won’t define abstract varieties.).

11 February 23

Last time, we defined the regular functions O(X) for X a quasi-affine variety (ev-
erywhere locally quotients of polynomials), and proved that (fi,...,f,) : X — C"
is continuous in both topologies if f; € O(X). [For example, on the homework, you
have to show O(C"\V (f)) = Clzy,...,z,)s] ' Following this, we have

Corollary 7 Let X be a g-Affine variety. If f € O(X) and f = 0 on a non-empty
Zariski open subset then f = 0 identically on X.

ONote that “=” is NOT equal as sets but indicates that the LHS and RHS are in canonical

isomorphism (in this case, fﬂn — (a — ;()[(SZL) in the reverse direction; note that this representation

% is not unique, so we must show that this map is well defined.) Now, we have to be careful with
using = for such a thing: a diagram A = B = D and A = C' = D might make us think that as maps

the diagram of canonical isomorphisms commutes, which is not necessarily true.
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Proof: define Vx(f) = V(f)NX = {a € X : f(a) = 0} C X is closed and X
is irreducible, so Vx(f) D U means Vx(f) D U but any non-empty open is dense
always, so Vx(f) D X and hence we have equality. O Remark: the corollary also
holds if f is 0 on a usual non-empty open subset (will not prove this).

Lemma 22 (Miracle Lemma) If X is affine variety, then I'(X) = O(X).

Proof: a trick! It is clear that I'(X) C O(X) is a subring. Pick f € O(X). Consider

I={Q € Clxy,...,x,]: Qf e T(X)}.

The @s morally are all the denominators that can appear when you wrlte = =f
on a set of points where Q # 0. Claim: [ is an ideal of Clxy, ..., x,] because I'(X)
is a ring.! If Q = 0 exactly, then Qf = 0 € TI'(X). Now note that I(X) C I;

Va € X we can write f‘U = g‘U for some a € U C X open, P,Q € C[xl,...,xn],

Q(a) # 0, actually @ # 0 on U. Then (P — Qf)|U = 0 implies by the corollary that
P —Qf =0in O(X) which means Qf € I'(X) which means ) € I. We can then
conclude that Va € X, 3Q € I such that Q(a) # 0 which implies with [(X) C I that
1 € I which means V(I) = () which means by Weak Hilbert N. that I = Clxy, ..., z,]
hence f € I'(X). O

Lemma 23 X a ¢-A variety, f1,..., fs,91,-..,9: € O(X), and suppose P € C[Sy,...,Ss],
Q e C[Ty,...,T}]. Then
P(fi,-. fs)

Q(glv"'7gt)
where U = {a € X : Q(g1(a),...,g:(a)) # 0} is open in X.

e OU)

Proof of this statement for polynomial combinations is the “same” (ish) as that proof
of O(X) aring. In the simplest case, which usually comes up, we have f,g € (’)( ) =
% € O(U) where U = {a € X : g(a) = 0}; write f = g, q= g,, then g = g,g, and
the condition g(a) # 0 above makes P'(a) # 0, and Q(a) # 0 already by assumption.
Warning: U might be (). We should define O(@) = {0}, but @ is not irreducible

(conventions...)...

Definition 18 Let X,Y be g-affine varieties. A morphism ¢ : X — Y is a map of
sets such that
(a) ¢ is continuous in the Zariski topology and

(b) VYV CY Zariski open, Vf € O(V), we have f o € O~ (V)) by pullback.

Here’s an example of (a) but not (b): any non-usual bijection C — C call it w will
satisfy this, because of the “stupid” topology over C (where the non-trivial closed
subsets are just finite) w is continuous, since preimage of points is point, but given
a polynomial function say id : C — C, it can’t pull back through w to a polynomial
(we might have w swap 7 and e and leave the rest fixed!). Now, many lemmas:

1 Called the conductor ideal...
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Lemma 24 Composition of morphisms is a morphism; also identities are morphisms
(category).
Objects are characterized by (i) topology and (ii) regular functions on them. A

morphism is an isomorphism iff ¢ a bijection, ¢ continuous (i..e ¢ a homeomorphism
of Zariski sets) and ¢! is a morphism too (part (b) above).

Lemma 25 If X C C" is g-affine, then the inclusion map i : X — C" is a morphism.
Tautological because of definition of regular f € O(X) as a restriction of polys in C".
Lemma 26 If f : X — C is a set map, then f € O(X) iff f is a morphism X — C.

Proof: “«<” is obvious: take C C C open, then the identity map id : C — C will pull
back to a regular function, which is exactly f, hence f € O(X). For “=”, this is true

because % is regular on some open of C .... CHECK AND FINISH

Lemma 27 If X C C", Y C C™ are g-affine and ¢ : X — Y is a map of sets then
TFAE:

(i) ¢ a morphism

(it) yjop : X — C is reqular, where y; : C™ — C are the jth coordinate functions
(same as in smooth manifold theory)

Proof: (i) = (ii): y; : C™ — C is regular over C™ a morphism, also when restricted
to Y because ¢ is a morphism; this means y; 07 o ¢ is a morphism, so it’s regular. For
(i1) = (i), we show that if o = (f1, ..., fm) Where f; = y'oyp is regular, we've seen that
such a ¢ is continuous: since Y has induced topology, the map (fi,..., fm) : X — C™
continuous agreeing as we’d want means it descends to a continuous map to the
subspace Y. Now, show that regular functions pull back to regular functions. If V' C
Y is open and h € O(V) then locally on V' we can write h = g, P,QeCly, .., Ym

so then h o ¢ is equal locally on ¢! (V) to
Pyprop,....ymop)  P(fi,--., fum)

Q(yloso,.--,ynow) Q(fl,-uafm)

and thus the regular functions are on suitable opens by the previous lemma. [
Corollary 8 A morphism of q-affine varities is continuous in the usual topology.

Proof: we’ve seen this form maps X — C™ given by m regular functions. Instructive
example, where things go wrong: f(z,y) = zy + 2%+ 4% and at V(f) € C?. Consider
the point p = (—3, —3) and the projection from this point. Is this regular? Well,
first, what is projection from a point? To any ¢ € C' = V(f), take ¢ to the slope of
the line joining ¢ and p. For points on the vertical line {—% x C, we can’t assign
infinite slope; perhaps we’ll take values in C ! — more on this later.... Also, at p we
should assign the slope of the tangent line, which should be —1... Other thing: this
does work: the new function will be regular on V' (f) \ {4, B} where A and B are
points not equal to P but on {—% x C. Other thing, helpful for the exercises: want
to make a function regular at A and B, but it doesn’t care so much you get the same

function — find a polynomial 0 on A and B...
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12.1 Recap

Here’s an overview of what we've done so far:
e Weak HNS: V(I) =0 < I =Clzy,...,z,).
e HNS: algebraic sets < radical ideals in Clxy, ..., z,].
e Resultants.
e Noetherian Rings and Spaces, decomposition into irreducible components.
e Affine Varieties.
e Algebra: finite type, integral, finite ring maps.

e Relating finite ring maps and ”finite morphisms” aka projections being ”finite”
or proper.

e Noether Normalization: gives rise to closed maps in Zariski topology.
e Nakayama’s Lemma.
e Transcendence degree and the dimension of a variety.

e Dimension and projections.

e Quasi-affine varities and regular functions; nice result that (f1,..., f.) : X —
C" is continuous in both topologies if f; € O(X) and that O(X) = I'(X) if X
is affine.

e Morphisms of quasi-affine varities.

We now say that X is affine not if it’s a closed subset of C" but if it’s isomorphic to
some affine (redefinition). Silly example: C\{0} C C is not closed, but by C\{0} —
C? as a — (a,a™"), this is an isomorphism of varities from C\{0} to V (zy —1) c C*.
The inverse map is Y — X by (a,b) — a. This is a regular function, hence it’s a
morphism in our category. In the exercises we will prove a super generalization of
this: (a) X € C" affine, f € Clxy,...,x,] then X \ V(f) is affine and (b) VX a q-A
var and any point p € X, 3 open neighborhood a € U C X which is affine. Just like
for all differentiable manifolds, p € M has a nieghborhood that’s a ball: analogue of
affines here (a basis for the topology). Quasi-affines are unions of affines; hence, a
general variety will be (though we won’t cover in the course; look in Mumford’s book
for example):
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Definition 19 A pre-variety X is an irreducible quasi-compact topological space X
together with an atlas X = |JU; of opens such that

(i) for each i, 3 a homeomorphism ¢; : Uy — X; C C" with an affine variety X;
in the Zariski topology

(11) Yi, j, the transition map ¢; o gpj_l s a morphism:

U; N U;

Xi D) QOi(UZ'ﬂUj) goj(UiﬂUj) CXj

Definition 20 A prevariety is a variety iff diagonal map A(X) C X x X is closed
(here X x X is the product pre-variety); ~ Hausdorff conditions (separability)

Why we’re not doing this: so hard to write a variety that is NOT quasi-affine or
quasi-projective (to come). Don’t need gluing procedure. Can also do the definition
of prevariety with notion of regular functions on every open (sheaves). Plane curves:
delete finitely many points: then it’s affine! Hard theorem (might have to go to high
C")....

12.2 Projective space

P":=Pg := (C"*'\{0})/ C* the quotient of the action of C* on vectors by multipli-
cation (it’s G (C™™1)). Recall from topology R P? is a nice example of a non-orientable
surface. Points of P" are denoted [ag : ay : -+ : a,] which means (aq, . . ., a,) # 0 and
denotes the line containing a. Let F' € Cy4[ Xy, ..., X,] be a homogeneous polynomial
of degree d: that is, every monomial in F' has degree d. We use these capital X;s for
homogeneous polynomials. Then (AF) = AF. Then we let

V+(F):{[a0:---:an]EI&:F(@O,...,CL”):O}.

First off, F isn’t a function on P", but this is well defined because F(\-a@) = M F(d@) =
A?.0 = 0. These are the hypersurfaces; we say the closed sets are intersections of the
hypersurfaces.

Definition 21 A Zariski closed set in P" is any subset of the form Z = (\pep Vi (F)
where E is a set of homogeneous elements of Clxo, ..., x,| not necessarily all of the
same degree.

Can directly check that this is a topology (omitted). We can write P" = UyU---UU,
as covered by the standard charts of affine n-spaces

U =P\Vy(X;)={[l:a1:-:0a,]}=C
by the natural bijection ®; : U; — C" by
Qo a; an
[ag : -+ ay] — (—,...,—,...,—)
a; a; a;
with inverse (c1,...,¢,) = [c1 i i Ly it el



Proposition 5 ®; is a homeomorphism.

Note U; gets subspace topology from P". Well, in usual topology
n+1 *
< C \{0})/(‘:%5271-5-2/5'1

so IP" is compact. In regular space, affines are never compact unless finite; here, rather,
all projective varieties are compact. Now let’s begin the proof of the proposition -
we’ll homogenize. Proof: first prove that Z C P" closed means ®¢(Z N Uy) C C" is
Zariski closed. This reduces immediately to the case Z = V. (F).!? Then it’s clear
from the formula

@0(V+(F) N Uo) = V(F(1,$1, N ,an))

(check this). Suppose I C Clzy,...,x,] is an ideal. We have to show C" D V(I) =
Oy(Up N Z) for some Zariski closed Z C P". We know by the Hilbert basis theorem
that I = (f1,..., f.) for some r. Set

otalaegreel( f; X XTL
Fi(Xo, ..., X,) = XLowldes (”-fi(fé,...,z)

and when X, = 1, we get our old f; back. Set Z = Vi (Fy)N---NV,.(F,). This is
Zariski-closed in P" and then ®q(Z N Uy) = V(I) (check!) because
(@01)_1(zm Up) = {(an,...,an) €C: Fi(1,an,...,an) =01 <i <1}
= V(f)n--nV(f)=V{)
where the inverse is ¢; - ¢, — (1,¢1,...,¢,).
Corollary 9 P" is a Noetherian topological space.

Proof: P" = J;_, U; and each Uj; is Noetherian.

Let’s show that any two lines meet in P". Even though z = 0 and x = 1 dont

meet in C?, setting © = §—(1) and y = §—§ we get X; = 0 and X; — Xy = 0 which has

an intersection at [0 : 0 : 1] a unique point.

13 March 2

[Recalls facts from last week]. Be careful: in the usual topology our compact manifold
P" is Hausdorff but not in the Zariski topology.

Definition 22 A projective variety is an irreducible Zariski closed X C P" for some
n e L.

Definition 23 A quasi-projective variety is an irreducible Zariski-locally-closed X C
" for somen € Z, .

12999
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13.1 Regular functions on quasi-projective varities

We want to discuss regular functions on quasi-projective varieties. But first the quasi-
affine case:

Facts: (1) if X C Y C C" are qg-affine vars then the restriction map f — f|X

gives a map O(Y) — O(X) (have already seen this).
(2) if X is q-affine, X =V U--- UV, with V; C X Zariski open then

OX) = {1 fo) € OWVA) X -+ X OWVin) = fil s = 1

The functions glue; this is clear from the local nature of the condition of defining
regular functions; here = actually means canonical isomorphism.
Reformulation: f : X — C a set map is a regular function iff f |V1’ cee f’v are

v}

regular functions (plus gluing).

(3) If ¢ : Y7 — Y5 is an isomorphism of quasi-affine varieties and X; C Y; is locally
closed and irreducible, so themselves are quasi-affine varieties with ¢(X;) = X5 then
go| X, is an isomorphism.

Lemma 28 If X C P" is irreducible and Zariski locally closed, and X C U; N Uj,
then the transition map

(®; 0 0;7)

B,(X) D;(X) — ®;(X)

is an isomorphism of quasi-affine varities.

In particular, O(®;(X)) = O(®;(X)) is a canonical isomorphism. This is where
we’ll get our notion of O(X) for projective varieties (to come).

Corollary 10 If X C P" is irreducible and Zariski locally closed and X C U; for
some i, then can define O(X) to be O(P;(X)) and it doesn’t matter which i I pick.

Proof: X C U; NUj, then show &;(U; N U;) = ®;(U; N U;), then apply (3) above.

We can give the map explicitly: from [ag : --- : a,] we get (%2,... % ... &)
™. " 2 b 3 n
(0, & o) by the map (bo, ... bi. .. by) (b—b—big—) and

you get the inverse by swapping ¢ and j.

Definition 24 If X C P" is quasi-projective, then
OX)={f: X—-C: f‘XmU_ € O(X NU;) defined as in corollary}.

Now a leap of faith: we move to the quasi-projective case.

Remarks (a) if Y C X then restriction of functions gives O(X) — O(Y).
(b)if X =ViU---UV, is an open covering, then

as before (can be reformulated as before; this is nice because it’s not necessarily the
standard covering Uy U - -- U U,, of P".
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Definition 25 A morphism of quasi-projective varieties ¢ : X — Y is a (Zariski)
continuous map such that VV C'Y open, Vf € O(V), we have fop € O(p ' (V)).

13 Remark: since C" = Uy C P", we can think of any g-affine varieties as q-projective
ones! We can’t compare affine and projective varieties: if a variety X is both affine
and projective, then its usual topological space is compact, hence X C C" is bounded,
and we saw that this implies compact, and for an algebraic set irreducible implies its
a single point! Also, at this point we’re accepting that quasi-projective morphisms
are continuous in the usual topology.

13.2 Examples

A projective plane curve is X =V, (F) C P? where F € C[Xy, X1, X5 is irreducible
and homogeneous. For example, F' = X2 + X? + X7. This of course came from the
following lemma:

Lemma 29 If F € C[Xy,...,X,] is irreducible and homogeneous then V., (F) C P"
is irreducible.

Proof: later.

Claim: any closed subset Z C P? is a union C; U C, U {py,...,ps} for some
C; C P? projective plane curves and p1,...,ps € P? points; or Z = (§, P*. Reason: it
suffices to prove that an irreducible in P? is either P?, a projective plane curve, or a
point because P? is Noetherian. Consider Z N Uy: this is either empty or irreducible.
In empty case, renumber 0, 1, 2 to make it non-empty. Then because U, is C* with

Zariski topology, we know Z N Uy is either a point or Z N U, = V(f) for f € Clz,y]
irreducible. This implies Z = {p} or Z = V| (Xgegf f (%, %)) (minimally homog-
enize). This is irreducible in C[Xy, X1, X5] because f is irreducible in C[z,y] by the
lemma, so Vi (F) irreducible and Z N Uy # 0, Vi (F) N Uy # 0 and contain the same

open so they’re equal (Zariski type property).
Scholium 1 If Z C P" is irreducible and Z NUy # 0 then Z is the closure of Z NU.

So we get an inclusion-preserving bijection between (i) Z C P" irreducible Zariski
closed Z N Uy # (0 and (ii) irreducible closed subsets Z' C Uy = C". If Z' C
Up = C" corresponds to a prime p C Clxy,...,x,], then the corresponding Z is

ﬂfep Vi (XSOtaldeg(f) . f(%, ey ))g—g)) This takes some work to prove, but it’s a nice

exercise. We can now prove the lemma from before.

Proof of Lemma: Given F € C[Xy,...,X,] irreducible and homogeneous, we

BContinuous: pulls back topology into topology. Algebraic: pulls back sheaf of regular functions
into domain sheaf.
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must have F'(1,zq,...,z,) irreducible in C[zy,...,z,]| or a unit if F' = X, say. Be-

cause if not, then F'(1,z1,...,2,) = f(x1,...,2,) - g(z1,...,x,) can be homogenized
to
Cw X X
X64+B dgFF<X077Xn):<X64f(_17)7XOBg(_1a))
Xo Xo

then by unique factorization in C[Xy, ..., X,] you get either X§'f = AXg or XPg =
pXE which implies either f or g is a constant. Thus V. (F)NUy = V(F(1,21,...,7,))
is either empty or irreducible. ... will give one irreducible component; show that
they’re no others, then it’s the same as this one. [J

We want to show: what is it good for? (1) Two projective curves always meet.
(2) Bezout’s theorem. Next time: any two projective plane curves meet.

14 March 4

Lemma 30 Any two projective plane curves (irreducible hypersurfaces in P*) meet.

Proof: say C; = V,(F;) C P? with ; € C[Xy, X1, Xs] irreducible homogeneous of
degree d; for i = 1,2. If the monomial X' does not occur in Fy and X2 does
not occur in Fy, then the point [1 : 0 : 0] € C; N Cy. Thus we may assume F; =
anl—i-Angl*l—i-- -+Ay and F, = ngQ+BlX3271+~ -+ By, with a # 0 or b # 0 and
A;, B; homogeneous of degree i in X7, Xo (coefficients in C;[X7, X5]). For example,
X3+ (X)) X2 + (X1 X + X2) X, + (X3). Now set R = Resy, (Fi, F); looking at the
formula for R you see that R is also homogeneous of degree d;d, in the two variables
X1, Xy. For example dy = 2, dy = 1, then we get a (24 1) x (2 + 1) matrix

a A1 A2
R=det |b Bl 0
0 b B

Hence, using the fact that any homogeneous polynomial in two variables is a product
of linear terms over C, there are A\, \y € C such that R(A;, A\2) = 0. Indeed then
F =XM% (X, — a;X;) for some n > 0 and some ¢ € C* and some o; € C.
Since the resultant has a zero, F}(Xg, A\, A2) and F5(Xo, A1, A2) have a common solu-

tion. Here we use that a # 0 or b # 0 (see previous result). [J

Remark: the proof suggests that #C, N Cy = didy provided C; # Cy. We have
to say that they have no irreducible components in common. The truth is

didy = Z ep(claCZ)

peC1NCy

where e,(C, Cy) is the intersection multiplicity of Cy, Cy at p. Intersection The-
ory: find nice ways to count multiplicities - match with order of vanishing of resultant
at A1, Ao. Now let’s look at examples of curves in P?: lines, conics, and cubics.
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14.1 Lines in P?

A line L = V. (F) with F linear. I claim: any such line is isomorphic to P* which is
S2. For example, Xy + X; + Xy = 0 is shorthand for Vi (Xo+ X7 + X3). Then look
at the map [ag : a1] — [agp : a1 : —ap — a1]. This is well defined on equivalence classes
because it scales. This is a morphism (show on standard affine pieces that you get
morphisms) and has an inverse L — P! by [by : by : by] — [bo : b1]. Have to be careful
that 75 : P — P! is nonsense, since [0: 0 : 1] = [0 : 0] is not allowed. To show it’s a
morphism, show that on nice open parts it’s regular. As set maps, these are inverse
to each other; since they are morphisms, this is an isomorphism. Conclusion: every
projective line is 2 to P! as a (projective) variety. (On Uy of P, goes to LN (U of P?)
as in C — C* by ¢; — (c1,—1 —c1).

14.2 Conics in P?

A (possibly singular) conic is V, (F) in P* where F' is homogeneous of degree 2. Two
cases: (1) F'is reducible = F' = L; Ly where (1a) L; = Ly a line with multiplicity two
or (1b) Ly # Ly two lines intersecting at one point. Two lines carving out the same
space - in the dual space they differ by a scalar, so in (1b), F' = L? for some bilinear
form (taking square roots)."* (2) F is irreducible. Write F' = 37, a;;X; X; which
we can write as

Qo1 Qo2

2
F=agp(Xo+—X1+—X5) + b X; X
00 ( 0 2&00 1 2&00 2) 1<iz<;<2 J j

if agy # 0. [Note: there’s nothing special about having 3 variables here, so things can
2
generalize...] Write by = ay; — %. If b1y # 0, then

a1 Qo2 2 bi2 2 9
F= X X X b1 (X1 + —X X5,
aoo( 0+ Saog 1+ g 2) + 11( 1+ T 2) + a2 Xy
If here ¢y = 0, then aL? + bL3 = (v/aL, +ivVbLy)(v/aL, — vbLy) but F irreducible

implies coo # 0. So
2 2 2 2 2 2
F=(VawXo+-) + (VbuXi+ ) + (VenXs) = L§+ LT + L3

linearly independent. Symmetric square matrix: think of it as a bilinear form, saying
there exists a basis on which it’s diagonalizable! This works whenever agy # 0 and
4agoar; — ad; # 0 (the discriminant). Symmetric in Xg 12 by S(3). Let’s check on an
example: F' = XgX; + Xo X2 + X1 X5 this is

F = XOX1 + XOX2 + X1X2
1

= 5 [(Xo+X1)* = (Xo = X1)*] + Xo(Xo + X1)
1 1

== ZL(Q) - ZL% + XQLO
1 1

- Z<L° +2X,)% — X2 — ZL%

149297
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the sum of three squares of linearly independent linear forms. Check that Xy, L1, Lo+
2X, are linearly independent.

Fact: by example (fudge), if F' is irrreducible of degree 2 homogeneous form in
Xo, X1, Xy then 3 linearly independent linear forms [by no means a unique repre-
sentation]. O(3) acts... consider the map P* — P? by (Lg, L1, Ly). By the previous
discussion, this is an okay map. It’s an isomorphism of P?; an automorphism of P?
as a variety. There’s an inverse: 3 X 3 invertible matrix in C. Conclusion: every
non-degenerate conic is isomorphic to Cyy given by XZ + X7 + X2 = 0. The map
(Lo, L1, Ly) maps Cyq isomorphically onto C: F' =3 L? =0 in P2

Claim: as an algebraic variety, Cyy = P'. Same as pythagorean theorem: X?Z +
X? = X2 by Xy +— iX, first of course. Every pythagorean triple is one of them.
P! — Cyuq CP? by [ag : a1] = [a2 — a? : i(a2 + a?) : 2apay] is an isomorphism. Look
on patches to see that it’s an isomorphism, and same for inverse. Conclusion: every
conic is isomorphic to P! as a variety (where conic means non-degenerate). Next
time, cubics.

15 March 9

15.1 Cubics in P?

A cubic projective plane curve is V. (F) C P? for F € C3[Xy, X1, X»]. Reducible type:
(1) 3 times a line: (1a) L3 or (1b) L?Ly or (1c) Ly Ly L3 (note: 1lc can degenerate if all
three lines intersect at the same point). Also (2) can get (2a) conic and line or (2b)
conic and tangent line (more rare; also, haven’'t defined tangent line). For (3) the
irreducible ones we either have (3a) smooth (3b) node or (3c) cusp. This is what this
course is supposed to be about. Examples: y* = x(z — 1)(z — A) for A € C. When
A =0, get y*> = 23 — 22 a cusp, and when X\ = 1, get a nodal singularity (velocity

always positive). Think x = ))g—é, y = §—§ Then homogenize to get
V(X X3 — X3(X1 — Xo))

from y* = 2%(x — 1), Vo (Xo X7 — X3}) from y* = 27 say, and V, (X X2 — X;(X; —
X0) (X1 — 2Xp)) from y? = z(z — 1)(x — 2). In this last example, 2 can be replaced
by any A € C\{0,1}. Not that easy to show, but all irreducible plane cubic curves
are isomorphic to one of these. Let’s explain why A € C\{0,1} curve is not = P".

Facts about C' = V, (X X? — X;(X; — Xo)(X; — AXp)):

(1) C is nonsingular - this has to be a global question

(2) Uy N C is isomorphic to X = V(y? — z(z — 1)(z — 2)) € C?

(3) The ring O(UyNC) = O(X) = Clz,y]/(y* — x(x — 1)(z — 2)) is NOT a UFD.
Hence, it suffices to show that every open U C P* gives O(U) a UFD. This fact would
imply that C' 2 P' by our definitions regarding morphisms of varieties. [This trick
isn’t really useable]. Here, non-unique factorization, recall is measured by the non-
trivial class group. We know O(P') = Cis a UFD. Let’s prove the necessary fact about

37



P'. Well P' = CII{occ} with coordinate » = % Suppose U = P'\{oo, t1,...,t,} is

an open subset, then
1

(:E—tl)---(z—tn)]

the localization of a UFD, namely C[z] so it’s a UFD (you just get a few more
constants). Now U = P'\{t,,...,t,} distinct, then co € U, so

O(U) = Cla,

1
(y—s1)(y = sn)

o) = Cly, ]

where y = T S = b

g if n =0, same as C.
1

Now, we've seen that for [Z 2] € GLy(C), we get an automorphism P' — P! by

[ : 1] ¥ [axg + bz : cxo + dxq] hence in affine coordinates we get

_X1 ZXO—f—dXo_C—i_d% C+dZL'

r= - r = < —
X() CLXO+bX1 a+bX—(1) a+ bx

valid whenever this makes sense; so we've concluded that because Cl[z] = O(P' \{oo})

that
c+dx

CIELE = OB\l : —al}

(check) because by pulling back coordinate by the map.

To finish, we show that R = Clz,y]/(y* — z(z — 1)(x — 2)) is NOT a UFD.
There is a ring map Clz] — R and every element of R can be written uniquely as
a + by with a,b € C[z]. Define the norm of a + by to be

Nm(a+by) = (a+by)(a —by) = a* — b*y* = a* — x(z — 1)(z — 2)b°.

Because (z,y) — (x,—y) is an automorphism of R, we see that it’s in particular
multiplicative (check). Hence the set of all {(a + by)(a — by)} is stable. Note: if
Nm(a) is a unit then « is a unit. If you divide a unit, you're a unit! Norm of non-
zero things is non-zero, also. Unit has a norm that is also a unit! (not completely
trivial). For example, Nm(y) = —z(x — 1)(z —2) and Nm(x) = z*. If R was a UFD,
then because y? = z(z —1)(z —2) in R, we would get a prime element f € R dividing
both y and z, then Nm(f) divides Nm(y) which is —z(x — 1)(z — 2) and Nm(f)
divides Nm(z) which is 22 so Nm(f) = cx or Nm(f) = c for ¢ € C*, but f a unit
would mean in this latter case that f can’t be prime. Write f = a + by. The norm
then is Nm(f) = a* — y%b* so

a? —x(r —1)(z —2)b* = cx

but this forces |a. Then look at the leading terms of a* and z(x — 1)(z — 2)b*: they
can’t be equal to cancel and give cx as supposedly they do.[].
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15.2 Nonsingular curves

In affine space, p € X C C" a point on a quasi-affine curve, then by definition p is a
nonsingular point of X iff 3f1,..., f,—1 € I(X) such that

on ... 9
ox1 ox1
rank | : ) : (p)=n—1.
oh ... 9
Oxn Oxn

Note: this only depends on I(X) and the point p. So we make shrink or enlarge X
at will. In particular we may replace X by its Zariski closure. If p € X € C" is a
nonsingular point on an algebraic curve then X N B** = B2 that is, looking at a
little ball of real dimension 2n in C" intersected with curve gives a little disc from
C around 0 say (in usual topologies). Hence smooth curves are complex 1-manifolds.
Example: y +yz + 23 =0, p = (0,0), then

{(x,9) €C* iy +yr+2° =0 : |2]* + [P < ¢} = disc

Next lecture, will look closure at this with the implicit function theorem (holomorphic
version).

16 March 11

Situation: p € C' C C", C' an algebraic curve, p a nonsingular point. Target: want
to show 3 a usual open neighborhood p € U C C" such that C' N U is homeomor-
phic to a disk, a ball in C. What will come out of the proof will be better than a
homeomorphism. We reduced this to ”solving” a system of equations of the form
0 =x, — ¢r(x,...,2,) for 1 < k < n—1, where ¢, € Clzy,...,x,] vanishes to

order > 2 at (0,...,0) - i.e. there are no constant or linear terms. For z € C" set
||z|| = max |z;| (any norms induce the same topology).
Lemma 31 for ¢(xq,...,2,) € Clzy,...,x,] with no linear and constant terms

4C > 0 such that

|Q0(I1 +ylu'--7xn+yn> _90<x17"'7xn)| < OHIH . ||y||
Ve, y € C" with ||y|] < ||z|] < 1.

Proof: look just at the monomials. Which monomials ' - - - ziny/" - - . yJn can occur
in the expansion? We know » ir + > jr > 2 and > i, > 1. Then clearly because
Iyl < ||z]] <1 get |22 ---y2n| < ||z]|||ly]| and let C be the sum of the absolute values
of the coeflicients of the monomials. [

For example, 0 = = — ¢(z,y), approximation number one: x = ¢(0,y), then z =
©(9(0,9),y), etc...'?

15997
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Lemma 32 Given ¢1,...,0, € Clzy,..., 2, as in Lemma 1, pick C > 0 which
works for each of them. Let fi,..., fo_1 € Clz], € >0, k > 2 such that

(a) fi(2)] < AJ2? V]2] < e

(0) 1£i(2) = @i (f1(2), - fa1(2), 2)| < Blz|" V]2 <e
(c) Ae* <1

(d) Be-=1 <1

(e) e <1

Then setting g;j(z) = p;(fi1(2), ..., fam1(2), 2) we have

(0) lg—j— fil < Blz|" V|z| <e
(1) |g;] < (A+ €2 B)|z]> V|z| < e
(2) ’g] - @](gla s 7gn7172)| < BC‘Z|k+1 V|Z| < €.

Proof: (0) and (1) are trivial from (b) and (a). To prove 2, apply Lemma from before
to

lo;j (fi+Ar, o fao1 A1, 2) =0 (frs o a1, 2 S Cl(frs o5 fomts 2| I(AL -0 Ay, 0)]].

Lemma from before applies because
L>ex||(fi,-- - famr DI =112l 2 Bll2ll* > [[(Ar, -, A, 0)]]

which follows from (e), (c), (d), (b) respectively. But this is < BC|z|*!. O

Start with ¢1, ..., ¢,—1, C as in Lemma above. Also pick a Cj such that |¢;(0,...,0,z)| <
Colz|* for |z|] < 1 (find a Cy for yourself as in Lemma twice before). Take € =
min{%, %, ﬁ} Set fl(o) =...= fT(IO_)1 = 0. By induction set fj(l) = ;( l(i_l), o ,féi__ll),z).
The I. H. is that (@)

1F7(2)] € Co(l+€C+ (€C)? 4+ (eC) )2

and (3): » ‘ o
7V (2) = £V < CoCl2™? V2] <ee.

The pretty part is that we've got the same €! Proof by induction: i = 0 is trivial
for (), and for (8) this is true because |¢;(0,0,...,0,2) — 0] < Cy|z|?. In Lemma
2(change number), check hypotheses: (e) is trivial, A = Co(1 + e C + - - + (e C)*71),
and B = Cy,C" and k = i +2 Then we get (a)A-€e* < 1 works because (1+¢C +---+
(eC) 1) < 2. Also (d) we have € CyC? < 1 since it’s (e C)' (e Cp) < 1. New A and
B here; obvious from (2) of Lemma.

Conclusion: on the disk of radius a, the functions fj@ as (i — oo) converge uniformly;
1C2*2,1C.) < 1,30 (3)" < oo to a function f; and so we get f; = ©;(fi,- .., fao1,2)
because ¢; is continuous, hence limit is special.
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Black box: because convergence is uniform, the functions f; are continuous but
even holomorphic! Could be that given a differential equation, might find formal
power series solution different from the ones you get from 5-times differentiating...

Addendum: 3§ > 0 such that V|z| < €, 3 only one solution yq,...,y,1 of 0 =
y1—1(y1,--,2) up to 0 = Y1 — ©n—1(Y1, - - -, Yn_1, 2) when |y;| < e. Proof: if there
are any two y and y’ solutions, then estimate |o(y1, ..., Yn—1,2) — @Y1, -, Y1, 2)|
using Lemma 1 from before (not actually this in our numbering). But this means
fi,--., fn_1 are unique (check) and

X {[s] <€ loa] <6} ={(fi(2),-. ., fa-1(2),2) = [2] <6}

So 3! solution, but point-wise convergence shows that the method for getting the so-
lution is unique.

Upshot: p € C' C C" nonsingular point of an algebraic curve then 3 a projec-
tion 7 : C" — C and an open nbd U of p in C" and an open nbd V' of ¢(p) such that
CNUN7YV) — V is a homeomorphism whose inverse is given by holomorphic
functions. For example, {y>—x = 0} = C — C by (z,y) — z is the wrong projection;
(z,y) — y works because (y?,y) is holomorphic. Will have some points even if the
curve where the projection is “wrong” - like z — 22, in which case inverse is z'/2.

17 March 23

17.1 Implicit Function Theorem.

Theorem 6 (ImpFT)p € C C C" nonsingular point on a curve, then 3¢ : {z :
|z| <1} — C with ®(0) = p and ® given by (g1, ..., gn) with each g; holomorphic, at
least one non-zero derivative, and ® a homeomorphism of A disc {z : |z| < 1} onto
a usual open nbd of p in C.

This implies C' is a differentiable manifold because holomorphic functions are differ-
entiable. Also other formulation:

Theorem 7 p € C' C C" a nonsingular point. Choose a linear projection 7 : C" — C
which does not collapse the tangent space to C atp (). Then ¥ sufficiently smalle > 0,
390 > 0 such that

Cn{lzi—p| <e:i=1,....n}n7 " {z:]2] <6}) — {z:]2| <}
1s a homeomorphism whose inverse is given by holomorphic functions

Also ex: singularity people like: not smooth, maybe > = 3, and throw a ball S3
around it, and look at its intersection with a curve. It’s a knot or link! For example
{y? = 23} {|y|*+|z|? = 1} solved by |¢|°+[¢|* = 1 since parametrized by y = 3, z = ¢
for ¢ € C, and there’s only one real |t| positive satisfying this if 1 is small enough
(hah). Then let t = re? V6, r = |t|, some circle, then graphing should give a trefoil
knot! Also in zy = 0, two discs meet at a point in 4d, intersection should give the
Hopf link - see homework. Now the next topic.
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17.2 Resolving singularities

Examples: (A) 2% — y* + 2% = 0 the nodal cubic. Want to make another algebraic
curve by adding a new function z = £ which separates the branches, is in C(C), and
is integral over O(C') by

C'={1-22+2=0, y—az=0}

in C?; these two imply 22 — y? + 2% = 0 by the way, and also O(C") = C[z,y, 2]/(1 —
2?4,y —xz) 2 C[z] and C” = C as an algebraic curve.

Intermezzo: if C},Cy are affine curves and O(C) = O(Cy) as C-algebras, then
C) = Oy as algebraic curves. Proof: look at ring of functions: O(C4) = Clzy, ..., x|/,
O(Cy) = Clxy,...,Tpn,]/ ]2, then send x; — f; mod Iy and x,, +— f,, mod I then
check that the map Cy — C4 by

b- (bl,...,BnQ) = (fl(bl,...,an),...,fnl(bl,...,bn2))

is a morphism and the inverse comes from inverse construction. Check; h € I then

=,

h(f(b)) = 0 but this is in Is...

For the resolution of the cuspidal cubic, it’s C = C¥ — C' by t = £ — (13, 12)
giving 2% — y® = 0 € C% Now lets define what it means to resolve singularities on a
curve.

Definition 26 If X C C" is an affine variety, then the function field is C(X) the
fraction field of O(X).

In the exercises you will show : if U C X is non-empty affine open then restriction
map O(X) — O(U) induces an isomorphism of fraction fields. Thus, for the function
field, it is sufficient to know the small open U. So if X is any quasi-projective vari-
ety, then we DEFINE C(X) to be the fraction field of O(U) where U C X is some
non-empty affine open subvariety. This works because if you have U,V C X both
non-empty, then U NV # 0 since X is irreducible = IW C U NV an affine-open
nonempty and by (*) get O(U) — O(W) and O(V) — O(W) induced isomorphisms
and so C(U) = C(V) (independent of choice).

For curves, let ¢ : Cy — C5 be a non-constant morphism of algebraic curves, then
choose U; C C; nonempty affine open with o(U;) C Us. Gives a map ¢* O(Uy) —
O(U;) the pull-back and hence ¢* : C(Cy) — C(C4). Injectivity here comes from the
fact that it’s non-constant: uses closed subset of C'... for general varieties say image
is Zariski dense (7).

Lemma 33 In situation above, the field extension C(Cy) C« C(Ch) is finite.

Proof: Recall that both C(C}) and C(Cy) are finitely generated field extensions of
transcendence degree 1 over C. Pick xy,...,z, in C(C}) which generate it as a field
over C; pick t € C(Cy) which is transcendental over C. Then we get

C c C(p™t) C ¢*(C(Cy)) C C(Ch)
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where the first is purely transcendental of degree 1. This implies C(C;) D C(p*t) is
algebraic and also generated by w1, ..., x,, hence it’s finite so C(C}) D C(y*t) finite
implies C(C}) D ¢*(C(Cy)) finite. 0.

Definition 27 The degree of ¢ is [C(C}) : C(Cy)]. Also, ¢ is called birational if
C(Cy) = C(Cy), i.e. degy = 1.

Remark: if deg ¢ is n then for almost all ¢, € C,
#{c1 € Cy with p(c1) = 2} =n.

Hopefully we’ll do this later; recall fibres and degree of polynomials - you did a special
case of this. NB: if ¢ is birational then 3U; C C5 open and non-empty such that
¢ 1 (Uy) — Cy is an isomorphism (non-trivial to prove).

Definition 28 Let C be an algebraic curve. Then a resolution of singularities of C
is @ morphism v : C¥ — C' of algebraic curves such that

(1) C¥ is non-singular

(ii) C" — C 1is birational

(11i) v is a proper map of underlying topological spaces

Note: (iii) prevents you from just using C* = C'\ { singular points }. In algebraic
geometry, this would mean finite, which we haven’t defined yet.

Remarks: (a) resolutions always exist (will see this later) (b) sometimes, often, the
map v : C¥ — (' is called the “normalization” of C' because for curves the normal-
ization gives a resolution! Next time: maps between non-singular curves.

Important distinction: for P', we saw O(P') = C. These regular functions are glued
up functions on the opens. However, C(P') is not the field of fractions of O(P'), but
of O(U) for an affine open U C P', so C(P') = C(x).

18 March 25

18.1 Discrete Valuations

Now we’re going to do something “really fun”: discrete valuations. We are going to
treat an algebraic curve in many ways. Suppose that a € C, can define v, : C(z)* —
Z, where C(z)* are the units of the function field of P, by

f +— order of vanishing of f at z = a.
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(i) = -2

the valuation of the function 0 is oco.
Here are some properties of v,:

(1) it is surjective

(ii) va(c) = 0 for c € C\{0}

(ili) va(f9) = va(f) + valg)

(iv) vo(f + g) > min{v,(f),va(g)}. Observe that strict inequality can occur:
1 =v4(z —a) > min{v,(1),ve(z —a — 1)} = 0. It turns out that if the inequality is
strict then f and g have the same order of vanishing.

Moreover we can also define v, : C(z)* — Z by f + the order of vanishing of f

at co. For a rational function 1/00(%) = —deg(P) + deg(Q). Why? Just think that

27! is a function that vanishes to order 1 at co, and write P(x)/Q(x) in terms of 271

Check that the properties still hold for v,,. We can now generalize this:

Definition 29 Let K be a field. A discrete valuation on K is a surjective map v :
K* — Z such that (1) v(fg) = v(f) +v(g) (it) v(f +g) = min(v(f),v(g)). If
K D k is an overfield, we say that v is a discrete valuation of K over k, “K/k”, if
v(c) =0Vee k\{0}.

Proposition 6 If v is a discrete valuation on C(x)/C, then v = v, for some !
a € P! = CII{oc}.

The upshot of this: points in P' are in bijection with discrete valuations on
C(P")/ C. Proof of proposition: pick a v some discrete valuation.

Case 1: 3P € Clz], P # 0 with v(P) > 0. Write P = ¢[[",(x — a;), so
vip) =v(c)+ > v(r—a;) > 0and v(c) =0, so = Ja € C such that v(z —a) > 0,
say v(z — a) = n. Let us now consider v(z — () for § # a. Well

vir—0)=vx—a+a—[)>min{0,n} >0 Ve C
but if v(z — ) > 0 for some 8 # «, then v(f —a) =0 =v(z —a — (z — ) >

min{v(z — a),v(z — §)} > 0 a contradiction. Now we know v(z —v) = nd$ is an
indicator function. But any rational function is a product of linear terms, so

v(f) = V(CH(ZL‘—’)/)&Y> =eV(x —a)=¢e4-n="n-V(f)

by definition of v,. So v = nuv,, but if n > 1, then v is not surjective, so we must
have n =1 1ie. v = v,.

Case 2: VP € Clz] with P # 0, v(P) < 0. Pick @ € C with n = v(z — )
maximal (n < 0). Then v(z — ) = v(z — a) + v(a — 3) > min(n,0) = n but o max-

imal so v(x — 3) = n always. Then V(%) = [—deg P+ degQ] - (—n) = (—n)vso <§>
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and again surjectivity implies —n = 1. [J

This says P! is a nice algebraic curve: if you know its function field, you can
find directly its points! We want to generalize this proposition to other nonsingular
projective curves (this will take some work). Now we’ll do some other algebra which
is also fun.

18.2 Power Series

First, an example. Consider the power series ring C[[z]]: it is a UFD with one prime
element (x); everybody is z* - unit, where the units are power series with ag # 0
which implies invertibility; it is a local ring'® with maximal ideal (x); a domain;
C[[z]]/(z) = C so z is prime; also the Laurent series field C((x)) = Frac(C[[z]]). Now
if f € C[lz]], f = a;x"is a unit if and only if ag = “f(0)” # 0: to invert f, just take
f=a)(l+5z+--)=a(1+bix+bya?+---) and call this right sum 4, then [~ =
aglﬁ =ay' (1 =046 =8 +---). Since z|§ = 2°|6°, etc, so C((z)) = C[[z]] [%],
all we have to do is invert 2! A Laurent series is a sum >, _, a;z" (finitely many
terms with negative exponent). Then f € C((z))* = f = z*u, u € C[[2]]*, k € Z,
the order of vanishing at = 0. This gives a discrete valuation v : C((x)) — Z by
f = 2*u — v(f) = k. Exercise: show that this is a discrete valuation. Check that
C[[z]]* are elements with valuation > 0; f € ()™ < v(f) > m, or a,b € C[[z]] \ {0}
then a divides b in C[[z]] if and only if v(b) > v(a).

18.3 Hensel’s Lemma

Projecting a curve C' — C, we want to look at the hard fibers - to zoom in so close
that you don’t have a function any more. We turn to Hensel’s Lemma over a power
series ring:

Lemma 34 (Hensel) Let f € C[[z]][T]. Assume f mod x = h-g with h,g € C[T]
relatively prime. Then f = h - g for some h,g € C[[z]][T] with h mod z = h and
gmodzr =7.

NB: we’ll see in the proof that we can take g with degy(g) = deg,(g) for just one of
the g, h. Counterexample to both: f = 2T +T(T -1),g=T,9=T,h=T —1,
h = 2T° + T — 1. There’s another version of H’s Lemma: solutions mod z not
a double root then exists elements of C[[z]|] a solution of f; means 3 linear factor
relatively prime to the rest...(?)

Proof of Lemma: We will show by induction. [H, the induction hypothesis be-
ing 3h,, g, € C[[z]][T] such that f mod 2™ = h, - gn, h, mod 2" = h,_; mod z",

16From wikipedia: a ring R is local if it has any one of the following equivalent properties: (i) R
has a unique maximal left ideal (ii) a unique maximal right one (iii) 1 # 0 and the sum of any two
non-units in R is a non-unit (iv) 1 # 0 and Vx € R, either z or 1 — x is a unit (v) if a finite sum is
a unit, then so are some of its terms (in particular the empty sum is not a unit, hence 1 # 0).
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gn mod 2" = g,_1 mod z", degp(h,) < degp(f) — degy(9) and degr(gn) < degr(9)
(also need starting case). If we can prove this, then we set h = > ;7" for i <
degy(f) — degy(g) with a; mod 2" = ith coefficient of h, mod 2"; g = 37,10 () b;T!
with b; mod 2" = ith coef of g, mod z". For example, consider hy = 1 + 1T,
hy = (1+z+2%) + (14 2°)T, ... WANT H, OK MOD z" (the garbage evens
out), which would mean f = g-h because modz™ they are = for all n > 1. [Look up
complete local rings...] Along the way, we have to control powers of T'; since we have
to end up having a polynomial. Prove now: IH;: just take hy = h and ¢; = g but seen
as elements of C[[z]|[T]. For IH,, — [H, 11, f = b,g, + a™r and deg,(r) < deg,(f)
since deg(hngn) = deg(hn) + deg(gy) < deg(f) — deg(g) + deg(g) = deg(f). So we
can write r mod x = ag+ bh for @,b € C[T such that deg,(b) < deg(g) which implies
degr(a) < degp(f) —degp(g). Take hyiq = hy, —ax™ and g,41 = gn, — ba™, this works
where a, b without the barre are in C[[z]][T]. Then

PriiGni1 = (hn—2"a)(gn—2"b) = hygn—1"(agn+bhy,)+2*"ab = 2™ (r—ag,—bh,)+x*"ab € (z" 1)

since this first term multiplied by 2" is 0 mod x by construction. [

RMRK: the most general form of H's Lemma: a f € A[T], A is a local, complete
ring with maximal idea m and f mod m = §- h with ged(g,h) = 1, g,h € A/m[T]
then f = g-h for g,h € A[T] such that § = gmodm, h = h mod m. A variant:
fe AT, f=fmodm, ac A/m, f(@) =0, f(a)+0, then Ja € A such that (i)
f(a) =0 and (ii) « mod m = @ [take g =T — @].

19 March 30

Last time, Hensel’s Lemma: (i) f € C[[z]][T] (ii) f mod z = gh (iii) ged(g,h) =1 =
can find f = g - h in C[[z]][T] and deg;(g) = degs (7). In analysis, we zoom in at a
point and look at small balls; in algebra, we do this with power series. Idea: with the
ring C|[z]] as the base curve, what curves can go over it?

Lemma 35 Let P(T) € C((x))[T] of degree d > 2. There ezists an integer q¢ > 1
such that p factors nontrivially over the field C((x/9)).

Note: given such a ¢, we have a diagram

x (xl/q)q = y1

where the map below is an injective ring map, and above C((z)) — C((y)) is
a finite extension of fields of degree ¢ with basis 2° = 1,...,2@ /4. The Lemma
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says that we can factor at the cost of adding z'/¢. Then HL: suffices to factor
mod z; also applies to y = /9. Assume P is monic (normalize leading coefficient).
P(T) =T+ a;T* ! + - + aq with a; € C((z)). Now something clever:

T
$edP<—> =T+ a 2T + g™ T2 + - + agz®™.
xe

When we go mod x, we want each coefficient in the power series ring, then divide
by o want reducible. If e is huge, then all a;2¢*9: we need all coefficients in C[[x]]
but not all divisible by z, lest when we go mod z we get 7% = T'---T which isn’t

factorizable into two relatively prime parts. Set

where v over C[[z]] extends to C((z)). This is equal to some £ € Q and is where

we get our ¢. But since we are only trying to factor in C[[z/9]], let this be the g,
and then over C((z'/7)) we have medP(xle) =744 30 (%a)T" = T+ S0 bT'
such that Vi we have b; € C[[x'/9]] and for at least one i € {1,...,d} we have
b; mod x'/9 # 0. The valuation in y is ¢ times the valuation in 2 (v behaves like log):
v(b) = v(z*a;) = ie + v(a;) = 2(@ +¢). We want e + @ > 0 for all 4 and 0 for
at least one 7) so we conclude that xedP<x—7;> mod z'/7 = T4 at least oneterm 1"

for some ¢ # 0 in C. AND NOW YOU ARE STUCK! Because it could be that this

factors as (T — ¢)%.

Now we repair the damage on the spot using a special transformation. Step
1: make P monic.

Step 2: Tschirnhausen transformation applied to P, assume P(T) = T% + a,T92 +
-+« + ay (achieved by T — T + %) Step 3: —e = ming<;<4 @ and we get back to
where we started and the coefficient of 7971 is still 0. Claim: any P = T9 4 ¢, 742 +
-+ cq € P[T] such that ¢; # 0 for some 7 has factorization p = g - h nontrivial with
ged(g, h) = 1. Then apply HL over C[[z'/9]] this ring to get ZL‘EdP<%> =H -WsoP

factors non-trivially too. [J

Lemma 36 Any P € C((x))[T] factors completely over C[[x/9]] for some q > 1.

Pf: Start with P; P is linear, then we’re done; if deg P > 2, then apply the previous
lemma, and the pieces strictly decrease in degree. [

The moral of the story: we can fully describe the algebraic closure of the

field C((z)): it is the union over all gs of _(C((xl/q)). More generally, given
K C L a field extension, how to recognize if L = K7 Well, L has to be an algebraic

47



extension, and so we check that every polynomial in K factors in L. Now you don’t
have to check for this in L! Consider the fundamental group m; of a field without
zero, (draws picture), it’s Z. Well

Gal (C((x))/@((x))) =2=[[z=1mzZ/nz.

The Galois group is the profinite completion of the integers (the inverse limit on the
right is taken via divisibility).!”

Proposition 7 Any finite extension C((x)) C K of fields is obtained by adjoining a
qth root of x where ¢ = [K : C((x))].

Proof: Step 1: By the previous Lemma, K C C((z'/")) for some 7.

Step 2: Gal(C((z'/"))/C((x))) = Z /rZ containing o a generator. Then o(z'/") =

27

2mi

e - 217 then we get ol(z/7) = ™ 2!/" we get all of them. Step 3: All subgroups
of cyclic groups are cyclic, hence by Galois correspondence, Gal(K/C((x))) is cyclic.
U

Proposition 8 Let C[[z]] C A be a finite extension of rings such that A is reducible
(i.e., if a € A nilpotent then a =0). Then 3! ring extension A C B such that

(i) B = C[[w]] x -+ x Clly,]] for some r and z — (yi*,...,y5") for some
e1,...,e. > 1 (really the qs from before).

(11) A[1/z] = B[1/x]; he mentions “away from the puncture — think Spec”

(11i) compute B from A: B is the integral closure of A in A[l/x] which is also the
integral closure of Cl[x]] in A[l/x]

Definition 30 (i)If A C R is a ring extension, then the integral closure of A C R is
A ={f € R: [ is integral over A}; it is an A-subalgebra of R.

(i1) We say A is integrally closed in R iff A=A’

(111) if A is a domain, we say A is a normal domain iff A is integrally closed in
its fraction field

Algebraic Fact: if K C R is a finite ring extension, K a field, R is reduced, then R is
a finite product of fields (look at annihilator...). Can finally prove the proposition:

Proof: C[[z]] C A is finite and A is reduced; then invert z: C((z)) — A[l/x] is
finite and A[1/x] is reduced. Check that A reduced = A[l/z] reduced. Projection to
factors, so by the fact, A[1/x] = Ly X --- X Ly is a finite product of fields L;. By the
previous proposition, C((z)) C L; = C((y;)) with y;* = x. Then check if B :=integral

closure of Cl[[z]] in A[l/x], which is explicitly given above B = C[[y]] x - -+ x C[[y,]]

17“What just happened?” moment number 5453
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with = (y7',...,y5"). Amounts to showing that the integral closure in X x Y is
the product of integral closures; also look at integral closure in C((y;)) is itself. Since
A was assumed finite over C[[z]], every element of it is integral over C[[z]] (previous
algebraic fact) so A C B. Then also B = int closure of A (easy - do it). O

What we would like / what will this do for us: at a horrible singularity, have
a resolution C¥ — C' — C C P' and this smoothing out corresponds to B — A a ring
extension. Will get actual power series rings at each point up here, and ) e; = deg
of C — P'....

20 April 1 - Jarod Alper

20.1 Motivation

C is a complex curve, potentially has singularities - useful to find resolution of sin-
gularities, that is, find smooth curve C¥ — C with morphism that is birational (is
an isomorphism restricted to an open set in C”). For example, nodal and cuspidal
cubics - almost everywhere bijections. We can study C' by studying C”. Now, the
algebra behind this.

20.2 Normal rings

Definition 31 An integral domain A with fraction field ffA = K is normal or
integrally closed if Vo € K such that 3 a monic polynomial P(t) € A[t] such that
P(x) =0, then z € A.

For example C[z] is integrally closed (use the fact that it is a UFD).
Proposition 9 A a UFD = A normal.

Proof: Let x € K such that 2™ + a,_12" ' +--- 4+ a9 = 0 with a; € A. If x € A,
write x = g where Ip/g, p [Jf in lowest terms (uses the fact that A is a UFD). Then
replace this into the monic polynomial:

0 snl)

and clearing denominators with ¢" gives ™ + an,_19f" 4+ - -aog™ = 0. Now since
plg, p divides the expression above besides f", but then p|f™ = p|f since p is prime,
a contradiction.[]

Definition 32 A an integral domain with Frac(A) = K, then if A is not normal,
take the integral closure of A as A ={x € K : I{a;} C A such that 2" + a,—12" 1 +
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Facts:
(i) A is a ring
(ii) Frac(A) = K
(iii) A is normal.
Some examples:
(1) A= A if A is integrally closed.

(2) From the cuspidal cubic V(y? — 2®) C C*. What is the integral closure of
Clz,y]/(y* — 2%)? Well K = Frac(A) = C(y/x) by (5)2 = L = 2 = 2 and
(%)3 = Z—; = Z—; =y, so this field contains « and y. The element £ satisfies 7? —x = 0

but y/z ¢ A. Now A C C[%] C A then conclude ClY] = A because it is inte-
grally closed. Indeed, for t = £ C[t?,#°] C C[t] and this is isomorphic to our ring

Clr,yl/(2* = y*).

2

(3) For A = Clz, y]/(y*—x?*(x+1)) the nodal cubic, if you complete the ring at the
origin, you get a power series ring in two variables (...). Frac(A) = C(t) where t = £,
for t? = (%)2 = % =z+1sox =1t>—1andalso t* = (%)3 = w =y+Lim-
plies y = t3—t. Then t € Frac(A) satisfies P(t) = T?—(z+1) andso A C Cly/z] = A
corresponds to C' — V(y? — 2%(z + 1)) C C* by t + (1> — 1,43 — t) and we see that
/71(0,0) = {1, —1}. Turns out two curves are birational iff they have the same
function field.

(4) Let A = Clz,y]/(y*> — z(z + 1)(z + 2) be a smooth cubic. But Frac(A4) =
C(z,y)/(y* — x(x + 1)(z + 2)) cannot be written as a fraction field in one variable.
It is an elliptic curve of genus 1. Is A integrally closed? Amazing fact: V(1) C C"
is nonsingular iff Clxy,...,x,]/I is normal., which tells us this is normality is a
local question.

20.3 A finiteness proof

Suppose V/(I) is singular, then A the integral closure of Clzy, ..., z,]/I: is A finitely
generated as a C-algebra? If yes, then A = Clyy, ..., y,]/J C Frac(A) is a “resolution
of singularities”. It turns out that the answer is YES! Great, but requires work. This
is the motivation for the next half-hour.

Definition 33 Let A be an integral domain with Frac(A) = K, and K C L a field
extension. Then take the integral closure of Ain L: itis B ={x € L : 2"+a,_ 12" '+
oo+ a9 =0 fora; € A}.

Facts:
(i) B is a ring
(i) Frac(B) = L
(iii) B is integrally closed.
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The example to keep in mind for

K C L

18

Clz] - Cly]

where y" = x. Locally, all field extensions of C(z) do look like this, though 3 non-
cyclic extensions. What we’re proving:

Theorem 8 If A is a normal noetherian ring and K = Frac(A) C L a field extension,
then the integral closure B of A in L is a finite A-module.

This is not the same as the original question! “Vague cloud”: C' = V(I) C C" a curve,
then 3Cly] C Clzy,...,x,]/I such that it’s finite (from Noether Normalization). But
then the integral closure of C[z] in L we show to be finitely generated...

Proof: Let B be the integral closure of A in L. Since L is separable over K (since we
are over C) by the primitive element theorem, we can write L = K (y) and can choose
this y € B by clearing denominators. Let f be the minimal polynomial of y. A priori
we know that f € K[T], but we claim that f € A[T], which we now show. Factor
f(T)=(T—1w)- (T —y,) where y = y,. Let r = [L : K], then 1,y,y?, ...,y  lisa
basis for L/K. Since y € B, it is integral over A, so sums and products of yi,...,y,
are integral over A, but coefficients of f[T] are also integral implies coefficients are
in A. Recall from field theory there is a trace map Tr : L — K that is K-linear,
where Tr(y) = ) y; is the sum over the roots of the minimal polynomial. For b € B,
Tr(b) € A; taken with respect to fixed basis... Now

Lemma 37 Tr(#ly)) = 6" where § is the indicator function and f'(y) is the alge-
braic derivative taken wrt y.

This is a computation. Now, we know that %, %, e % is a basis for L/K.
Then write A C A[T]/f =: C C B. Show B is finite type by embedding it in

something finite. Write
B*={x € L:Tr(bx) € AVb € B}
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C*={zreL:Tr(cx)e AVece C}

then B € B* € C* C L, and all we have to do is show C* is a finite A-module. Now
we claim: C* is a free module over A given by the dual basis:

1 yrfl
C*=A— V- -pA cL
<f’(y)> <f’(y)>
Proof of claim: It is clear that #Zy) € C* for all i; check that Tr <yj %) e A.
The converse is what we need. Let x € C*. Write x = Clﬁ S Cr% with

¢; € K. We want to show ¢; € A. Well, Tr(x) € A picks out a coefficient = ¢, € A.
Prove all ¢; € A go by induction. Suffices to show 2/ = x — cn% € D then

Tr(ya') = ¢,—-1 € A. Then we're done: C* is a finite A-module, and then B C C* is
too because A is noetherian.

21 April 6

“I'm excited: this is all going to work out!”

21.1 “Today’s special”

Proposition 10 Suppose we have a finite extension C(x) C L (actually could be
C|x] instead, whether the curve below is C or P*...). Write L = C(z)[y]/(P(y)) where
P(T) € C(x)[T] is a monic irreducible polynomial (can always do this in characteristic
0 for finite separable extensions). Then

(i) The ring L (completion) given by C((x))[y]/(P(y)) (not necessarily a field) is
reduced (the only nilpotent element is 0).

(ii) Set B = integral closure of A = Clz] in L and B = integral closure of
A = C[z]] in L. (In the last two lectures, we studied these operations). Then 3 an
A-algebra map ¢ : B — B with the property that it induces isomorphisms

B/x"B — B/z"B
for alln > 1.

Though completions are a bit annoying, so we won’t deal with them precisely, the
moral here is that integral closure commutes with completions. Now, all sorts
of things will magically turn out to be true!

Proof: Since P is irreducible, ged(P, P') = 1, so P has no multiple roots, and hence
P-Qi+ P -Qy =1 for some Q1,Qy € C(x)[T], and also PQ; + P'Qy = 1 for
some (1, Q2 € C((x))[T] take images via C(z) — C((z)). Hence P factors (since
K|[T)] a UFD for any field K) into pairwise distinct irreducible monics P = P - - - P,
P, € C((z))[T]. The pairwise distinct part uses ged(P, P') = 1 in C((x))[T]. Inter-
changing y and t (sorry):

C(()lyl/(P(y)) = C((x))[yl/ (Piy)) x - -+ x C((x))[yl/ (Fr(y))
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by the Chinese Remainder Theorem. Each C((z))[y|/(Pi(y)) is a field because P, is
irreducible; hence because this is a product of fields, there are no nontrivial nilpotents,
hence it is reduced, proving (i). Before we do (ii), let’s make a diagram to keep things
clear:

L

P) 4 C(( =L

= C(x)[y]/( x))[yl/(P)
| |
B B
| |
A= Clz] Cllz]] = A

Now C(x) C L has a basis 1,,...,y% ! where d = deg P, and so does L over
C((x)), even though it is not a field. ¢ is injective (L € L). Nowbe B< be L
and b integral over A = ¢(b) € L and ©(b) integral over A because the monic
polynomial g with coefficients in A that exists for b under ¢ gets sent p(g) = ¢ an
isomorphism so ¢(b) € B by definition. Since ¢ is injective, ¢ is injective. Now look
at the isomorphism desired in (i) - fix n € N. Claim: ¢ '(2"B) = z"B. This would
show that the elements of B that map to 0 in B are only 0 € B which would imply
B/x"B — B/x"B is injective.

Proof of claim: "B C ¢ '(2"B) is clear. Now to show 2" B D ¢ (2" B). Suppose
b € B and ¢(b) € "B that’s to say ¢(b) = 2™b. Show that b € ¢(B) then show b is
divisible by z". Show 3 polynomial with monic coefficients in A such that x% satisfies
it... have to show b/z" € B. Last time, Jarod proved B is a finite A-module. But A
is a PID here, and by the classification of finite modules over a PID, we can see that
since there is no torsion (B a domain) and only a free part we can write B = A%" as
an A-module. Why exactly r = d? Look at the rank

r = rank,(B) = ranke) L = d.

Let P,, not the same P as before, be P, = T% 4+ a;T% ' + - - - + a4 be the character-
istic polynomial of b acting on B = A%®? (of the matrix representation). Note that
ai,...,aq € A. Then also Py(T) is the characteristic polynomial of b acting on L
over C(z). Using the same basis for L and L, then we see further that P, is the
characteristic polynomial of ¢(b) acting on L, which implies P, € A[T | is the char
ply of 2"b which means each a; is divisible by 2% in A = C[[z]] (think). Then each
a; is divisible by z"* in A = Clz], and then z~"b satisfies a monic equation with
coefficients in A (namely 7 ""a;) which means z~"b € B. Note that we have to be
careful because irreducible polynomials in B over C(x) may become reducible when
passing to C((x)). We're not done yet:

Final claim: if b € B, then 3b € B such that ¢(b) = bmod 2" B, which would give
surjectivity of B/z"B — B/a:"é First note that we can certainly find by,...,b4 € B
such that

B C Aby+ -+ AbyC B
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for some large N. Indeed, take b; = x™Viy’ for some suitably large N;. L has basis
Ly,...,y" ', We know B[ﬂ = i, and B is a finite module over fl, so take any
finitely many generators (because we computed it two lectures ago) - huge power
of z, denominators disappear; even higher, can write as a combo of the b;. So say
B = Ab 4+ Abf where f is some number (that we don’t know is d yet) with
Vi write b; = Z;j > iy’ with ¢;; € C((x)). Then say ¢;; = %9 a unit of A. Then
pick N = maX{N } + max{k;;} and check that this works. [We showed last time
that L D C((z)) is finite and reduced implies its C[[z]] C C[[y1]] X - - - x C|[y,]] where

= (47", ..., y;") the structure theorem for B.] We're almost done proving the final
clalm write 2Nb = 3 d;b; with d; € C[[z J|. Pick a; € Cla] very close to the power
series d;, i.e. such that a; — d; € V™A, Then you get zV¥b — S a;b; = «Nt77
for some 7 € B, namely 7 = %bz This implies by the previous claim that
b= I’N(Zaibi) € B and also b — b € 2"B as desired. 0.

21.2 Applications

What can we do with this??? Here’s one nice application:

Proposition 11 If C[z] C B is the integral closure of Clz| in a finite extension
C(x) C L, then every mazximal ideal m of B can be generated by two elements.

Compare to maximal ideals in C[z]| generated by one element. Proof: by the HNull,
B/m = C. Then this means C[z] N m is also a maximal ideal in C[z] (m corresponds
to a closed point on the curve). Then Clz] Nm = (z — «) for some o € C by the HN
again. Change coordinates os that o = 0 (THINK: apply an automorphism of C|x]
by x +— x — «), and now x € m. Then we know by today’s special that

B/xB = BJxB = Clyi]/(yi*) x - x Cly.]/(y")

where the second equality came from two lectures ago. Note that truncating by a
power of y; is the same as if we did it in C[[y;]] or Cly;]. Then also m/zB C B/zB
is maximal in here by the Third Isomorphism Thm, and so it corresponds to some
maximal ideal over in the product of fields. So what are maximal ideals in this prod-
uct of fields? Well, can have at most one idempotent F; = (0,0,...,0,1,0,...,0)
surviving, and has to put y; in there, so each maximal ideal of RHS is of the form

((1, Lyl 1)) for some 1 < i < r: quotient by this ideal gives C (call this
element b, then m is generated by x and b where b — b in the quotient. O]
Next time we will show dim¢ m/m? = 1 if and only if we have a “nonsingularity” ,and

will link back to valuations. Again this is local (think saying €2 = 0 to deal alge-
braically with infinitesimals...)
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22 April 8

Review: what we have seen is a contravariant equivalence of categories of (G) affine
algebraic curves and (A) C-algebras B that are finitely generated domains of tran-
scendence degree trdege(ff(B)) = 1 where ff(B) is the fraction field. As a basic
example of this, consider the category of (A) finite dimensional vector spaces over C
in equivalence with (G) {C" : n > 0} with morphisms given by linear maps: this is
how we know every vector space has a basis. What follows are explicit illustrations
of this correspondence in the various topics we have covered / will cover.

22.1 Ring of Regular Functions

Given C' C C" a Zariski closed subset, our functor F' : G — A sends C' — O(C) =
['(C) the ring of regular functions on C' (which are the coordinate ring of polynomials
since C' is closed in the ambient space). This functor sends a morphism

(p:CrL— Cy) = (9" : O(Ca) — O(Ch))

by the pullback which is contravariant. To show that it is an equivalence of categories,
we have to show that each object / morphism is hit by a unique one from the LHS.
To go back: if B = Clzy,...,x,]/I take C' =V (I) C C" and if x : By — B take the
map ¢ : C} — Cy with p(a) = (hi(a),. .., h,(a)) where x(z;) = h; mod I(CY)... etc...

22.2 Noether normalization for curves

A curve C has a finite morphism C' — C if and only if, via our functor, any B as
above has a copy of A = C[z] — B an embedding such that B is finite over A. Note
that this embedding is far from unique.

22.3 Jarod’s Lecture

(A): Given A C B as in Noether normalization, the integral closure B’ of B (or
equivalently A) in L = f f(B) is finite over B (or equivalently A). On the curves side
this menas we get

C'—-C—C ()

where C' — C is finite and C" — C' is birational (same function field) and C’ is a
normal affine algebraic curve.

Definition 34 An affine algebraic curve is normal iff B = O(C) is a normal domain,
i.e. integrally closed in its fraction field C(C).

Our goal is to show that C” is nonsingular; note that if C' is already normal, then C’
is C' (this is our resolution of singularities C").
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22.4 Last Lecture

In (*), if C is normal, so C' = C" and B = B’, then Vn > 1 3 an isomorphism
B/x"B — B/xz"B of Clz]-algebras where A = Cl[z]] C B = C[[y;]] x --- x C[[y,]] by
z— (y7', ..., y5) and we also know B the integral closure of Ain L = C((z))[y]/(P(y))

if ff(B) =C(C) = C(x)[yl/(P(y))-

Remark 1: Note that this also means d = e; + -+ + ¢, where d = deg[C(C)
C(z)] = deg (C — C). The rank of B as an A-module is e; + --- + ¢, and on the

other hand deg[L : C((z))] = deg[P] = deg[C(C) : C(x)].

Remark 2: The e;s will be called the ramification indices of the points of C' lying
above 0 € C.

Remark 3: In the last proof, used = as a coordinate, but could’ve also done = — «,
hence this result holds V points a € C (get e; pieces ... etc). NB: the geometric
picture of this we will see has to do with what sits above a disc D C C: might have
3 disjoint holomorphic disks above... or say if e; = 2,e5 = e3 = 1, then we get three
“disks” above, two ¥, ys of them map down to D by z +— 2z while the other maps
down as z — 22, The action on points is DUAL - careful! The power series are formal
solutions -; don’t worry outside a point, but proving normal curves are nonsingular,
we then know from our earlier work that we do get disks locally (!!!).

22.5 Applications

Review: saw of this application 1 was V NORMAL affine curves C' and any maximal
ideal m, m can be generated by 2 elements. Now Application 2: with the assumptions
as in App 1, then dimcm/m? = 1. Proof: pick A C B as before. After changing
coordinates, see Remark 3, may assume that mN A = () C A = C[z]. Then

B/«*B = B/2*B = Cly]/(y{") x - x Cly, ]/ (5;")

by x — (y5',...,y¢). Then the ideal m/2? B = the ideal generated by (1,...,1,y;,1,...

¢. Think: then m/m? 22 (£)/(€)? = (y;)/(y?) in Cly;)/(y>*) and this has dimension 1
over C.[O

Application 3: A normal affine algebraic curve is nonsingular.

Proof: 1t is enough to show the following proposition (Jacobian criterion): for
C' C C" an affine curve, p € C corresponding to m C B = O(C), then p is a non-
singular point on C' if and only if dimcm/m? = 1. Warning: this algebraic RHS
is considered the definition of nonsingular or smoothness in most algebraic geome-
try courses, not the rank condition on partials on the LHS. But we just saw this
in app 2, so we'd be done! To prove this proposition, say I(C) = (fi,..., f), then
OC) = Clxy,...,xn|/(f1,..., fi). Now do an affine linear change of coordinates
such that p = (0,...,0). And this change of coordinates, we must note, doesn’t
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change rank. Then f; € (z1,...,2,) and m = (1, ...,2,)/(f1,..., fn) hence we get
(1, .. xn) (@1, 20)? = m/m? = (z1,...,7,) /(24 - g, fi) and also

(€1, x0)/ (21, 20)* = P CTG
=1

and so we can ask what is the kernel? Well Y " | A\;z; — 0, then > A\;z;, the linear

A1

terms of some f € I(C) = (f1,..., f;) if and only if | : | € I, the matrix whose
An

columns are 2L (0) for j = 1,...,¢ so now want to show

dim(m/m?) = n — rank[giz (0)]

the COTANGENT SPACE (?). Now to prove that the rank of [2£(0)] < n —1is

true since m/m? = 0 = m = m? = by NAKAYAMA there is some f € m such that
(1+ f)m = m which = B has zerodivisors unless m = 0 but this is a contradiction
since dim = 1 so m # 0. Generalization: rank < n — d where d is the degree takes
work... we won’t do this because this is curves.

22.6 Unrelated ramble on Local Rings

Local rings, those which have exactly one maximal ideal. Now S C A, A a ring
and S a multiplicative subset (closed under mult, contains identity) then picking
denominators in S only, get

S’lA:{g:aeA,SGS}/N

with equivalence a/s = a’/s’ if there is some s” € S where s'(as’ — sa’) = 0 since this
all isn’t necessarily a domain. Then at a prime ideal p, we have

Ap=(A—p)t-A

is always a local ring. Fulton: p € C; then a local ring of C' at p is O, the germs of
regular functions around p. This is

0, =limO(U)
where the direct limit is taken over all p € U C C' open. The equivalence
{(U,f):peUCCopen,feOU)}/ ~

where (U, f) ~ (U', f') & 3U" C UNU' such that f| , = f’}UN. Then if p € C with
corresponding m C B as before then

By 0,

which is to say that the local rings agree.
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23 April 13

So, we saw that the normalization of an algebraic curve gives a nonsingular cirve, and
the map is finite and birational. To prove that nonsingular = normal will take work.

23.1 Valuations and Curves

We're avoiding local rings here. Also note that it turns out that any algebraic curve
(more general definition) is a quasi-projective curve.

Definition 35 Let C' be a quasi-projective algebraic curve, and let v : C(C)* — Z be
a discrete valuation on C(C)/C. We say that v is centered at p € C if 3 an affine
open neighborhood p € U C C' such that

(a)VfeOWU), f+#0, we have v(f) > 0.

(b)VfeOWU), f+#0 with f(p) =0, then v(f) > 0.

For example, C' = C = A{, then C(C) = C(z), and v, is centered at a if « € C =C
and v. is not centered at any point of C = C. As a second example, C' = P!, we
have C(C) = C(z) and v, is centered at a Vo € P

Theorem 9 Every discrete valuation of C(C')/ C is centered at at most one point of
C. If C is projective, then every discrete valuation is centered at some point of C.

Warning: it can happen that two different valuations are centered at the same point
of C. For example, C' the nodal cubic defined by zy — (23 + y*) = 0, in this case
O(C) = Cle,y)/(xy — 2% — %) € C(t) = C(C) by the map & > 14, y >
ie. y/x — t. Here, vy and vy on C(t) are both centered at p = (0,0) the nodal
point. Will see that on a nonsingular curve we have a bijection between points and
valuations. Also note that this doesn’t happen when you look at the cuspidal cubic
y? — 2% = 0 because the normalization is a bijective map: look at see how many points

are above the singular point.'® Towards the proof of the theorem:

Lemma 38 (0) If C is an affine curve and v(f) > 0 Vf € O(C) Cc C(C), f # 0,
then m = {f € O(C) : v(f) > 0} is a mazimal ideal of O(C') and corresponds to the
unique point of C' at which v is centered.

Check that this is an ideal (elementary: for example z € m, y € O(C), v(zy) =
v(xz)+v(y) > 0 because v(x) > 0 and v(y) > 0.) Actually, check that it is prime, and
note that v(1) = 0 so 1 ¢ m. This prime ideal m corresponds to a closed subvariety
of an affine curve, so it’s a point since the dimension must go down, hence it is max-
imal. This implies 9p € C such that m = {f € O(C) : f(p) = 0} which implies v is
centered at p. If v was also centered at g # p, then choose f € O(C) with f(p) # 0,
f(g) =0, and you get v(f) = 0 a contradiction (actually have to look at f}U to get
this contradiction...) O

18 Aside /review: note that O(P') = C but C(P') = C(z) because we have to look on affine opens.
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Lemma 39 (1)letC, v, p, andU C C be as in the definition above of “being centered
at.” If V.C U is an open affine and p € V then (a) v(h) > 0 Vh € O(V) and (b)
v(h) > 0 Vh € O(V) with h(p) = 0.

By an exercise, we can find an f € O(U), f(p) # 0, with Us = {q € U : f(¢q) # 0} =
U\ V(f) we have Us C V C U and also the rings of functions

C(C) > O(U;) > O(V) > O(U)

which is how we see that U and V have equal fraction fields. By lemma 0, we have

v(f) =0, hence y(;#n) =v(g) > 0if g € O(U) hence by (a) of Lemma 1 if g(p) = 0,

v(g/f™) = v(g) > 0 which proves part (b). O

Lemma 40 (2 - Geometric) For all quasi projective curves C and pairs of points
p,q € C', 3 an affine open U C C with p,q € U.

Remark: can also prove this with p,q,r,s,...,2z € C finitely man. For arbitrary
abstract C' this is harder to prove. Proof of 2: by definition, C' C P" is Zariski locally
closed. Pick a linear form > a;X; such that p,q € V(> @;X;). Do a linear change of
coordinates such that afterwards the new Xj is the old > a;X;. Then we get p,q € Uy
because both p, ¢ & V, (Xj) are not in the hyperplane at co. Take C" = CNU, C C" is
now a quasi-affine curve with p, ¢ € C’. This reduces the lemma to the case where C
is affine. In this case, write C' = C'U{cy, ..., cy} the Zariski closure of C' in C". Pick
f € Clzy,...,x,] such that f(¢;) =0Vi=1,...,N and f(p) # 0, f(¢q) # 0. Consider
U=C\(CnV(f) c C"\V(f). By construction, p,q € U, and U C C"\V(f) is
closed and C"\V(f) is affine so U is closed in an affine which implies U is affine.
Same trick works for more than two points...

Proof of Uniqueness part of Theorem: if centered at some point, can’t be cen-
tered at another point. Say v is a discrete valuation on C(C)/C. Say v is centered
at p,q € C'. By Lemma 2 can find an affine open U C C with p,q € U. Then there
are V.W C C such that p € V,q € W and moreover V works for p in definition of
centered at p and W works for q. By Lemma 1, may replace V', respectively W, by
smaller affine open neighborhoods, then assume by uniqueness that V,W C U. And
now we see V, W also work relative to U. So by Lemma 0 applied to U or V (7) we
can conclude p = q.

Egistence take C' C P" closed. If C' C V,(X;), then since V,(X;) = P"' we

may lower n. Hence assume C' ¢ V, (X;)Vi, then % CnUy? T ))g—z cru, e nonzero
rational functions in C(C)*. If V(§O CﬂUo) > 0 Vi then v(f) > 0Vf € O(CNUy).

Reason: any element of O(CNUj) is a polynomial with complex coefficients in i((—o CMo

(they're the coordinate functions on Uy = C"). Then by Lemma 0, we see v is cen-

tered at some point of C'N Uy,. What happens if one y<& > < 0 for some 77

Xo

CnNUy
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Pick i such that this is minimal (most negative). Then look at

Xg X@ ’ Xn
Z‘COU“ T Z‘CﬂUﬁ Tt Z|CHUZ
similarly as above, but now
X, X Xi\—1 X; X;
(Ller) = (2 G o) = " lern) = (G lers) 2 0

by choice of i. Why projective space is “compact” in a strong sense: every valuation
has a center. This says you can take limits in some algebraic way...

24 April 15

24.1 Valuations and nonsingular curves: first a proposition

To prove:

Proposition 12 Let C C R be a ring andm C R an ideal. Assume (a) R is a Noethe-
rian domain and (b) R/m = C, in particular m mazimal and (c) dimc(m/m?) = 1
(cotangent space ... over residue field ...) . Then 3! (exactly one) discrete valuation
von K= ff(R)/C such that

(1) v(f)>0Vfe R\{0} and

(2) v(f) > 0Vfem\{0} which is to say “being centered at m”.

We will prove this in steps, called Lemmas, with the notation in the proposition fixed.

Lemma 41 (0) (another version of Nakayama’s Lemma): If I C R is an ideal and
m/l =1 then I =0.

Proof: As R is Noetherian, we see [ is a finitely generated R-module, then by pre-
vious lemma (Nakayama), we can see m/ = [ = 3f € m such that (1 + f)I = 0;
since 1 4+ f # 0 and R a domain, we must have I = 0. [J Pick x € m which generates
m /m? Claim: 2" generates m" /m™*™! Vn > 1 (always the same x in what follows).
Proof of claim: it suffices to show that if fi,..., f, € m, then f;--- f, € Ra" +m"*!
Write f; = a;x + g; with g; € m? and a; € R (possible by our choice of ). Then
fi-- fn=ay---a,z"+ terms of higher powers than n... [J

Claim: m™ # m™™! Vn > 0. Well, m is not the 0 ideal because dim(m /m?) = 1,
but by Lemma 0, m-m” = m""! = m" = m = 0 a contradiction.

Claim: I = ﬂnZO m” = 0. Well, will show mI = [ and then use Lemma 0,

but the inclusion D is hard, uses Artin-Rees, so a proof is outlined in the exercises
(two versions). Now
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Definition 36 Fora € R, a # 0, vy(a) := max{n | a € m"}.

Uses claim. Note vy(a) = n & a = cz™ +r with ¢ € C* and r € m™"!. For
z€ K= ff(R), z# 0, set vn(2) = Vm(a) — V(b)) whenever z = ¢ and a,b € R (com-
pare to the p-adic valuation). Here x plays the role of the coordinate - “uniformizer”....

Claim: (1) vy, is a discrete valuation. (2) if v is a valuation on K/C such that
v(f)>0VfeR v(f)>0Vfem\{0}, then v = v,

Proof of 1: if a = cx™ + 1y, b = ca™ + 1y where c¢,co € C*, ri,r9 € m™H,
same x as before. So vy(a) = ny, vy (b) = ng, and

ab = c10ox™ T2 4 c1rox™ + Cor ™ + 17y

where the last three terms are in m™ ™21 Then vy(ab) = ny + ny = vn(a) + vu(b).
and also a + b = cj2" + 11 + ™ + ry € m™P("2) which means vy(a + b) >
min(ny,ny) = min(vy,(a), vy, (b)). Surjectivity is clear because the valuation of z is 1.
This proves 1.

Proof of 2: With arbitrary discrete valuations such that v(f) > 0Vf € R\{0} and
v(f) > 0for f € m\{0}. Thent = v(x) for some ¢, and s = min{r(g) : g € m, g # 0}.
By assumption t,s > 0, t > s. If g € m, then g = az + > v;w; for a € R, v;,w; € m
because z generates mod m?. If s = v(y), y € m is an element where the minimum
is attained, then s = v(y) > min{v(az),v( > vaw;)} > min{t, v(v;, w;) Vi|7} which
is > min{¢,2s} which implies s = ¢t. Now pick any f € R # 0. Then we can write
f=cx"+rforce C, rem™ sovy(f) =n. Compute v(f) > min{v(cz™),v(r)} =
min{nt,v(r)} but becase r € m"* and s = ¢ we get v(r) > (n + 1)t. General fact
on discrete valuations: if v(a) # v(b), then v(a + b) = min(v(a), v(b)). We conclude
that v(f) = nt = n - v, (f) and by surjectivity we must have n = 1. O All of this
comes from the fact that m is virtually generated by 1 element.

24.2 Applications

Application 1Recall what we know about affine curves: normal = nonsingular, and
nonsingular curves are characterized by the property dimm /m? = 1. If C'is a non-
singular affine curve, then there are canonical bijections between

i) discrete valutations on C(C)/ C such that v(f) > 0Vf € O(C)
ii) discrete valuations on C(C')/ C which have a center on C

(
(
(iii) maximal ideals m C O(C)
(iv) points of C.

We go about these by: (i) and (ii) from last lecture; (i) and (iii) from v — m =
{f : v(f) > 0} and also by Lemma 0 of last time (1 to 1 by today); (iii) to (iv) by
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Hilbert’s N and (ii) to (iv) by v +point of C' where it is centered. Proof is by combin-
ing everything: note that the proposition with dimension dime¢m /m? = 1 does not
apply to the cuspidal case; later, look at singularity with 1 point above in resolution.
Application 2 If C' is a nonsingular quasi-projective curve then discrete valuations on
C(C)/ C which have a center on C are in bijection with points on C' (send a valuation
to its center). Proof: well defined by last time, injective by uniqueness in proposi-
tion today, and why surjective? Point: it’s in an affine, and with application 1 to
R=0U) and m ={f € OU) : f(p) = 0} we can say v, is a valuation on C(C)
with center at p. For example, C = ', don’t get v,,. Application 3 C'is a nonsingular
projective curve, then discrete valuations on C(C')/ C are in bijection with points on
C'. By app II and any valuation has a center on a projective curve (last time). This
is what says projective space is proper — completely wrong in higher dimensions!

25 April 20

Another lecture on valuations and singular curves. It’s becoming inconvenient not to
have this definition...

Definition 37 Let X be a quasi-projective variety and p € X a point. The local ring of X at p
is Oxp,=0,={f€C(X): IpeU C X affine open s.t. f € OU)}.

Since Frac(O(U)) = C(X), on this open U take { Silly remark: can make U as
“small” as you like (hence local). Might as well assume affine (basis for topology).

Lemma 42 O, is a Noetherian local ring.

Proof: if f € O,, then I can evaluate f at p since f is a regular function on some nbd
of p. I claim that O, is a local ring with maximal ideal m, = {f € O, : f(p) = 0}.
Algebraic fact: if R is a ring, I C R an ideal, and if for anyf € R, f € [ = f
invertible, then we must have R a local ring with maximal ideal I. By this algebraic
fact, it suffices to check that f € O,, f € m yields f invertible. This is true because
say f € OU). Then U = {q € U : f(q) # 0} C U is open and affine and by
assumption p € U', (U’ = U\ V(f) a localization), and f~! € O(U’), hence f~! € O,
which is f invertible. Now to show O, is Noetherian (sketch): pick any affine open
UCXwithpeU. Letem={feO(U): f(p) =0} C O(U) then check

0=(Lifgc0W)g¢m),

hence by general algebraic fact which states that for given (R, p) with R Noetherian
and p a prime ideal, then R, = {g : fog € R,g & p} is Noetherian. O

Example: X =C,p=0€ X =C, then O, = {5 : f,9 € Clz], g(p) # 0}. We tried
to avoid these because they’re not finitely generated; this contains ﬁ YA # 0, so
it’s not finitely generated at all over C as an algebra - it sucks from a computational
point of view, but is useful later on: Cl[x]] is better ... it’s also local ... easier: closed
formula for this thing! Anyway, we're trying to get to the point where nonsingular
< normal...
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Proposition 13 If C is a nonsingular curve, pinC' and v is a valuation on C(C')
centered at p (one such one), then

0 ={f €C(C) : (/) > 0}

with mazimal ideal

m, = {f € C(C) : v(f) > O}.

Before the proof of the proposition'?, let’s first do a “might’ve made things less
confusing if I said this earlier” Lemma:

Lemma 43 If p € C, C nonsingular curve, then 3 arbitrarily small affine neighbor-
hoods p € U C C of p such that the ideal m = {f € OU) : f(p) = 0} C OU) is
generated by 1 element.

Proof: By previous result, dimc(m /m?) = 1. Pick # € m which generates m / m?.

Then
m-(m/(2)) =m /()

as O(U)-modules because (z) +m? = m by choice of z. Then by Nakayama’s Lemma
df € m such that (*) (14 f)m/(z) = 0 so Vg € m, (1 + f)g is divisible by = in
O(U). This means that if we set p € U' = {q € U : (1 + f)q # 0} affine open set
in U and m’ = {g € O(U’) : g(p) = 0}, then actually O(U’') = O(U)y4 a principle
localization, and m" = my,; = {77%5= : ¢ € m} and now from (*) you conclude that
m’ = (z) inside O(U’). NB: before mI = I in a domain could use Nakayama’s Lemma
that way; here, we’re in m /(x) - this happens in O(U)/(z) which is not in general a
domain. For Nakayama’s Lemma we have two cases: either apply it in a domain or

when we're in a local ring.

Example: C[x,y]/(y* — x(xz —1)(xz — 2)). Here m = (z,y) a point; can’t be generated
by 1 element globally, but m / m? is generated by y (smallest order of vanishing). Ish,
look at real picture, see that tangent space at x = 0, y has non-zero derivative on
this curve. To prove m can’t be generated by one element, have to do more work.
But what would be an open subset where it is generated by one element? Second
attempt: maybe y generates it? y = 0 on (1,0) and (2,0) also: note that in O(U’)
which is
Cla,yl/(y* — 2(z — 1)(z — 2))
(z—1)(z—2)

allowing inverting x — 1 and x — 2, we see then that m = (y) exactly what happens
in proof. Not that easy to see but it’s true. The way to find an open where you can

do this is to pick a generator of m /m? then look where the element is 0, and invert
some elements.

19Aside: example X = C,p =0, any f € C(z) is f = c[[}_,(z — X\;)* for ¢ € C, \; € C pairwise
distinct, and e; € Z. Then vy(f) is the order of vanishing at 0 is 0 if A\; # 0 Vi or it is e; if some
A =0. And here f € Op & v(f) > 0.
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Now we can prove the proposition. Want to show O, = {f € C(C) : v(f) > 0}
where v is centered at p. Now, RHS doesn’t depend on the curve: just on valua-
tions and function field. The LHS is defined in an arbitrarily small neighborhood
of the point: also affine and maximal ideal generated by one element. By previ-
ous results, we may “replace” C to be C’ an affine neighborhood of p such that
m = {f € O(C") : f(p) = 0} is generated by a single element x € m. Then
v(x) = 1 by v = vy in previous Lemma. Described this valuation explicitly! Also
v(f) >0« fem<& xdivides f (because now it’s generating the ideall). So any
f € O(C) can be written as f = 2’0 f where f(p) # 0. Now prove the propo-
sition! Pick f € C(C). Write f = g/h with g,h € O(C). Write g = 2¥¥g/,
h = 2"™h/ then R (p) # 0 = R’ is invertible in some open neighborhood of p. So
then v(f) > 0 = v(g) — v(h) > 0 which means f = z@=vMg" . (K)71 is regular
on some neighborhood of p which means f € O,. Converse: f € O(U’) for some
p € U C U, then by previous Lemma, v(f) > 0. O Note that we didn’t prove
m, = {f € C(C) : v(f) > 0} but the proof is similar.

IDEA: instead of thinking of functions, think of C(C') and a collection of opens
O(U) and how they sit in C(C)...

Corollary 11 if C' is a nonsingular curve and U C C' is open, then

O(U):ﬂcpo

peU
as subsets of C(C).

This is true because we can find both equal to
{feC(C):r(f) 20 Vpe U}

Of course, v, is the unique valuation whose center is p € C. Regular functions
locally look like the quotient of polynomials: this is exactly our definition! Proof:
one equality is by proposition; the inclusion O(U) C (1, O, is clear. Conversely, if
f e C(C), Iget Vp € U open affine regular U, C U a nbd of p such that f € O(U,)
so all of these regular functions f : U, — C agree on overlaps (Exercise!) O Just
building theory, it’s hard to do examples - goal is this theorem:

Theorem 10 Let L be a finitely generated field extension over C of transcendence
degree 1. Then 3 a projective nonsingular curve C' with the following properties:

(i) C(C) < L

(1) points of C « discrete valuations on L]/ C

(111) topology on C' « closed sets are finite sets of valuations (or all or none)

(iv) O(U) < Npey Ovw ={f € L:v(f)>0}.
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In particular, exists at most one up to isomorphism such nonsingular projective curve
(bijections give morphisms). Given C,z,y,p(x,y) € Clz,y] irreducible, then can
make L = f.f.C[z,y]/(p) and then find curve. Don’t know yet that V curves not just
affine we can desingularize: that’s what we’d get. It looks like one category is the
same as another ... but we haven’t talked about the morphisms here...

26 April 22

Corollary 12 A nonsingular affine curve C' is normal.

Recall, we already know the converse. Sketch of proof: pick C' — C finite (Noether
normalization) and let C' — C be a normalization. Then discrete valuations on
C(C)/C with center on C' is equal to {v s.t. v(f) > 0Vf € O(C)} which is equal
to{v: v(f)>0Vf e O(C)}, which we want to say is equal to all valuations on
C(C")/ C with center on C’. Get desired equality by

O((J):ﬂ(;): N 0= ﬂg):ow’)

peC vals as above peC’

hence C' = " is equal to its normalization, hence it’s normal; note that we used

C(C) = C(C").

Now prove this theorem we stated last time:

Theorem 11 V finitely generated field extensions C C L with trdegc L = 1, 3 a
nonsingular projective curve C with C(C') = L and moreover (of course ! up to
isomorphism:)

(i) points of C' < allv on L/ C

(1) topology < cofinite topology

(iii) O(U) -,y Ov where O, = {f € L:v(f) > 0}.

Proof: have done everything but existence (there’s a version of this with functorality).
For existence, pick C(z) C L as before; then picture A = Clz], A’ = C[z~!] = CJy],
and A” = C[z, z7!], in their corresponding B, B’, B” integral closures in L. We saw in
the exercises that B” = B, = B,. The intersection BN B’ is the curve corresponding
to B”: the projective nonsingular model. By Jarod’s Theorem, finitely generated
algebras over C correspond to curves: domains with transcendence degree 1; B”:
open part of two affine curves (if you know abstract scheme theory, this would be
obvious). Pick generators by = x,bs,...,b. € B which generate B as a C-algebra.
Pick b} =y, b, ..., b1B" generators, and choose n large enough such that z"b; € B,
y"b; € B’ for all 7, j. Consider homogeneous variables/coordinates

X07X17}/17"'7}/7"7Z17"'7Zs
in P""**1. Define a graded ideal I C C[Xy, X1,Y1,. .., Z,] by the rule

Fel&s F(1,2"by,...,b., 2", ..., 2"b.) =01in B' or in L.
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Set C' =V, (I) = (\pe; Vo (F). By some algebra, I is finitely generated; won’t prove
this. Then YOU prove C N (P"\V, (Xy)) = C N Uy = an affine curve with
coordinate ring B. This works because we're looking in an algebraic set in C" ™"
defined by kernel of

Cles, Y1y s Yry 215+, 25] — B

surjective by x1 — 2", y; — b; and z; — Vjz™ are all in B! Then you prove C'N U,
is cong to an affine whose coordinate ring is B’. Because first coordinates become
=, =by, ..., =0, ), .. b, all in B'. Third thing: C'N V4 (Xe) N Vi(Xy) = 0. This
is tricky: use b;, b integral over C[z"] (it’s irreducible - the intersection of two irre-
ducibles) and here C' = (C'NU) U (C' N Uy) is nonsingular.

Example: hyperelliptic curve 2% = Hfif(x — \;) write \; € C pairwise distinct, I
mean L = C(x)[2]/(2 = [[27%(x — \;)). Scratch work, with y = 2, we get

()" =TI -wn)

and so

B =cly, /() - [0 - )

now take in construction of the proof by =z, by = z, b} =y =2"", n =g+ 1 works;
procedure tells us to take Xy, X1,Y7,Ys, Z1, Z, given by 1, 2971 2, 2, 2™y, 2™ —1 Which
is 1,297 2, 2,29, 2. Now procedure is to consider ALL homogeneous polynomials in
Xo, X1,Y1,Ys, Zy, Zy which give relations between the 1, 2971, 2, z, 29, z. In particular,
Yo — Zy = z— z =0, so we can eliminate Z, (it’s expressible in terms of Y3). Relabel
the variables for now: Xy = 1, X; = 2, Xy = 29, X3 = 297!, X, = 2. Look at
homogeneous equations here: Xy X3 — X;X, = 0: our curve is in the hypersurface
given by this equation. To figure out all equations is quite hard;

1

2g+2
XooX7 — [ (X1 = AiXo) =0
i=1
is the main one. Also (*) XY — X' X, =0, or XY™ —XIX5 =0, or XJ™' =X X¢ =0
etc. Figure out each equation of degree d (combinatorial). Also need

2g+2
X3X7 — [ (X = AiX) =o0.
i=1
For example, X; X" — XJ = 0 is dual to (*). Now when X, # 0, get = C[%], and
when X3 # 0, get = (C[%] ... argument looking at degrees ... what you have to do

abstractly using integrality ...

27 April 27: Guest Lecture - Andrew Obus

Question: what do projective smooth connected curves look like as topological spaces
in the standard complex topology? What we know:
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Any point on a nice curve has a neighborhood homeomorphic to an open disc
in C (consequence of the implicit function theorem in Homework 8)

Hence, should appear to be a real 2-dimensional surface

They are smooth

Orientable: exists a consistent continuous choice of “clockwise” on the tangent
space at each point (intrinsic definition - see manifolds course). Why? Vp € C,
look at affine open patch p € U C C, well this lives in some A™ = C", and the
tangent space T,C is a 1-dimensional complex line, which is 2-real dimensions,
and the rotation v to —iv by multiplication by —i is a 90 degree clockwise
rotation. We can see that this is consistent because for any two points p,q € C,
there is an affine patch containing p and ¢, and then the transition from v on p
and ¢ on ¢ is given by a matrix GL(C,n) which commutes with multiplication
by —1.

e Also compact: closed subsets of PV which is compact and Hausdorff in the
standard topology (remember its a quotient of S*N+! in CN*1).

Upshot: C' a compact, orientable, smooth surface implies by topology (end of Munkres)
that any one of this is ¥, for some g € N (genus / genera; like lemma/lemata). In
light of the equivalence of categories from past lecture, note that given any g € N,
there 3 an oo number of algebraic function fields that are non-isomorphic that give
the same ...

Question: given equations for a curve, can we calculate how many holes are in its
associated complex space?

Theorem 12 If C' C P? is a smooth plane curve defined by a degree d homogeneous
polynomial then

o(C) = (d—l)z(d—2)‘

We won’t prove this fully. This is true only when the curve can be embedded in P?.
We will prove this for d =1,2,3,ie. ¢ =0,0,1.

27.1 Case d = 1:
We get P! ¢ P? and CP' = S? which implies g = 0.

27.2 Case d = 2:

A generic quadratic is
aX?+bY? +cZP+dXY +eXZ+ fYZ =0.

Claim: by completing the square, we can eliminate all the cross terms by a substi-
tution, but first we would need a substitution making sure a,b,c # 0. Then we get
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aX?+bY? +cZ? =0, but by scaling we can assume a,b,c € {0,1}. fa=b=c=0
then we don’t get a curve. If 2 of the a,b,c are 0, then we get a line, which is not
reduced (double line - scheme theory to come) as in #? = 0. If one of them is 0,
we get X2 + Y? = 0, which is (X +iY)(X — 1Y) = 0 the union of two lines; at
their intersection, we will not get a smooth point. Thus, we are left with the only
possibility: X2 + Y2 + Z2 = 0: indeed, all smooth conics are isomorphic to this!
Hence, we can pick and conic like this and look at it! Choose C to be defined by
X% —YZ = 0 (verify its smooth on your own). Claim: f : P' — (' is an isomor-
phism for f : [s : t] — [st : s* : t?]. Note that we avoid [0 : 0 : 0] and that this
point lives on the variety. This is an isomorphism with inverse [z : y : 2| — [z : 2]
whenever [z @y : z] #[0:1:0], ie, on UyUUs; and also [x : y : 2] — [y : z]
for [x :y: 2] #[0:0:1],ie on UyU U, which gets everything. Indeed, on the
overlaps we have ¥ = 2 (check yourself that this is true, and that the compositions
give identities both ways). Now C' = P! hence g(C) = 0.

As an aside, note that there is something called “arithmetic genus” which holds
for curves even when it isn’t smooth...carrying on

27.3 Case d=3:
C" defined by

aX3+bY3 +cZ8 +dXPY 4 eXY? + fX?Z 4+ gXZ? + WY Z +IYZ? + jXY Z = 0.

Claim: any smooth plane cubic is isomorphic to one given by the equation of the
form

YZ =X(X - Z)(X - )\2) for some A e C\{0,1}.
If Z = 1, then on that patch U, C P? this is y? = z(z—1)(z—\) - “Weierstrass form”.

Pf sketch: admit that any smooth cubic has an inflection point - a point where the
tangent line is of order 3. This is a statement about partials vanishing: the intersec-
tion of the curve of partials vanishing with the original curve must have intersection
by Bezout’s Theorem. Actually, can phrase this inflection property about the ideal
you get: it has to do with the length of the ideal (should be 3)... Anyway, consider
Aut(P"), which is PGL™"! (this is n + 2 transitive) for n = 2. Then it is a fact that

1) Vp, @ P? 3 an isomorphism of P? taking p to ¢ (transitivity) - given by 3 x 3
matrices.

2) for a point p € P? and two lines [y, [, through p, there exists an isomorphism
of P? taking l; to I, and fixing p. Hence, we can assume that the inflection point of
C'is [0: 1: 0] with tangent line z = 0. Claim: b = 0: on line z = 0, we are left with
aX? + dX? 4 eX when y = 1, but we need inflection point of order 3, sod =e =0
(sketchy...).
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Writing
RY?Z + IyZ* + jXYZ = aX? + fX?Z + gX 7% + 7,

we can show that h,a # 0, since otherwise it factors when a = 0 and h = 0 gives
us a singularity. By scaling, assume h = a = 1. Set z = 1 (in affine coordinates
for simplicity) then complete the square in y? + Iy + jry = ax® + f2? + gx + ¢ by

Y=y — % — %x, we end up getting
yQ — a/xS —i—f’x2—|—g'x+c'
v = (r—e)(r —er)(r —e3)

by smoothness we can show that ey, e5, e3 are pairwise distinct (otherwise not smooth).
Now setting z = (e3 — e1)a’ + e; and y = (eg — e1)* %y’ we get

(¥)* =a'(a' = 1)(a' = \)
where \ = % since all are pairwise not equal we get A\ & {0,1,00}. Projectivizing
this, we get Y?Z = X'Z(X' — Z)(X' — \Z) as stated. The real content here to
remember: any smooth cubic has an inflection point. [J

Fun part: now we have a relatively simple equation, let’s see what this looks
like. Well C' defined by y*> = x(z — 1)(x — A) on an affine patch ([0 : 1 : 0] is point
at 00), we can project f : C' — P! by (z,y) + [z : 1] and oo ~ [1 : 0]. This is not
an isomorphism! Given x € A! IT {oc}, there exist two square roots above in C, lest
z € {0,1, ), 00} given by 1 £ \/x(z — 1)(x — \) obviously.

Claim: on P'\(L; U Ly) where L, is the slit connecting 0 and oo and L is the slit
connecting 1 and A, there exists a consistent choice of square root for z(z —1)(x — \).
Idea of proof: problem of monodromy in z — +/z in complex case. Around the slit, we
change sign twice, hence (—1)? = 1 is cool. Further, because 7, (P'\(L, U Ly)) = Z,
we took a generator of this, this is all we need to check (hand-wave).

Upshot: if we take P'\(L; U Ly), then C \ f~'(L, U Ly) is two disconnected
copies of P'\(L; U Ly), one corresponding to each of the two consistent choices of
square root. So to understand C', we have to know how these glue togetehr. By the
homeomorphic ripping, we see that our two spheres with two slits rip off to form two
halves of the torus (drawing argument) - hence g(C) = 1.

27.4 Remarks

First: in topology, T?> = S! x S!, and S' =R /Z is a group, so T? has a group struc-
ture, so my curve has a group structure! If we choose the homeomorphism carefully,
this gives a very natural geometric rule for the group structure on C' [need to deal
with Eisenstein series for this...] turns out cubic curves have group structure, while
degree 5 and 6 do not (sketches group law for elliptic curve).
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Second remark: can also prove ¢g(C) = 1 using Hurwitz formula from topology;
branch points + genus below gives you a formula for the curve upstairs (use simpli-
cial decomposition and count simplices upstairs: this is very general and can be used
for any curve...

Third remark: can do algebraic geometry over characteristic p fields... no good “com-
plex space,” but for arbitrary fields (algebraically closed fields) still can define genus
of curves! But not as easy: there’s a formula that agrees with that of curves over C
and for smooth plane curves the formula g(C') = w still holds. This ¢ is still
an integer, not an element of Fy say. A lot of curves aren’t smooth in F,. You can
use (i) the dimension of the vector space of global differential forms on the curve or
(ii) sheaf cohomology [something about ideal class group in ring of integers to field

of functions...]

28 April 29

Discussion of Exercise 12.5 omitted.

28.1 Impromptu discussion of the formula for genus of smooth
plane curves

Proving C' C P% nonsingular of degree d has genus ¢(C') = W, there are several

ways to do this. Here’s a sketch of the standard idea: construct a finite map C' — P!
and count branch points; projection from a point in P? to a line, (X0 : X7 : Xo] —
[X1 : X5] not defined at [1: 0 : 0] (the projection point). Almost everywhere you get
the same number of points with multiplicity 1 preimage intersections, though for some
you get tangent lines: if p, € P' lies on a tangent line through the projection point
r, then typically you get d — 1 preimages, and the sequence of ¢;s is (2,1,1,...,1).
How many times does that happen? (discussion of existence of a general position
projection source r omitted) Let C' be a curve defined by Fy(X,, X1, X2) = 0 smooth
of course. On an affine piece Xy = 1 say, this means counting when F(z,¢,1) as a
polynomial in z has a double root. This happens iff ged (F(:v,t, 1), %—f(m,t, 1)) # 1
which happens iff Res,(F(z,t,1), g—i(x,t, 1)) = 0. Looking at arbitrary equations
apr? + a1 + - - + ag with derivative dagr? ! + (d — 1)12%7 2+ - - - + a4_1, we guess
that if everything is in general position, since deg,(a;) < i, we’d have

OF
deg,Res, (F, 0_x)

If g is the number of holes, we get it by a triangulation of the surface

—d(d—1).

2-29g=V-E+F

the Euler characteristic, where V' is the number of vertices, E the number of edges,
and F the number of faces. For P! = S?, we see we can triangulate with two triangles,

70



and 3—3+2 = 2 hence g = 0. Proving these things are independent of triangulation,
do that later in life. Similarly for the torus, use gluing square and draw a diagonal to
get 1—342 =0s0 g =1 (fishy). Euler characteristic also shows up as the alternating
sum of betti numbers in (co)homology. It is the only invariant for these guys
somehow.?’ Why is it well defined, this “number of holes”? Not entirely obvious!
Euler number of spaces is additive: e(X 1Y) = e(X) + e(Y). For example, e of the
open interval is —1, because it is e of the closed interval minus e of the boundary, i.e.
1—1—1= —1. This can be generalized to more spaces...

Back to our curve: we have 7 : ¢ — P' O a finite set of points d(d — 1) of
them which have d — 1 points on the fibre. We want to look at what happens to the
triangulation at edges and points: find triangulation of P! whose vertices are these
d(d — 1) points of interest, these pys. Between two such p,p’ the preimages of the
edges will be d different strands attached to d — 1 points: i.e., corresponding to the
partition 2,1,1,...,1 of d! Then we see it pulls back by 7 to a triangulation of C.
Indeed, let v be the number of vertices on P! and V' the number of vertices on C,
same for e, £ and f, F:

+V=d-(v—dd—1)) = (d—1)-(d(d - 1))
—E=d- (e
+F =d-(f)

e(C)=d-e(P') —d*(d—1)+d(d—1)*=2d —d(d — 1)
and e(C') = 2 — 2g gives by algebraic juggling 2g = (d — 2)(d — 1) as desired. O

Again, this is one of the many ways to do this. We need to get (2,1,...,1)
and “simple branching”.

28.2 Material: postlude

Given ¢ : 7 — (5 a nonconstant map of nonsingular projective curves, we get
C(Cy) € C(C). Indeed, Cy corresponds to valuations on C(Cy), and Cy to valuations
on C(Cy), and the map v +— U|C(02)* restricts to a valuation. This is the basis for the

proof of the functorial thing: the category of non-singular projective curves with non-
constant morphisms is in anti-equivalence with finitely generated field extensions

C C L with trdege(L) = 1 by maps C' — C(C), (C; — Cy) mapsto(C(Cy) C C(Ch)).

Another simple loose end: ramification indices! Let’s look at them holomor-
phically. If h : {|z|] < 6} — C is holomorphic and h(0) = 0, then Je > 1 and
dg : {|z] < €} — C holomorphic with 0 < € < ¢ and %(O) # 0 such that

h=g¢° on {|z] <€}

20This sounds awesome.
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Geometrically, 0 — 0 for {|z| < §} — C by h, then there is a subset of our original
domain {|z| < €} such that it is sent by g to some open in C where to map from this
open back to C the target of h commutatively we get z +— 2¢. This is saying that
up to coordinate change locally our projection looks like 2¢ this “twisting”. We can

characterize this integer e as the smallest integer such that gi’j(O) # 0.

Proof sketch: write
h(2) = co2® + copr 2T 4+ = 2%(ce + copr 2t -0 0)

and then take e root of u (we did an exercise at the formal level), and take g = zu!/®.
Then given a nonconstant map ¢ : C; — C5 of nonsingular projective curves, p € Cs
with o= *(p) = {q1,...,q } such that Vg; 3 small discs: morphisms are holomorphic
locally on discs; get e; for each g;. These ey, ..., e, are different from what we have
done so far: before, the bottom curve was a P'. It turns out it’s always true that the
sum of the e; is

Zei = deg ¢ = deg[C(C}) : C(Cy)]

for almost every p has e; = 1Vi, i.e. r = d. But otherwise we get a partition of the
degree.

For the exam: a lot of easy questions: make sure you know you’re definitions.
But of course, I'm always asking things that are tricky, so try not to get hung up.

29 6 May: Final Exam Review

The goal is to give lots of easy questions.

1. When is a quasi-projective variety X nonsingular at a point p? Pick
an affine open neighborhood U C X, U — C" closed. If dimX = £k, let
fi,--, fn € Clxy,...,z,] generate the ideal of U. Look at the rank of the

matrix (%(p)): it should have rank n — k. Note that choosing the f; to

generate [(U) is necessary, since choosing squares of these functions will cut
out set theoretically the same thing but the Jacobian will vanish.

2. What is the dimension of a variety? Let X be a quasi-projective variety.
Choose U C X an affine open, U # (), and look at O(U) the ring of regular
functions, and take its fraction field: this is C(X). Then trdeg:(C(X)) =
dim X. Make a list of definitions and know them: on exam, something like
“what is a function field? why is it well-defined?”

3. What is a discrete valuation? Let K C L be an extension of fields. A
discrete valuation on L/K is a surjective ring map v : L* — Z such that

() v(f + g) > min(u(f), v(g))
(i) v(fg) = v(f) + v(g) (i) v .. = 0.
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. What are the irreducible components of V (s, 173, 1223) C C*? Must
have at least two 0, hence elements are scalar multiples of (1,0,0), (0,1,0),
(0,0,1). It’s the coordinate axes: V(z1,z9) UV (21, 23) UV (22, x3).

. Find a finite projection of C = V(zy + 2z + y + 2) in C* to C. We had
a criterion for finiteness: projection to x iff written as a polynomial in y with
coefficients in C[z] it’s monic. Clearly here zy +z+y+2 = (z+ 1)y + (z + 2)
isn’t monic, so it won’t work. By the affine change of coordinates ©r = u + v,
y = u — v, our equation becomes u® + 2u + (2 — v*) which is monic in u so
project to v.

. Given an example of a Zariski closed curve C' C P? such that

(a) C is nonsingular. Lines are nonsingular, so take V(X2) NV, (X7).
Have to go to affine pieces and check smoothness. If in some window there’s no
curve, the emptyset is nonsingular :). This set is {[* : 0 : 0 : %]} check on Uy
and Us.

(b) C is singular. Find a curve in C® that’s singular and homogenize.
Take y> = 2° and z = 0 in C>.

(c) C is nonsingular and C is not contained in V,(a X+ bX; +cXs+
dX3) for any (a,b,c,d) € C*\0. This would take too much time to give on an
actual test, but most things should satisfy this: take 4> —2 =0, 23 —y = 0
in C?, that is, the image of {(¢%,¢%,¢)} is a submersion (everywhere non-zero
derivative).

. Give as a function of ¢ € C the number of intersection points of
V(xy—1) and V(2®+4*+a). Certainly x = 0 or y = 0 is not on V(zy — 1), so
then y = % can say x° + x%, +a = 0 so can write this as 2% + az® +1 = 0. This
is a quadratic in 23, so a® = %‘m. Hence there are six intersection points
unless @ = 2, in which case there are three. Note that we aren’t in the case

z = 0.

. Give an example of a morphism C?\{0} — P' which does not extend
to a morphism from C* — P'. The quotient map (a,b) — [a : b] works,
since whatever 7((0,0)) € P! is, separate it with another point, but the two
lines 7((0,0)) and z € P! are infinitely close to (0,0). Can also say that by
continuity, lines without (0,0) that take constant values force (0,0) to take
every constant value, contradiction.

. Let C' be a projective curve. Show O(C) = C. This is sketchy: we
wouldn’t have this on the test, but this is a fact we should’ve shown earlier. A
map f : C — C in usual topology, domain is compact and image is compact set,
so exist points that don’t get hit. But, it happens to be true that morphisms
that are non-constant must hit all but finitely many points.
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10. Let X = V(X2 4+ X2+ X2+ X2) C P.. Does there exist a Zariski closed
I-dimensional curve C' C P} such that CNX = ()? Ask Kyler for a solution.
Uses 9.
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